KIP publications

year 2022
author(s) Bratschitsch, R; Michaelis De Vasconcellos, S; Pernice, W H P ; Demokritov, S O; Demidov V E; Raskhodchikov, D; Bensmann, J; Nikolaev, K O; Lomonte, E; Jin, L; Steeger, P; Preuß, J A; Schmidt, R; Schneider, R; Kern, J
title Propagation of Spin Waves in Intersecting Yttrium Iron Garnet Nanowaveguides
KIP-Nummer HD-KIP 22-76
KIP-Gruppe(n) F31
document type Paper
source Physical Review Applied 18, No. 5: 054081
doi 10.1103/PhysRevApplied.18.054081
Abstract (en)

We study experimentally the propagation of spin waves in waveguide structures consisting of two submicrometer-width yttrium iron garnet waveguides intersecting at a right angle. We show that, despite the significant spatial variations of the internal static magnet field and the in-plane anisotropy of the dispersion characteristics, the incident spin wave can efficiently pass through the microscopic cross-shaped structure and be transmitted into all its arms. This process depends strongly on the frequency of the wave and the orientation of the static magnetic field. By varying these parameters, one can achieve a controllable uniform or preferential transmission of the wave into different arms of the cross. Our results create the basis for the implementation of nanoscale magnonic networks to be used for the realization of complex non-Boolean data-processing schemes, including neuromorphic computing.

KIP - Bibliothek
Im Neuenheimer Feld 227
Raum 3.402
69120 Heidelberg