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1 Introduction

The leaky integrate-and-fire (LIF) model effectively cap-

tures the very core dynamics of a spiking neuron. Due

to its simplicity it is predestined for neuromorphic imple-

mentations. To reproduce a more diverse set of biologi-

cal firing patterns, the underlying differential equations

must be augmented by additional terms. The adaptive

exponential integrate-and-fire (AdEx) model (Naud et al.

2008) fulfils the equations

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
+ Iext − w ,

(1)

τw
dw

dt
= a(V − EL)− w , (2)

where an exponential term and an adaptation current

as an additional state variable w extends the LIF neu-

ron model. The membrane voltage V of the LIF neu-

ron model evolves according to the membrane capacity

C and the conductance gL as well as by an leak poten-

tial EL and an external current Iext. The exponential

term, also scaled by the conductance gL, represents a soft

spiking threshold by using the threshold voltage VT and

the slope factor ∆T. The adaptation current w drives

the membrane voltage V as a additionally state variable.

It is realised by a linearly coupled ordinary-differential-

equation (ODE) with the adaptation time constant τw,

A sub-threshold adaptation parametrized by the conduc-

tance a compares V with EL.

A spike-triggered-adaptation mechanism and a reset

condition are given by

If V > 0 mV, then

{
V → Vr

w → wr = w + b.
(3)

The third prototype of the BrainScaleS-2 system intro-

duced circuits for the emulation of the AdEx equations.

A redesign is planned to overcome some of the limitations

of the current design. The new circuits are designed to

enable a truthful reproduction of the differential equa-

tions and to allow a straightforward calibration.

In the neuron, the exponential term is realised by an

operational transconductance amplifier (OTA) as an in-

put stage, is biased with Ib,exp and comparing the mem-

brane voltage V with Eexp. The output current is trans-

lated into a voltage, which is then applied to the gate

of a transistor biased in the sub-threshold region. This

transistor generates the exponential current as present in

the differential equation.

The adaptation term is implemented as a low pass fil-

ter, consisting of an OTA, biased with Ib,adapt:τw and a

capacitor. A sub-threshold adaptation is realised, again,

by an OTA with bias current Ib,adapt:a, that compares V

with EL

The performance of such neuron circuits can be as-

sessed in dedicated benchmarks. A set of biologically in-

spired firing patterns have been suggested and analyzed

in the context of the AdEx model Naud et al. 2008. These

patterns seem particularly useful for benchmarking of our

circuits.

To verify the circuit, calibration methods have to be

found, that allow to transform biological parameters in to
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hardware parameters. These transformations have to be

based on measurements to determine the characteristic

curves of the neuron circuits. Lookup mechanisms in-

corporating these curves and other already known prop-

erties of the circuits can then be used to find hardware

parameters including bias currents and voltages etc. for

the different firing patterns given by Naud et al. 2008.

The influence of transistor parameter variations, lead-

ing to local mismatch as well as differences in the

parametrization of individual neuron instances, is ana-

lyzed in Monte Carlo simulations. The circuits are sim-

ulated with Cadence Spectre, which is steered via the

teststand Python package. This package supports the

parallel execution of multiple simulation runs, which ac-

celerates the measurements for larger numbers of Monte

Carlo samples.

2 Calibration methods

The calibration of the neurons circuit to the biological

parameters from the firing patterns plays a leading role

in this internship. We assume, that a one-to-one connec-

tion between the bio parameters and the currents and

voltage of the circuits exist. To be more efficient in time

and cost, the calibration is physically divided in a mea-

surement part and a apply or rather a resolve part. In

the measurement part of the calibration, special firing or

sub-threshold patterns are stimulated and recorded dur-

ing one voltage or current is changing. In the easiest case

it is possible to calculate directly without other depen-

dencies an according parameter. This data is saved in

a database. Right before the simulation, different func-

tions find from the current/voltage-parameter-mapping

the right currents and voltages according to the desired

firing pattern. This resolve part takes the saved data as

well as hardware parameters that includes the speedup

factor of BrainScalesS αt = 1000, a voltage mapping

factor αv = 15.0 with an offset voltage of 1.5V and

a capacity factor αc = Chw

Cbio
, with a hardware capacity

Chw and a biological suggested capacity Cbio. To focus

more on the methods than on the actual implementation,

in the following description both elements of calibration

are discussed together. The general setting of the tool

was given by Johannes Weis, especially he implemented

a simulation class and sub-classes for parameter sweeps

and binary searches, that allows multi threading by using

teststand. He also invented a assess from python classes

to a .json database. His work allows to set and measure

or rather simulate a lot of neuron-samples at the same

time.

