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FIG. 1. Space-time evolution of the transversal spin F⊥ = |F⊥| exp
{
iθF⊥

}
. Quenching the system across the quantum phase transition, here to

qf = 0.9, introduces exponentially growing unstable modes which subsequently lead to the formation of textures in the transversal spin after a
few characteristic time scales ts. These spin textures, with size given by the distance over which a 2π phase winding occurs in the phase angle
θF⊥ , are populated by kink-like defects. The defects are characterized by a dip in the amplitude and a corresponding phase jump as depicted
in panels (a) and (b). The solid black lines in panel (a) indicate a sound cone associated with the sound velocity of the spin degree of freedom
cs =

√
n0|c1| = 1. The size of the spin textures grows in time which is associated with the dilution of kink-like defects leading to long-range

order developing in the phase field (see panel (b)). Each panel only shows an excerpt of the total grid of length L = 554 ξs.

tor characterized by the algebraic growth of an infrared (IR)
scale LΛ(t) ∼ t β associated with the conservation of local
spin fluctuations as well as an algebraic decrease of a sec-
ond scale Lλ(t) ∼ t β

′

connected to kinetic energy conservation
in the ultraviolet (UV). The growth of LΛ(t) is observed to
be associated with the dilution of kink-like defects separat-
ing patches of approximately uniform spin orientation, while
Lλ(t) is set by the decreasing microscopic width of the defects,
cf. Ref. [26]. Constraining the system to one spatial dimen-
sion, we find the IR scaling exponent β ' 0.25. This value
is considerably smaller than the standard exponent β = 1/2
found in isolated systems for universal scaling transport to-
wards the IR [22, 27, 30, 33, 34, 36–38], associated with
near-Gaussian fixed points [30, 38], and, in open systems in
two and three dimensions, for diffusive coarsening of a non-
conserved order parameter field [45]. We emphasize that our
findings are also in contrast to the case of a one-dimensional
(1D) single-component gas where no scaling evolution is ex-
pected due to kinematic constraints on elastic 2 → 2 scatter-
ing from energy and particle-number conservation and β ' 0.1
has been observed experimentally [23].

II. SPIN-1 BOSE GAS IN ONE SPATIAL DIMENSION

We consider a homogeneous one-dimensional spin-1 Bose
gas described by the Hamiltonian [63]

H =

∫
dx

[
~Φ†

(
−
~2

2M
∂2

∂x2 + q f 2
z

)
~Φ +

c0

2
n2 +

c1

2
| ~F|2

]
, (2)

where ~Φ = (Φ1,Φ0,Φ−1)T is a three-component bosonic
spinor field whose components account for the magnetic sub-

levels mF = 0,±1 of the F = 1 hyperfine manifold. q is
the quadratic Zeeman energy shift which is proportional to an
external magnetic field along the z-direction. It leads to an ef-
fective detuning of the mF = ±1 components with respect to
the mF = 0 component. We are working in a frame where a
homogeneous linear Zeeman shift has been absorbed into the
definition of the fields. Spin-independent contact interactions
are described by the term c0n2, where n = ~Φ†~Φ ≡

∑
m Φ

†
mΦm

is the total density. Spin-dependent interactions are character-
ized by the term c1| ~F|2, where ~F = ~Φ† ~f ~Φ is the spin density
and ~f = ( fx, fy, fz) is the spin in the fundamental representa-
tion. This term accounts. among others, for the redistribution
of atoms between the three hyperfine levels [63].

Spinor Bose gases can be realized in experiment in a well-
controlled manner which makes them suitable for studying
non-equilibrium phenomena [63–65], see Refs. [22, 66–68]
for dynamics after a quench. Recently, universal scaling dy-
namics close to a non-thermal fixed point, with scaling expo-
nent β ' 1/2, has been observed experimentally in a ferro-
magnetic (c1 < 0) spin-1 system in a near-1D geometry [22].
Theoretically, phase-ordering dynamics and scaling evolution
has been studied in a ferromagnetic spin-1 Bose gas in 2D
[59, 61, 69, 70] as well as in a ferromagnetic spin-1 Bose-
Hubbard model in a 1D optical lattice [71].

