Robert Weis

Kirchhoff-Institut für Physik

Das Kirchhoff-Institut für Physik (KIP) trägt den Namen eines herausragenden Physikers des 19. Jahrhunderts: Gustav Robert Kirchhoff, der 21 Jahre in Heidelberg wirkte. Seine weithin berühmten Vorlesungen über experimentelle und theoretische Physik zogen viele Studenten hierher. Kirchhoffs theoretische und experimentelle Forschungen sind außerordentlich vielseitig, sie umfassen elektrische, magnetische, optische, elastische, hydrodynamische und thermische Vorgänge. Allgemein bekannt sind seine Gesetze zur Verzweigung von Strömen. In die Heidelberger Zeit fällt die Entdeckung der Spektralanalyse zusammen mit Robert Wilhelm Bunsen und deren Anwendung auf die Sonnenstrahlung, mit der Kirchhoff die Astrophysik begründete, sowie die Formulierung des Strahlungsgesetzes, das zum Tor für die Quantenphysik wurde. Dieser Vielseitigkeit fühlt sich das KIP verpflichtet.

Physikalisches Kolloquium

3. Februar 2023 17:00 Uhr  Towards a SiGe-based laser

Prof. Dr. Erik Bakkers, Department of Applied Physics, University of Technology, Eindhoven, he performance of electronic chips is to a large extent limited by the electrical resistance, which sets the maximum operation frequency and the minimum power consumption. It is expected that by replacing part of the electronic circuit by photonics, these limitations could be alleviated. For this goal, an integrated light source is required. mehr...

Aktuelle Mitteilungen

CQD Colloquium (funded by STRUCTURES), Februrary 1, 5 p.m., Physikalisches Institut, INF 226, Room 00.101-00.103

Professor Dr. Florian Schreck, University of Amsterdam, Netherlands, about:

Continuous Bose-Einstein condensation and superradiant clocks

Ultracold quantum gases are excellent platforms for quantum simulation and sensing. So far these gases have been produced using time-sequential cooling stages and after creation they unfortunately decay through unavoidable loss processes. This limits what can be done with them. For example it becomes impossible to extract a continuous-wave atom laser, which has promising applications for precision measurement through atom interferometry. I will present how we achieve continuous Bose-Einstein condensation and create condensates (BECs)that persist in a steady-state for as long as we desire. Atom loss is compensated by feeding fresh atoms from a continuously replenished thermal source into the BEC by Bose-stimulated gain. Our experiment is the matter wave analog of a cw optical laser with fully reflective cavity mirrors. The only step missing to create acontinuous-wave atom laserbeamis the addition of a coherent atom outcoupling mechanism. In addition this BEC may give us access to interesting driven-dissipative quantum phenomena over unprecedented timescales. The techniques we developed to achieve the continuous source of thermal atoms are also nicely suited to tackle another challenge: the creation of a continuously operating superradiant clock. These clocks promise to become more rugged and/or more short-term stable than traditional optical clocks, thereby opening new application areas. In thesecond part of my talk I will present how we are developing two types of superradiant clocks within the European Quantum Flagship consortium iqClock.


The pretalk will be given by Karthik Chandrashekara, Physikalisches Institut, Universität Heidelberg: "Towards dipolar quantum gases in 2D – Current status and future prospects of the Heidelberg Dy experiment".

  mehr ...
Kirchhoff-Institut für Physik
Im Neuenheimer Feld 227
D-69120 Heidelberg

Tel.: 06221 - 54-9100
Januar 2023
Mo Di Mi Do Fr Sa So 
10 11 12 13 14 15 
16 17 18 19 20 21 22 
23 24 25 26 27 28 29 
30 31