Finally, firing patterns are simulated in an independent

tool, that allows a apply parameters and the stimulus of

different patterns, run them in parallel and plot as well

as save the results. For applying, it is possible to hand in

bio parameters or fixed values some or all of the voltages

and currents of the circuit. Bio parameters will be cali-

brated with the resolve routines, if already a fixed value

is given, the calibration will be overwritten. For com-

fort, it is possible to run select able sets of neurons and

the simulation uses multi threading classes of Johannes

Weiß, that interacts with teststand and through this with

Cadence Spectre.

2.1 Input offset of the sub-threshold

adaptation

As written in the introduction, the sub-threshold adap-

tation, given by the parameter a and adjusted by the

current Ib,adapt:a uses an OTA to compare the membrane

voltage V with the leak voltage EL. Due to manufactur-

ing reasons the OTA has an offset voltage, that has an

impact on the adaptation- and membrane voltage. To

deal with this well known issue, the OTA is not wired to

EL but to

Eoff,adapt:a = EL + ∆E, (4)

where ∆E represents the offset. Together with the as-

sumption, that this offset is independent of Ib,adapt:a, a

simple binary search find an adaptation voltage Vw with

activated a-OTA (e.g. Ib,adapt:a = 0.2 µA), that is simi-

lar to a target, that is measured with deactivated a-OTA

(Ib,adapt:a = 0). Target as well as binary search measure-

ment time should be long after the adjustment of the

parameters. It is possible to set negative a-values in the

AdEx neuron model. To realise this in the circuits, a
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switch invert a with binary input is given and makes it

necessary to repeat this measurement with this second

case. Both measured results are saved in the database.

A resolving takes just this offset result, for an applying

due to the desired firing pattern, equation [4] solves the

parameter Eoff,adapt:a directly.

2.2 Adaptation time constant

As written in equation 2, the adaptation depends on an

adaptation time constant τw. The rules for a RC element

says, that

τw =
Cw

gτw(Ib,adapt:τw)
. (5)

So the hardware given capacity and the adjustable con-

ductance, realised by an OTA, changes the adaptation

time constant. This τw-OTA has two different outputs

and in particular two different linear dependent conduc-

tances,

gadapt︸ ︷︷ ︸
adaptation on V

= 12 · gτw︸︷︷︸
feedback loop

, (6)

to reach a good fitting ratio between the parameters

for the adaptation time constant and the sub-threshold

adaptation. To measure this adaptation time constant,

a spike is triggered and a fit

V ∗(t, Ib,adapt:τw) = a · exp

(
−t

τw(Ib,adapt:τw)

)
+ b, (7)

where V ∗ is the membrane potential after a spike oc-

curs, gives a τw. This is repeated for different values of

Ib,adapt:τw . To get good results, Ib,adapt:a = 0.0e−6A and

Ib,adapt:b = 1.0e−6A so that a well sized charge is loading

the adaptation capacity Cw more or less instantaneous

after the spike. The pairs of vales of τw and Ib,adapt:τw

are saved in the database. For resolving all this measured

data are fitted by a function

τw =

4∑
i=1

ai · I−ib,adapt:τw
, (8)

with fitting coefficients ai. Now a simple binary search

is able to find the right Ib,adapt:τw for a given target τw.