Apart from the trapping potential and a larger total den-
sity, we here perform numerical simulations in the parameter
regime realized in the experiment [22] on 87Rb in the F = 1
hyperfine manifold. Assuming a constant homogeneous mean
density n0 = 〈n〉, we can express the Hamiltonian (2) in terms
of the dimensionless length x̃ = x/ξs, with spin healing length
ξs = ~/

√
2Mn0|c1|, time t̃ = t/τs, with spin-changing collision

time τs = ts/(2π) = ~/(n0|c1|). The quadratic Zeeman shift is
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FIG. 2. Two-scale self-similar evolution of the structure factor S (k, t). (a) Overview of the time evolution. The initial polar condensate at t = 0
shows ground-state fluctuations around zero spin (dark blue triangles). At t = 0.67 ts (green crosses) the population of the momentum modes
is well approximated by the Bogoliubov prediction (dash-dotted line). For times 25 ts ≤ t ≤ 200 ts the system is in the spatio-temporal scaling
regime and evolves in a self-similar manner (dots). Three qualitatively different momentum regimes emerge: A plateau below a characteristic
momentum scale kΛ(t) (dashed line exemplarily marks the scale at time t = 25 ts), a k−ζ power-law fall-off at momenta up to a scale kλ(t) and a
steeper power-law decay at large momenta. The inset shows the extracted exponent ζ (cf. solid line in main frame). (b) Structure factor in the
temporal scaling regime rescaled according to Eq. (1) with scaling exponents α = 0.27 ± 0.06 and β = 0.25 ± 0.04 extracted via a least-square
fit. Within the infrared scaling regime, k ≤ k>IR (dashed line), all curves collapse onto a single one. The inset shows that, within this momentum
regime, the local spin fluctuations are conserved (up to ∼ 2%) for times 25 ts ≤ t ≤ 200 ts (dotted lines). The corresponding upper bound for
the integral is set by ku(t) = k>IR · (t/tref)−1/4 with tref = 25 ts. Within errors, the scaling exponents are consistent with α = β. (c) Structure factor
in the temporal scaling regime rescaled according to Eq. (1) with α′ = −0.53 ± 0.08 and β′ = −0.17 ± 0.04. Within the ultraviolet scaling
regime, k<UV ≤ k ≤ k>UV (marked by dashed lines), all curves collapse onto a single one.

quantified by the dimensionless field strength q̃ = qτs/~, the
field operators become Φ̃m = Φm/

√
n0, the density ñ = n/n0,

the spin vector F̃ = ~F/n0, and the dimensionless couplings
read c̃0 = c0/|c1| and c̃1 = c1/|c1| = sgn(c1). In the following,
all quantities are expressed in the above units and the tilde will
be suppressed.

In the ferromagnetic case (c1 = −1), and for a positive
quadratic Zeeman energy q, the equilibrium system exhibits
two different phases separated by a quantum phase transi-
tion that breaks the U(3) spin symmetry of the ground state
[68]. For q > 2 the system, in its mean-field ground state,
is in the polar phase and thus unmagnetized. On the op-
posite side of the transition, 0 < q < 2, the ground state
is in the easy-plane ferromagnetic phase. Here, the non-
conserved two-component order parameter is the transversal
spin F⊥ = Fx + iFy. Hence, the mean spin vector is lying in
Fx–Fy-plane, bearing magnetization |F⊥| = (1 − q2/4)1/2.

III. UNIVERSAL SCALING DYNAMICS

A. Initial conditions and quench

We consider far-from-equilibrium dynamics after a quench,
exerted on a homogeneous condensate in the polar phase,
i.e. an initial state with φ0(x) = 〈Φ0(x)〉 ≡ 1, by means of a
sudden change of the quadratic Zeeman shift to the parameter
range 0 < qf < 2. We compute the time evolution of observ-
ables using truncated Wigner simulations, starting each run
with a field configuration for qi � 2, with additional quantum

noise added to the Bogoliubov modes [72, 73] of the polar
condensate (see the appendix for details).

