NEUROMORPHIC QUANTUMPHOTONICS

Find us on Social Media

April 2024: Girls’ Day

This year our group was visited by 8 girls interested in how light can be used to encrypt information. The girls worked on some small hands-on experiments learning about the polarization of light and had fun encrypting and decrypting their own secret messages. In our labs we showed them the setups we are currently working on and they tried out our quantum key distribution experiment wearing augmented reality glasses.


March 2024: Talk by Dr. Changhyoup Lee on Variational Quantum Eigensolver

Dr. Changhyoup Lee from KRISS (Korea Research Institute of Standards and Science) visited the Neuromorphic Quantumphotonics group to give an interesting talk on Variational Quantum Eigensolver (VQE) for quantum simulation. He presented the core concepts, strategies and methods, and discussed the main limitations. After his talk he also visited our labs and discussed experiments and new ideas with our group members.


March 2024: Proposal Writing Group Seminar in Italy

In a joined workshop of the Münster and Heidelberg part of our group we talked about the basics of writing successful grant proposals. During the time in Italy, new ideas were discussed, and we started writing several proposals in small groups. They will be submitted soon to hopefully win funding for interesting new research projects.


February 2024: Infineon Dissertation Prize for Dr. Shabnam Taherinya

We are proud to announce that our Postdoctoral Researcher, Shabnam, has been awarded the prestigious Infineon Dissertation Prize for her outstanding doctoral thesis titled "Studying the non-equilibrium states in high entropy alloys." Shabnam's research has significantly contributed to the field of materials science, particularly in understanding high entropy alloys' behavior under various conditions such as intensive plastic deformation and irradiation with fast, heavy ions. Her meticulous investigations using advanced transmission electron microscopy techniques have provided valuable insights into the microstructure, inner interfaces, and magnetic properties of these materials.


January 2024: EPIQUE Kickoff Meeting

With a kick-off meeting hosted at the Sapienza University of Rome Rectorate, the EPIQUE challenge began! The research project is led by Sapienza University of Rome and coordinated by Fabio Sciarrino and involving 18 partners from 12 different countries

EPIQUE is one of six projects, based on the same number of technological solutions, designed to physically develop a European quantum computer as part of the Quantum Flagship promoted by the European Commission in 2018 and funded with around EUR 1 billion.

  more ...

November 2023: Anna Ovvyan places third in this year's Raith Micrograph Award

Anna made the remarkable 3rd place with her submission titled 'Photonic Integrated Circuit based on integration of semiconducting CNTs.' Her work showcases the convergence of innovation and artistry in the realm of nanofabrication. The Raith Micrograph Award is a celebration of talent and a platform for Raith users worldwide to share their captivating micrographs.


October 2023: Quantum Effects Convention in Stuttgart

As part of the IQST (Center for Integrated Quantum Science and Technology) we represented the University of Heidelberg at the first ever Quantum Effects Convention in Stuttgart. Niccolò and Julius displayed an integrated chip for QKD applications and had fruitful discussions with colleagues from research and industry, investors and politicians. It was a busy event, foreshadowing a leading role of Baden-Württemberg in delivering quantum technologies to the market.


October 2023: Kick-off meeting of the EU-funded project 2DNEURALVISION

We met with our project partners in Spain for first discussions about the start of our exciting new project 2DNEURALVISION. This project represents a highly intricate undertaking focused on the development of a wide-spectrum image sensor chip with low power consumption capabilities. This is made possible through the integration of advanced 2D materials. The project places significant emphasis on synthesizing a complete, non-toxic colloidal quantum dot infrared absorber material.


October 2023: Teaching Award for VR Experiment

We proudly announce that the dynamic teams of Stefan Heusler and Wolfram Pernice have been honored with the Teaching Award from the Working Group Undergraduate Physics Laboratory of the DPG. Their innovative virtual reality experiment on quantum key exchange has revolutionized physics education, fostering a deeper understanding of complex quantum principles. This recognition reflects their unwavering commitment to inspiring the next generation of physicists and transforming physics education.

  more ...