2.3 Sub-threshold adaptation

In her master thesis (Kriener 2017), Laura Kriener wrote

about a similar sub-threshold adaptation of a AdEx neu-

ron. She defined ∆ := (V − EL) as a membrane voltage

change caused throw a a sub-threshold stimulus. If this

membrane voltage change is also influenced by an sub-

threshold adaptation, she called it ∆a. Kriener discov-

ered, that the sub-threshold adaptation is given by

a = gL ·
(

∆

∆a
− 1

)
, (9)

where a or rather ∆a are dependent from Ib,adapt:a. In

a baseline measurement, the

∆ = V[pre stimulus] − V[stimulus] (10)

and

gL =
Cm

τ
with fit function V (t) = a · exp

(
−t
τ

)
+ c

(11)

are determined. Recording the ∆a against Ib,adapt:a, the

equation [9] solves a against Ib,adapt:a. This value pairs

are saved in the database. The resolve function takes

this values and uses a polynomial fit of the fourth degree

to discribe them. To get a specific Ib,adapt:a for a given

a, a implemented routine searches a root in a certain

Ib,adapt:a-range of the fit minus the given target a.

2.4 Spike-triggered adaptation

In equation [3], the reset condition including a spike-

triggered adaption is described. Realised in circuits, a

current Ib,adapt:b takes nearly instantaneous in a short

period δt of time a charge q on the capacity Cw or rather

on w. The resulting current I∆vb, caused by this voltage

jump ∆vb, is described by

b = I∆vb = gadapt(τw) ·∆vb(Ib,adapt:b). (12)

The voltage jump ∆vb is determined for many Ib,adapt:b

and saved in the database. Afterwords they are fitted

by an polynomial function of second degree. A resolve

function computes first a target-∆vb from a given b and
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τw using equation [6] and

∆vbtarget =
btarget

gadapt
=

btarget

12 · gτw
=
btarget · τw

12 · Cw
. (13)

The factor 12 between gadapt and gτw is well known

and tested. By using a binary search, the resolve func-

tion gives a Ib,adapt:b for a with equation [13] solved

∆vbtarget(b, τw).

2.5 Exponential term

As described in equation [1], the threshold is given by

an exponential term, which is parameterized by gL, ∆T

and VT. Due to the technical realisation of the circuits,

output current Iexp of the exponential fulfils the equation

Iexp = a · e vm
b , (14)

with parameters a(Eexp, Ib,exp) and b(Ib,exp). The cur-

rent is calculated from

Iexp = Cm ·
dVm

dt
(15)

for some Ib,exp. With a second degree hyperbolic fit of

b, that can be identified as ∆T (c.f. [1]), the dependency

form Ib,exp is determined. Given a specific ∆T and VT

configuration, Ib,exp is given by a binary search on the

parameter b. In a next step, a can be identified by

a = gL ·∆T · e
−VT
∆T . (16)

The circuit given equation

a(Ib,exp, Eexp) = Î · e
−Ib,exp
b(Ib,exp) , Î = const, (17)

in mind, a as well second degree hyperbolic fit on Ib,exp

and a, gives a fitting ã to the calibrated Ib,exp. With

equation [17], that grantees a constant Î, and ˜Eexp, that

was set at the measurements, the equation

Eexp = ˜Eexp + b · (log ã− log a), (18)

with a calculated by [16] calculates Eexp. To improve the

robustness of the algorithm, Iexp is measured for more

then one vexp.

2.6 Leak calibration

Unfavorably, we determined that an the one hand the

sub-threshold adaption offset is not independent of

Ib,adapt:a as assumpted in equation [4] and on the other

hand a significant offset of the time-adaption-double-

OTA has an significant impact on w. It is clear, that

this issue can be fixed by a calibration as done before.

Due to a limited time, we decided to solve this issue for

now in a simple but time inefficient way. When the cal-

ibration to the parameters of a firing pattern is applied,

a binary search without a stimulus set EL to

EL = EL + offset , so that V[resting] = EL. (19)

The determined EL will be applied.

3 Results

3.1 Quality of calibration

To verify the quality and the independence of the cali-

bration, some tests are done for a, b, τw and the exponen-

tial term calibration. Therefore each of this calibration

methods got some target bio parameter of pattern, that

are similar to the calibration measurement pattern. After

simulating them, similar routines like used for calibration

are used to extract bio parameters back from the traces.

This is done for a one-to-one sweep of the calibrated pa-

rameters them self, but also if possible in dependency

of other parameters. The results are determined for 50

neuron samples.