The quench induces transversal spin modes in the system
to become unstable, leading to the formation of a spin-wave
pattern during the early-time evolution after the quench. Non-
linear interactions subsequently give rise to the formation of
patches in the transversal spin. Within each patch, the phase
angle of the complex order parameter F⊥ = |F⊥| exp{iθF⊥ } is
approximately constant in space (see Fig. 1b). At the same
time, defects, represented by a dip in the amplitude and a
corresponding phase jump, are traveling across the system
at roughly the speed cs =

√
n0|c1| = 1 associated with the

sound velocity of the spin degree of freedom (see solid lines in
Fig. 1a). Spin patches in combination with phase jumps form
spin textures whose size is given by the distance over which
a 2π phase winding occurs. The so-formed spin structure sets
the stage for the subsequent ordering process. According to
the evolution charts in Fig. 1 the average size of the textures
appears to grow in time.

B. Scaling evolution

For a quantitative analysis of the observed phase-ordering
dynamics we consider averaged correlations of the order-
parameter field. Since our system is translationally invari-
ant on average, we evaluate these correlations in momentum
space, by means of the structure factor

S (k, t) = 〈|F⊥(k, t)|2〉, (3)
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〈. . . 〉 denoting the average over different runs. S (k, t) is
formally obtained as the Fourier transform of C(r, t) =

〈F⊥(x, t)F⊥(x′, t)〉 with respect to r = x′ − x.

Fig. 2a shows the time evolution of the structure factor
S (k, t) for a quench to qf = 0.9 in the easy-plane ferromag-
netic phase. The polar condensate at t = 0 has no mag-
netization. At t = 0.67 ts the population of the momentum
modes of the structure factor within the instability regime fits
the Bogoliubov prediction given by S (k, t) = 4 sinh2 (γkt) /γ2

k .
Here, the growth rate of unstable momentum modes γk =√

(εk + q) (2 − εk − q), with mode energy εk = k2, is obtained
as the imaginary part of the complex Bogoliubov mode en-
ergy [68]. In the course of the subsequent non-linear redistri-
bution of the excitations the system is found to enter a spatio-
temporal scaling regime where the structure factor evolves in
a self-similar manner. During this period of the relaxation
process, we observe three qualitatively different momentum
regions which reflect the patterns seen in the single spatial re-
alizations in Fig. 1. Below a characteristic momentum scale
kΛ(t), the structure factor S (k, t) shows a plateau. Kink-like
defects account for the power-law fall-off of the structure fac-
tor S (k, t) ∼ k−ζ for momenta k . kλ(t) [45]. The exponent
ζ = d + n depends on the dimensionality of the system and
the defect structure. For kink-like defects (n = 1) in one spa-
tial dimension, the resulting exponent ζ = 2 is close to the
value ζ = 1.91 ± 0.02 which we extract by fitting the scal-
ing form A/[1 + (k/kΛ) ζ] to the IR part of S (k, t). For large
momenta k & kλ(t), the structure factor shows a steeper fall-
off, before saturating at the level of ground-state fluctuations,
S (k → ka) ' 0.5 × 10−4, where ka denotes the lattice cutoff.

Fig. 2a indicates that the structure factor exhibits scaling
according to Eq. (1) within a region of IR momenta below the
UV end of the k−ζ power-law fall-off, i.e., for k . kλ(t). Tak-
ing the structure factor at time tref = 25 ts as a reference and
performing a least-square fit of the data up to t = 200 ts yields
α = 0.27 ± 0.06 and β = 0.25 ± 0.04. The errors are deter-
mined from the width of a Gaussian distribution used to fit
the marginal-likelihood functions of both scaling exponents
[33]. These errors can become relatively large due to statisti-
cal uncertainties and systematic deviations caused by the lim-
ited scaling window.

Rescaling the structure factor in time by making use of the
scaling form (1) yields the collapse onto a single curve below
the momentum scale k>IR, as shown in Fig. 2b. The inset in
Fig. 2b demonstrates that the local spin fluctuations are con-
served in time (up to a relative error of 2%) within the IR
scaling regime. Hence, we find, to a good approximation,
that ∂t

∫ ku(t)
0 dk S (k, t) = 0, with ku(t) = k>IR · (t/tref)−1/4 and

tref = 25 ts. Using the scaling form (1) for the structure factor
S (k, t) results in the scaling relation α = β. The numerically
extracted exponents are consistent with this scaling relation.
As a consequence of the conserved local spin fluctuations we
can describe the time evolution of the system for momenta
k . kλ(t) by a single scaling exponent and thus a single char-
acteristic IR length LΛ(t) ∼ t β with β ' 0.25. This macro-
scopic length scale corresponds to the size of the spin textures
in the system.