September 2023: HYBRAIN project meeting in Heidelberg

We are thrilled to share insights from our recent HYBRAIN project meeting, held in Heidelberg on September 18th. The gathering provided an invaluable platform for our team to discuss the project's significant progress and strategic direction. Collaboration and knowledge exchange were at the forefront as the involved researchers shared their findings and explored innovative solutions. We delved into the intricate details of each work package system, emphasizing the critical integration needed to propel us forward into the next reporting period.


September 2023: International Conference on Physical Computing (ICOPC23)

ICOPC23, held on the 11th and 12th of September, was a resounding success, showcasing cutting-edge research and fostering international collaboration. Researchers, scientists, and experts from around the world gathered to share their insights, innovations, and discoveries in the field of physical computing.

Save the Date for ICOPC24! Mark your calendars for the next exciting chapter in our conference series, ICOPC24, scheduled for August 26th to 28th, 2024. We are already looking forward to another remarkable gathering of minds and the opportunity to continue advancing our shared passion for pioneering research and collaboration.

  more ...

August 2023: PHOENICS project meeting in London

Our third PHOENICS meeting at the Institute of Materials, Minerals and Mining in London provided an excellent opportunity to discuss current challenges and recent developments in the PHOENICS project targeting our neuromorphic photonic platform. All project partners gave an overview of the work packages, e.g., photonic packaging technologies. 


July 2023: Spinning milestone project meeting

On July 5th and 6th, the SPINNING project had its half-time milestone meeting. Our contribution was the development of free-standing diamond nanobeam resonators for the silicon vacancy center in diamond. This was a great opportunity to strengthen the bonds between the partners and have exchange about the challenges and methods in diamond photonics during a communal dinner. We are looking forward to further collaborate and offer our diamond chips for further processing to our partners in Ulm.


June 2023: Interview with Shabnam Taheriniya about her work for the Hybrain project

Shabnam was interviewed for the series “Women’s contribution to HYBRAIN” and shares insights on her motivation to work for the HYBRAIN project as a scientist with a background in material physics. She also talks about her expertise on developing photonic convolution processors and working with tunable phase change materials in this inspiring interview. 


June 2023: ArbeitsgruppenInspirationsMesse (AIM) at KIP

Julius, Niccolò, Erik and Shabnam presented the work of our group to interested students. They prepared posters, a video introducing SEM to study in detail the structure of chips we fabricated and even brought a setup with lasers and microscopes for characterizing chips to present the variety of topics and methods covered by our group. If you are interested in joining us please check our open positions or just contact us.  


May 2023: Lin Jin won a Poster Prize at CLEO conference 2023

At this year’s CLEO conference for Laser Science to Photonic Applications held in San José, California, results of our group’s research were presented in 5 talks and 6 posters. Lin’s work about Niobium Nitride Superconducting Nanowire Single Photon Detector on 4H-Silicon Carbide was awarded a poster price. Congratulations, Lin!


April 2023: Girls‘ Day

We organized an engaging workshop for this year’s Girls' Day on the 27th of April. The girls visited our labs, learned about polarization and optical chip fabrication and were working on our quantum key distribution experiment using augmented reality glasses. At the end, they encrypted and decrypted their own messages using the beforehand learned principles.


March 2023: Group Seminar in Austria

Neuromorphic Computing group members working in Heidelberg and Münster were meeting in Austria for one week full of interesting talks, discussions and challenging hands-on workshops. It was great, especially for all our new PhD students, to learn about other group members‘ research and spend some time with the whole group enjoying the snow.  


February 2023: PHOENICS meeting at the Kirchhoff Institute for Physics in Heidelberg

On February 23rd, our PHOENICS project had its first project meeting in person since the beginning of the project. 21 participants from the nine partner organizations met at the Kirchhoff Institute for Physics in Heidelberg. The project partners were engaged in fruitful discussions about the most recent project review, and on the further focus of the project. All work package leaders offered status updates on their technical progress. 