Due to a look on sub-threshold calibration (fig. 1),

the dependency of τw was tested, because τw couples

the adaptation term back to the membrane. It can be

recognised, that high a-values as well as long adaptation

time constants has a considerable impact on the precision

of the calibration. A drift to smaller a-values can be

observed.

With the same argument as used in the sub-threshold

adaptation, the dependency of τw to the spike triggered

adaptation (fig. 2) was determent. In difference to the
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Figure 1: sub-threshold adaptation calibration results in
dependency of the adaptation time constant τw and an
given input a.
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Figure 2: spike triggered adaptation calibration results
in dependency of the adaptation time constant τw and
an given input b.

sub-threshold adaptation, the spike triggered adaptation

are just deviate significant for very short adaptation time

constants.

Due to the determent method for the adaptation time

constant (fig. 3), useful dependencies on τw can’t be

measured. Never the less, the adaptation time constant

fits well on the identity function.

Until now, a direct testing of the exponential term

calibration failed. It was planed, to measure ∆T and VT

with respect to different target ∆T, target VT and tar-

get gL. This plan failed, because the measurement rou-

tine used in the calibration measurement method needs

spiking patterns to calculate the current, which the ex-
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Figure 3: adaptation time constant calibration results

ponential term append to V . But even if this would be

managed, the results would have huge uncertainties due

to realistic small gL values. Never the less, the pattern

reproduction shows, that the exponential term is well

calibrated.

3.2 Firing patterns

As described above, we have a tool, that allows to cali-

brate and simulate one or multiple neurons in parallel for

different patterns. This is used to do the benchmark test

of the circuits and a numeric solution of equation [1] gives

a direct classification of the calibration and simulation

results. This benchmark test comprises initial bursting,

regular bursting, delayed spiking and accelerating, de-

layed regular bursting and transient spiking and should

show, whether the circuits works and whether we under-

stand truly, how circuits operate and how we bias them

right. A major problem of the benchmark test is, that

the numeric solution with parameters from Naud et al.

2008 for transient spiking does not show a transient spike

but a permanently bursting. Also his firing pattern for

delayed regular bursting does not seems correct, because

not even a single spike occurs. This in mind, Kriener

2017 used the figures with firing patterns from Naud et

al. 2008, but chosed some different parameters. She suc-

ceeded in finding parameters for the transient spiking,

but failed with delayed regular bursting. On the other

hand, Kriener 2017 used parameters for delayed acceler-

ating, that does not show even a single spike. Also her

regular bursting is more delayed then the firing pattern
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of Naud et al. 2008.
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initial bursting

Figure 4: Membrane potential during the initial bursting
firing pattern with parameters from Naud et al. 2008.
A: numeric solution, B: neuron 28 simulation as example
for a well matching neuron, C: neuron 21 simulation as
example for a quadro initial burst with delayed last spike
and D: neuron 19 simulation as example for an always
bursting neuron. Plots has on x axis time in milliseconds
and on y axis membrane potential V in volt.

Starting with the initial bursting firing pattern by

Naud et al. 2008, the initial burst has one case of dou-

ble spike bursting, 17 cases of triple spike bursting (fig.

4B), 29 cases of quadro spike bursting (fig. 4C) and three

cases with an initial burst with more than four spikes. In

26 of 50 cases, the last spike of the initial burst limps with

the other spikes. During the following repetitive single

spiking, two samples burst, 30 samples spikes faster than

the numeric solution and one neuron slower as well as 17

samples are spiking with the right speed. Two neurons

are saturating (fig. 4D), but the majority of samples has

a dynamic range between 0.2 V and 1 V.
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0.2 0.3 0.4

D

regular bursting

Figure 5: Membrane potential during the regular burst-
ing firing pattern with parameters from Naud et al. 2008.
A: numeric solution, B: neuron 4 simulation as example
for a well matching neuron, C: neuron 35 simulation as
example for a quadro initial burst with delayed last spike
and D: neuron 3 simulation as example for a single spik-
ing neuron. Plots has on x axis time in milliseconds and
on y axis membrane potential V in volt.