C. Violation of single-length scaling

In the UV range of momenta, however, the structure factor
violates this single-length scaling and rather suggests a sec-
ond characteristic length Lλ(t) which shrinks in time. Fig. 2c
shows that the rescaled structure factor collapses onto a sin-
gle curve for momenta kΛ(t) . k . k>UV when choosing the
scaling exponents α′ = −0.53 ± 0.08 and β′ = −0.17 ± 0.04.

Hence, we find that the structure factor, in a range of mo-
menta with strong spin-wave excitations, obeys the extended
scaling form [36]

S (k, t) = LΛ(t)α/β fs(LΛ(t)k, LΛ(t)/Lλ(t)), (4)

with the scaling function being well approximated by

fs(x, y) = f0[1 + x ζ + x ζ
′

y ζ−ζ
′

]−1 . (5)

Here ζ′ ' 12 � ζ characterizes the large-k fall-off. For the
bi-directional scaling behavior shown in Fig. 2, the scaling
function fs follows, to a good approximation, the form (5),
with a single power-law exponent ζ in between the IR and UV
scales kΛ(t) and kλ(t), respectively. For the scaling function
(5), the temporal scaling evolution of LΛ(t), Lλ(t) implies that
the exponents are related by α−α′ = (β−β′)ζ . Moreover, im-
posing kinetic energy conservation in the UV scaling regime,
i.e. ∂t

∫ ku(t)
kl(t)

dk kz S (k, t) = 0 within a corresponding UV mo-
mentum interval [kl(t), ku(t)], yields α′ = (1 + z) β′. Taking
the additional conservation of local spin fluctuations in the IR,
α = β, one obtains the dynamical exponent z, characterizing
the dispersion ω(k) ∼ kz, to be

z = (ζ − 1)
(
1 − β/β′

)
. (6)

Inserting the extracted parameters β = 0.25 ± 0.04, β′ =

−0.17± 0.04 and ζ = 1.91± 0.02, we find z = 2.24± 0.38. To
cross-check this result we numerically determine the disper-
sion for which the kinetic energy

∫ kl(t)
kl(t)

dkω(k) S (k, t) shows
the minimal deviation from being conserved within the UV
scaling regime set by kl(t) = k<UV · (t/tref)0.17 and ku(t) =

k>UV · (t/tref)0.17 with tref = 25 ts. This method yields z =

2.15 ± 0.05 consistent with the dynamical exponent directly
calculated from the extracted scaling parameters.

IV. DISCUSSION AND CONCLUSIONS

As the scaling dynamics of the spinor system takes place
in the transversal spin, it is instructive to compare with sim-
ilar behavior known for the 1D XY model. Considering an
open system coupled to a heat bath and applying a temper-
ature quench into the ordered phase leads to phase-ordering
kinetics with a temporal scaling exponent β = 1/4 [74]. At
first sight, this appears to provide the universality classifica-
tion for the self-similar dynamics seen in our system. How-
ever, the nature of the respective evolutions turns out to be
qualitatively very different. Coarsening in the 1D XY model
with non-conserved order parameter can be described as free
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FIG. 3. Time evolution of the characteristic IR scale kΛ(t) (panel
(a)), as well as the UV scale kλ(t) (panel (b)). While the IR scale de-
creases algebraically as kΛ(t) ∼ LΛ(t)−1 ∼ t −0.25 over the whole range
of evolution times considered (see solid line in (a)), the UV scale
starts to deviate from kλ(t) ∼ Lλ(t)−1 ∼ t 0.17 (see solid line in (b)) at
t ' 500 ts. The deviation arises as the corresponding UV length scale
approaches the spin healing length, i.e. as Lλ(t) = 2π/kλ(t) → 1.
While this causes the system to leave the regime of two-scale univer-
sal dynamics, it stays close to the non-thermal fixed point as the IR
scaling behavior remains unchanged. The characteristic scales kΛ(t)
and kλ(t) are obtained by means of fitting the scaling form (5) to
the structure factor up to a maximum momentum given by k>UV (see
Fig. 2c). We remark that the scaling function, Eq. (5), does not ap-
propriately capture the data in the UV regime of momenta anymore
for evolution times t & 2000 ts, which strongly influences the extrac-
tion of the UV scale kλ(t) (cf. Fig. 6 showing S (k, t) for evolution
times up to t = 4000 ts). Hence, we restrict our analysis to the time
window 25 ts ≤ t ≤ 2000 ts. Errors bars correspond to the fit error of
the extracted scales. Note the double-log scale.

