KIP publications

year 2022
author(s) Lukas Kades, Martin Gärttner, Thomas Gasenzer and Jan M. Pawlowski
title Monte Carlo sampling of complex actions in extended state spaces
KIP-Nummer HD-KIP 22-66
KIP-Gruppe(n) F27,F30
document type Paper
source Phys. Rev. E 105 (2022) 045315
doi 10.1103/PhysRevE.105.045315
Abstract (en)

Path integrals with complex actions are encountered for many physical systems ranging from spin- or mass-imbalanced atomic gases and graphene to quantum chromo-dynamics at finite density to the non-equilibrium evolution of quantum systems. Many computational approaches have been developed for tackling the sign problem emerging for complex actions. Among these, complex Langevin dynamics has the appeal of general applicability. One of its key challenges is the potential convergence of the dynamics to unphysical fixed points. The statistical sampling process at such a fixed point is not based on the physical action and hence leads to wrong predictions. Moreover, its unphysical nature is hard to detect due to the implicit nature of the process. In the present work we set up a general approach based on a Markov chain Monte Carlo scheme in an extended state space. In this approach we derive an explicit real sampling process for generalized complex Langevin dynamics. Subject to a set of constraints, this sampling process is the physical one. These constraints originate from the detailed-balance equations satisfied by the Monte Carlo scheme. This allows us to re-derive complex Langevin dynamics from a new perspective and establishes a framework for the explicit construction of new sampling schemes for complex actions.

  author   = {Kades, Lukas and G\"arttner, Martin and Gasenzer, Thomas and Pawlowski, Jan M.},
  title    = {Monte Carlo sampling of complex actions in extended state spaces},
  journal  = {Phys. Rev. E},
  year     = {2022},
  volume   = {105},
  number   = {4},
  pages    = {045315},
  doi      = {10.1103/PhysRevE.105.045315}
URL Phys. Rev. E 105 (2022) 045315
KIP - Bibliothek
Im Neuenheimer Feld 227
Raum 3.402
69120 Heidelberg