Dynamics of cold atomic gases


Thomas Gasenzer

Wednesday, 09:15-10:45, INF 227 SR 3.401, Start: 18 April 2007

  • Introduction (Atomic Bose-Einstein condensates and (degenerate) Fermi gases, experiments, observables)
  • Introduction to mean field theory (Gross-Pitaevskii dynamics, hydrodynamics, excitations near equilibrium)
  • Dynamics close to equilibrium beyond mean field (Boltzmann's kinetic theory, kinetic theory of Bose-Einstein condensates, Beliaev theory, Landau damping)
  • Quantum field theory far from equilibrium (Path integral approach, effective action, 2PI theory, perturbation theory and loop expansion, 1/N resummation)
  • Applications and phenomena (Equilibration, classical vs. quantum dynamics, classical simulations, dynamics near phase transitions)

  • Quantum Mechanics (Theoretical Physics III), Statistical Mechanics (Theor. Phys. IV)
  • Quantum field theory, Path integrals in Quantum Physics would be helpful for the second part of the lecture.

  • K. Huang, "Statistical Mechanics", Wiley (1987).
  • C.J. Pethick and H. Smith, "Bose-Einstein condensation in Dilute Gases, CUP, Cambridge (2002).
  • A. Leggett, "Bose-Einstein condensation in the alkali gases: Some fundamental concepts", Review of Modern Physics 73, 307 (2001)
    (Full text as pdf available through UB proxy server).
  • L.P. Pitaevskii and S. Stringari, "Bose-Einstein condensation", Clarendon Press, Oxford (2003).
  • F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, "Theory of Bose-Einstein condensation in trapped gases", Review of Modern Physics 71, 463 (1999).
    (Full text as pdf available through UB proxy server).
  • J. Berges, "Introduction to Nonequilibrium Quantum Field Theory", e-print hep-ph/0409233; AIP Conf. Proc. No. 793 (AIP, New York, 2005), p. 3.
  • H. Kleinert, "Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets", World Scientific Publishing Co., Singapore (2004).
  • G. Roepstorff, "Pfadintegrale in der Quantenphysik", Vieweg, Braunschweig (1990).