phase diffusion of the order-parameter phase angle. As the
topological charge is locally conserved in the system, the
position-space correlation function at large distances r is given
by C(r, t) → exp(−r/ξ0), where ξ0 is the initial correlation
length of the system. Thus, the characteristic IR length scale
does not change in time. Instead, the scaling takes place in
the UV giving rise to a broadening Gaussian spatial corre-
lation function during the ordering dynamics, and thus to a
sharpening Gaussian momentum-space structure factor [74].
In contrast, the ordering process in our isolated spinor gas is
driven by non-linear dynamics of the spinor field, leading to
a bi-directional transport of excitations in momentum space.
This transport redistributes spin-wave excitations from an in-
termediate scale to both, smaller and larger wave numbers.
Thereby, the correlation length LΛ(t) ∼ kΛ(t)−1 grows in time
as LΛ(t) ∼ t1/4. Note that a similar behavior of the correlation
length has been reported in the one-dimensional p-state clock
model for a moderate-sized p > 4 in Ref. [75]. We expect the
coarsening dynamics described by this model to be closer to
that of our system where the kink-like defects in the transver-
sal spin are accompanied by phase jumps similar to the phase
steps occurring in the p-state clock model.

Self-similar evolution within a spatio-temporal scal-
ing regime during the phase-ordering process of a non-
equilibrium system is understood to generally occur as a tran-

sient phenomenon on the way to equilibrium. To study this
transient nature we extract the time evolution of the charac-
teristic momentum scales kΛ(t) ∼ LΛ(t)−1 and kλ(t) ∼ Lλ(t)−1

by means of fitting the scaling form (5) to the structure fac-
tor S (k, t) for evolution times up to t = 2000 ts (see Fig. 6
for S (k, t) at time scales beyond t = 200 ts). We find that
the IR scale LΛ(t) shows scaling with β ' 0.25 for all times
considered in our simulations (see Fig. 3a). To retain the IR
scaling, energy has to be transported to the UV. In the case
of the bi-directional scaling evolution the energy transported
to the UV leads to the sharpening of kink-like defects. How-
ever, defects in the spin degree of freedom are expected to
have a natural minimal width on the order of the spin healing
length. As the UV scale approaches this length scale, i.e. as
Lλ(t) = 2π/kλ(t) → 1, we thus observe that the UV scaling
exponent starts to deviate from β′ ' −0.17 (see Fig. 3b) caus-
ing the system to leave the regime of two-scale universal scal-
ing dynamics. The deviation of the scaling exponent becomes
clearly visible around t ' 500 ts. This behavior is accompa-
nied by a build-up of a thermal tail in the range of momenta
larger than k>UV, which instead stores the transported energy
(cf. Fig. 6).

Although the system leaves the regime of two-scale uni-
versal scaling dynamics at t ' 500 ts, it remains close to the
non-thermal fixed point as the IR scaling exponent is unaf-
fected for evolution times up to t = 2000 ts. At a later point in
time, which is presently beyond the reach of our simulations,
we expect the rising mean kinetic energy in the thermal tail
as well as the finite size of the system to induce the system to
move away from the fixed point and towards final equilibrium.

In this work, we have numerically demonstrated univer-
sal self-similar dynamics in a one-dimensional ferromagnetic
spin-1 Bose gas characterized by two separate time-evolving
scales. While the IR scale increases as LΛ(t) ∼ t β, with β '
0.25, the UV scale decreases as Lλ(t) ∼ t β

′

, with β′ ' −0.17.
Our results show that universal scaling evolution at a non-
thermal fixed point is possible in a purely one-dimensional ge-
ometry, in contrast to standard arguments based on kinematic
constraints prevailing for elastic collisions in 1D. The reported
scaling is amenable to experiments with ultracold Bose gases
while anticipated to be relevant also for very different systems
in the relativistic realm.