It was so nice to share coffee and lunch together in Heidelberg as informal opportunities for exchange. We are looking forward to our next meeting in Oxford in August.


November 2022: International Workshop on Physical Computing, October 29 - November 6, 2022 in Erice, Sicily/Italy

The International workshop on Physical Computing took place from October 29 until November 6, 2022, in Erice, a picturesque medieval town in Sicily.

The days were filled with enlightening and motivating talks covering the entire field of physical computing. Leading scientists in the fields of photonic computing, nanofabrication, and quantum computing presented their actual research. During the poster sessions and the breaks, the participants of the workshop were able to exchange and discuss ideas. Congratulation to Fabian Beutel (Pixel Photonics) and Xin, CJ (Harvard John A. Paulson School Of Engineering And Applied Sciences) for winning the best short talk and poster awards, respectively!


September 2022: Seminar in Biarritz

Great opportunity for discussion on fabrication, simulation, and ongoing projects in integrated optics for the Neuromorphic Quantumphotonics Group from Heidelberg and the Responsive Nanosystems Group in Münster on a five-day seminar in Biarritz, France. We had intense exchange of ideas and thoughts not only during the seminar hours, but also during dinners and walks at the sunny beach - surfing was also offered.


PROJECTS

EU funded projects

EPIQUE

Quantum computers are one of the most promising technologies of the future, devices potentially capable of solving problems that are impossible even for the most powerful super computers, but they are still at the prototype stage and there are several possible paths of development. One of the most promising is light-based: the use of photons as qubits. EPIQUE – European Photonic Quantum Computer – was set up in order to investigate in depth the potential offered by the development of photonic quantum computing platforms, a project that aims to lead the way in a domain with wide margins for development.

  more ...

PHOENICS

By switching to the optical domain and nanophotonic circuits, PHOENICS will set a new paradigm in artificial intelligence and neuromorphic computing.

The PHOENICS architecture is based on the hybrid integration approach of three different chip platforms: optical input generation in silicon nitride signal encoding, modulation in indium-phosphidneuromorphic processing, and detection in silicon. 

  more ...

HYBRAIN

HYBRAIN’s vision is to realize a radically new technology for ultra-fast and energy-efficient edge AI inference based on a world-first, unique, brain-inspired hybrid architecture of integrated photonics and unconventional electronics with collocated memory and processing. As the most stringent latency bottleneck in CNNs arise from the initial convolution layers, we will take advantage of the ultrahigh throughput and low latency of photonic convolutional processors (PCPs). Their output is processed using cascaded analog electronic linear and novel nonlinear classifier layers.

  more ...

CLUSTEC

The goal of CLUSTEC is to open a radically new path for scalable quantum computing and quantum networking based on continuous variable (CV) cluster state protocols, concepts and technologies. While our long-term grand vision is to build a universal, fault-tolerant and network compatible quantum computer based on CV, the main objective of CLUSTEC is to address the fundamental scientific questions associated with technological scalability, computational universality, quantum error-correction, computational applications and quantum advantage certification.

  more ...

2DNEURALVISION

The 2DNEURALVISION project is a complex endeavor focused on developing a low power consumption wide-spectrum image sensor chip enabled by 2D materials. It also involves synthesizing a non-toxic colloidal quantum dot infrared absorber material and designing 2D material-based elements integrated into a photonic integrated circuit (PIC) for an optical neural network (ONN). The project includes integrating the wide-spectrum camera system into a test vehicle, designing the opto-electronic interface, and developing control algorithms for ONN operation.

  more ...

BMBF funded projects

PhoQuant

Within the PhoQuant project our group is responsible for developing photon-number resolving (PNR) detectors based on superconducting nanowire single-photon detectors (SNSPDs). Waveguide SNSPDs with photonic beam splitter networks and PNR detectors will be realized on Lithium-Niobate-on-Insulator (LNOI) substrates. In addition, our group is working on the development of efficient coupling interfaces to PNR-SNSPDs.

  more ...

