KIP-Veröffentlichungen

 
Jahr 2018
Autor(en) Christine Maier, Tiff Brydges, Petar Jurcevic, Nils Trautmann, Cornelius Hempel, Ben P. Lanyon, Philipp Hauke, Rainer Blatt, Christian F. Roos
Titel Environment-assisted quantum transport in a 10-qubit network
KIP-Nummer HD-KIP 18-132
KIP-Gruppe(n) F17,F29
Dokumentart Paper
Quelle arXiv:1809.07680 (2018)
Abstract (en)

The way in which energy is transported through an interacting system governs fundamental properties in many areas of physics, chemistry, and biology. Remarkably, environmental noise can enhance the transport, an effect known as environment-assisted quantum transport (ENAQT). In this paper, we study ENAQT in a network of coupled spins subject to engineered static disorder and temporally varying dephasing noise. The interacting spin network is realized in a chain of trapped atomic ions and energy transport is represented by the transfer of electronic excitation between ions. With increasing noise strength, we observe a crossover from coherent dynamics and Anderson localization to ENAQT and finally a suppression of transport due to the quantum Zeno effect. We found that in the regime where ENAQT is most effective the transport is mainly diffusive, displaying coherences only at very short times. Further, we show that dephasing characterized by non-Markovian noise can maintain coherences longer than white noise dephasing, with a strong influence of the spectral structure on the transport effciency. Our approach represents a controlled and scalable way to investigate quantum transport in many-body networks under static disorder and dynamic noise.

bibtex
@article{Photosynth,
  author   = {Christine Maier, Tiff Brydges, Petar Jurcevic, Nils Trautmann, Cornelius Hempel, Ben P. Lanyon, Philipp Hauke, Rainer Blatt, Christian F. Roos},
  title    = { Environment-assisted quantum transport in a 10-qubit network },
  journal  = {},
  year     = {2018},
  volume   = {},
  pages    = {}
}
Datei pdf
zum Seitenanfang
KIP - Bibliothek
Im Neuenheimer Feld 227
Raum 3.402
69120 Heidelberg