Note added. After the completion of this paper a non-
thermal fixed point associated with pair-annihilation of mag-
netic solitons has been reported for a one-dimensional antifer-
romagnetic spin-1 Bose gas [76].
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APPENDIX

Appendix A: Initial state and post-quench dynamics

In this appendix we briefly discuss the representation of the
ground states of our model in the polar and easy-plane phases
and discuss the semi-classical numerical methods with which
we have obtained our results presented in the main text.

1. Ground states in polar and easy-plane phase

In the case of ferromagnetic spin interactions (c1 = −1)
and for a positive quadratic Zeeman energy q, the equilibrium
system exhibits two different phases separated by a quantum
phase transition that breaks the U(3) spin symmetry of the
ground state [68]. For q > 2 the system is in the polar phase
where the mean-field ground state, given by the state vector

~ΦP = eiϕ

01
0

 , (A1)

is unmagnetized. Here ϕ is a global phase distinguishing dif-
ferent realizations of the spontaneous symmetry breaking.

For 0 < q < 2 the system is in the easy-plane ferromagnetic
phase in which the mean-field ground state reads

~ΦEP =
eiϕ

2


e−iφ

√
1 − q/2√

2 + q
eiφ

√
1 − q/2

 . (A2)

Here φ denotes the angle with respect to the spin-x-axis. This
ground state gives rise to the mean spin vector lying in the
transversal spin plane, with magnetization |F⊥| = (1−q2/4)1/2.

2. Simulation methods

We consider out-of-equilibrium dynamics after a sudden
quench, starting from a homogeneous condensate in the mF =

0 component, φ0(x) ≡ 1. We follow the time evolution by
solving the coupled Gross-Pitaevskii equations (GPEs)

i∂t~Φ =

(
−
∂2

∂x2 + q f 2
z + c0n + c1 ~F · ~f

)
~Φ (A3)

by means of a spectral split-step algorithm. We compute
the time evolution of correlation functions within the semi-
classical truncated Wigner approximation [72, 73].

We consider experimentally relevant parameters for 87Rb
in the F = 1 hyperfine manifold, with c0 = 100. The initial
condensate density is n0 = 4.5 · 104 ξ−1

s . The simulations are
performed on a one-dimensional grid with Ng = 4096 grid
points and periodic boundary conditions. The corresponding
physical length is L = 554 ξs.

The initial state is given by a zero-temperature mean-field
ground state in the polar phase, for qi � 2, with additional
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FIG. 4. Spatial first-order coherence function C(r, t) within the
temporal scaling regime. C(r, t) is calculated by applying a Fourier
transform to the structure factor S (k, t). At larger distances the cor-
relation function decays exponentially C(r, t) ∼ exp(−r/LΛ), with
time-evolving correlation length LΛ(t) ∼ t β. The inset shows C(r, t)
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such that the data collapses at large distances. This enables to ob-
serve the shrinking of the characteristic UV length scale Lλ(t) oc-
curring at distances below r ' 0.5 . Note the semi-log scale of the
inset.

quantum noise sampled from the positive definite Wigner dis-
tribution of the vacuum and set into the Bogoliubov modes of
the polar condensate,

~Φ (x) =

01
0

 +
∑

k

 ak,1eikx

ak,0ukeikx − a∗k,0vke−ikx

ak,−1eikx

 . (A4)

We again omit the tilde on the rescaled quantities k̃ = kξs,
ãk̃,m = ak,m/(ξs

√
n0). The mode functions ak,m are complex

Gaussian random variables with

〈a†k,mak′,m′〉 =
1
2
δmm′δk,k′ , (A5)

which corresponds to adding an average occupation of half a
particle in each mode k. The Bogoliubov mode functions are
given by

uk =

√
εk + c0

2
√
εk (εk + 2c0)

+
1
2
, vk =

√
u2

k − 1, (A6)

with mode energy εk = k2.
Calculating observables using the truncated Wigner method

requires averaging over many trajectories. We find that, in
our one-dimensional geometry, a sufficient convergence of the
observables is reached after averaging over & 103 trajectories.