SPINNING

The project partners of SPINNING are working on a design that features unprecedented connectivity and flexible configurations. In addition, the quantum processor is able to operate with low cooling requirements and thus may be implemented in close proximity to classical computer systems.

  more ...

QSAMIS

In the QSAMIS project a compact quantum key distribution (QKD) system running at record-high secret key rates is developed. Fast parallelised data transfer is achieved by wavelength-multiplexing and rapid modulation on the sender photonic integrated chip and superconducting nanowire single photon detectors (SNSPDs) on the receiver chip. While Pixel photonics is responsible for the design and fabrication of the receiver module, we at Heidelberg University design the sender chip and the electrical interface.

  more ...

QuNet+RECONNAITRE

This project aims to develop and investigate a complexity reduced high efficiency single photon receiver for quantum key distribution (QKD), which can be used in a variety of applications. Heidelberg University will realize and characterize an on-chip system with 16 detector elements for single- and multi- mode single-photon high system efficiency detection using NbGe waveguide-integrated SNSPDs. High system detection efficiency shall be achieved by optimizing the devices geometry, film deposition and fabrication procedure.

  more ...

MUNIQC-ATOMS

The HEI-group develops fast electo-optic modulators operating at a 698 nm and 317 nm wavelength to generate optimal signals for the consortium. The final goal is to fabricate a network of modulators with a modulation bandwidth of 5 GHz and a modulation depth of 60 dB, thus reaching unprecedented control. The device will be modular, accessible via fiber-coupling and wire-bonding to a PCB. The design will provide high spatial and temporal control allowing for the manipulation of hundreds of atoms on a single-atom precision.

  more ...

HYPHONE

In the HYPHONE project, novel photonic chips will be tightly integrated with proven electronic chips. This results in matrix vector multiplication hardware with currently unmatched figures in throughput, latency and energy consumption. One of the many immediate fields of applications is autonomous driving, where vast amounts of optical data must be processed in real-time. The project will be carried out in close cooperation with Salience Labs.

  more ...

uTP4Q

The uTP4Q project aims to develop a uniform platform for quantum photonic integrated circuits (QPICs) needed for complex applications like quantum communication. Heidelberg University will develop membrane-based chiplets with integrated superconducting nanowire single-photon detectors (SNSPDs) which can be integrated into hybrid quantum photonic circuits by means of micro-transfer printing.

  more ...

HybridQToken

This project's goal is to realize hybrid quantum photonic memory-circuits on-chip based on long-lived nuclear spins of SiV. Full control of the emitter with the simultaneous possibility to reconfigure the photonic circuit (cavity) where the source is integrated, will be obtained. An efficient interface between light and matter - a hybrid quantum circuit - enables a previously unachieved and simplified control of quantum memory (the array of memory units). This will ensure efficient state preparation, manipulation, and scalable readout state transmission via photons.

  more ...

MultiQomm

In this research project, a detector chip will be developed that contains waveguide-integrated superconducting single photon detectors with different detector properties that can be adapted to different applications. The detector chip is to be designed according to a modular principle: different functions can be combined depending on the application.

The subproject of Heidelberg University includes the research of chip-integrated electronic circuit elements and circuit-integrated coupling and readout elements.

  more ...

DFG funded projects

Hybrid 3D

In the field of optical neuromorphic computing, one unsolved question is the one of the optimal material platform to realize photonic integrated circuits.
In order to circumvent this question and profit from the advantages of multiple materials, micro 3D printing is used to combine different material platforms. In the course of this project a low-loss 3D printed photonic interconnection between two chips should be realized.

  more ...

Silicon Actuator

The main objective of this project is to implement an electrochemically driven optical solid-state multi-layer actuator onto a photonic chip and characterize its optical properties as well as the capability to modulate light propagation through a silicon waveguide.

  more ...

22.02.2022 Scientific talk at Deutsche Physikalische Gesellschaft

A photonic machine story – new computing architectures for AI

Past Projects