Appendix B: Universal scaling dynamics

In this appendix, we discuss, in more detail, the position-
space correlation function in the scaling regime and demon-
strate how the system departs from scaling during the late pe-
riod of the evolution.
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FIG. 5. (a) Scaling exponents α (blue stars) and β (orange circles)
obtained from least-square rescaling fits to S (k, t) within the time
window [tref , tref + ∆t] with ∆t = 120 ts. The scaling exponents are
independent of the reference time tref . A constant fit to the data re-
veals α = 0.284 ± 0.013 (dashed line) and β = 0.261 ± 0.008 (solid
line). The error is given by the standard deviation of all data points
as they are not statistically independent. (b) Scaling exponents α′/3
(blue stars) and β′ (orange circles) obtained by the same method and
within the same time window as in (a). A constant fit to the data
yields α′/3 = −0.183 ± 0.002 (dashed line) and β′ = −0.168 ± 0.004
(solid line). Error computed as in (a).

1. Spatial correlation function

The two different characteristic length scales that undergo
universal scaling dynamics in the system can also be stud-
ied by means of the position-space correlation function C(r, t)
which is calculated by applying a Fourier transform to the
structure factor S (k, t). Fig. 4 shows the position-space cor-
relation function for distances 0 ≤ r ≤ 2 within the temporal
scaling regime. The shrinking of the characteristic UV length
scale Lλ(t) ∼ t β

′

is found below distances r ' 0.5. It is re-
lated to the quadratic part of the correlation function at short
distances becoming steeper (see inset of Fig. 4). Note that the
effect is small due to the slow scaling with β′ ' −0.17. At
larger distances the correlation function is given by

C(r, t) ∼ exp
(
−

r
LΛ

)
, (B1)

with time-evolving correlation length LΛ(t) ∼ t β. The growth
of the correlation length in time is associated with the de-
crease of the slope of the correlation function drawn in semi-
logarithmic representation. This behavior is in contrast to
coarsening dynamics of the 1D XY model where the Gaus-
sian short-distance part grows in space while the slope of the
exponential tail remains constant.

2. Scaling regime

Within the spatio-temporal scaling period, the scaling ex-
ponents are found to be independent of the reference time
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FIG. 6. Time evolution of the structure factor S (k) for qf = 0.9
on time scales beyond the scaling regime presented in the main text.
The data indicates that bi-directional self-similar dynamics can be
observed even up to t ' 400 ts as the scaling function remains the
same. For t ≥ 800 ts a thermal tail given by an approximate k−2

power law is present in the UV. The mean kinetic energy in the tail
gradually increases as time evolves up to t = 4000 ts.

tref. Performing the least-square rescaling analysis for dif-
ferent reference times tref , within the constant time window
[tref , tref + ∆t] with ∆t = 120 ts, we find that the scaling expo-
nents settle to a constant value at tref ' 25 ts which marks the
onset of the scaling regime (see Fig. 5).

A constant fit to the extracted IR scaling exponents for
25 ts ≤ tref ≤ 74 ts yields α = 0.284 ± 0.013 and β =

0.261 ± 0.008 . For the UV scaling exponents we find α′ =

−0.549±0.006 and β′ = −0.168±0.004. The error is given by
the standard deviation of all data points, which are not statisti-
cally independent. Making use of analyzing the scaling expo-
nents for various reference times incorporates fluctuations of
the scaling exponents caused by statistical errors in each refer-
ence spectrum thus leading to a more accurate determination
of the universal exponents.

3. Departure from scaling

Scaling dynamics during the phase ordering process of a
non-equilibrium system generically represents a transient pro-
cess on the way to equilibration. Therefore we expect the sys-
tem to leave the scaling regime at some time and relax back to
its equilibrium state.

We are able to observe indications of this behavior when
simulating the system 20 times longer than presented in the
main text. Fig. 6 shows the time evolution of the structure
factor S (k, t) for qf = 0.9 on time scales up to t = 4000 ts. As
shown in Fig. 3, the system leaves the two-scale self-similar
regime at t ' 500 ts consistent with the data depicted in Fig. 6.
For t ≥ 500 ts a thermal tail given by an approximate k−2

power law is formed in the UV. The temperature of the state
is characterized by the slope of the power law. It slowly in-
creases as time evolves up to t = 4000 ts. We expect the rising
mean kinetic energy in the thermal tail to eventually cause the
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breakdown of the IR scaling. In consequence, the system is
driven away from the non-thermal fixed point towards equi-
librium. Note that the final equilibration process is beyond

the time scales considered in our numerical simulations and
depends on the particular IR and UV boundary conditions re-
alized in the setup.
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