Analysing results from regular bursting firing pattern

with the parameter set given by Naud et al. 2008, the

huge majority of neuron samples does show the right

spiking characteristic. Usually the repetitive bursts has

one spike less than the initial bursts of a sample. Even, if

one sample shows just a double spike initial bursting and

a single spiking in the following (fig. 5D), 26 of in total

50 neurons have a triple spike initial bursting (fig. 5B)

as given also by the numeric solution (fig. 5A). Another

12 neuron samples show a quadro spike initial burst (fig.

5C) and in total 10 samples show a limping last spike

of the initial burst. Looking on the repetitive bursts of

this pattern, 37 double spike bursting neurons and 12

triple spike bursting neurons can be counted. Most often

a lower frequency of the burst then given by the numeric

solution can be observed, so the right timing is counted

28 times and a lower frequency 21 times. Just one neuron

samples shows a higher frequency of the bursts. Finally

no saturation can be determent and the dynamic range

of w starts at 300 mV and end at 600 mV.
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Figure 6: Membrane potential during the delayed spik-
ing and acceleration firing pattern with parameters from
Naud et al. 2008. A: numeric solution, B: neuron 10 sim-
ulation as example for all other tested neurons. Plots has
on x axis time in milliseconds and on y axis membrane
potential V in volt.

The simulation of the delayed spiking and acceleration

(fig. 6B), with parameters given by Naud et al. 2008,

succeeded in all 50 cases. All samples are delayed for

the same order of time as given by numeric solution (fig.

6A). Looking on details, small differences between the

acceleration can be observed, which can be interpreted

by small differences in the decreasing of the adaptation

potential w, which dynamic range starts at 900 mV and

ends at approximately 200 mV.

The simulation of the delayed regular bursting, using

a new created parameter set as given in the Appendix,
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Figure 7: Membrane potential during the delayed regu-
lar bursting firing pattern with modified parameters to
match to the figure from Naud et al. 2008. A: numeric
solution, B: neuron 16 simulation as example for a well
matching neuron, C: neuron 19 simulation as example for
less delayed and triple burst firing pattern and D: neu-
ron 14 simulation as example for a delayed last spike of
a burst neuron. Plots has on x axis time in milliseconds
and on y axis membrane potential V in volt.

succeeded in 45 of 50 cases in a way, that clearly a delay-

ing and a repeated bursting occurs. In contradistinction

to the numeric solution, in 40 of this cases not a double

spike burst, but a triple spike burst can be observed. The

five not matching samples are divided up in one neuron,

that does only delayed single spiking and four neurons,

that show a double spike burst, but third single spike,

that follows the burst. All samples are delayed, just 14

has an occurring time, that is half the numeric solution.

The dynamic range of w is determined between 350 mV

and 600 mV.
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Figure 8: Membrane potential during the transient spik-
ing firing pattern with parameters from Kriener 2017.
A: numeric solution, B: neuron 41 simulation as exam-
ple for a well matching neuron, C: neuron 4 simulation
as example for a double spiking neuron and D: neuron
28 simulation as example for a w saturation expressed
by permanent bursting. Plots has on x axis time in mil-
liseconds and on y axis membrane potential V in volt.

Last but not least, the simulation of a transient spiking

firing pattern with parameters from Kriener 2017 shows

in 24 times a single spike (fig. 8B) as also given by the

numeric solution (fig. 8A). In just one neuron sample no

spike occurs, but 24 times a double spike can be observed

(fig. 8C). This can be interpreted as a strong dependency

on the stimulus current. 4 times constantly bursting hap-

pened, the same neurons shows also a saturation of w.

The timing of 12 neuron samples is delayed compared to

the numeric solution, other 37 neuron samples are timed

right. The dynamic range of w is limited by its initial

state and causes four neurons samples of constant burst-

ing (fig. 8D). It usually can be determined between 400

mV and 800 mV.

4 Discussion and outlook

The benchmark testing of the circuits has shown that all

relevant and important firing pattern can be reproduced

in their characteristic structure in nearly all tested 50

cases. Sometimes the the circuits have a tendency to

saturate in the adaptation membrane potential w. In this

cases the neurons fire constantly. Also, in other cases, it

can be observed, that the neurons spikes more often than

a numerical simulation of the differential equations do.

Keeping in mind, that the given firing pattern does not

necessarily represent a robust choice of parameters but

a small piece of the phase space of parameters, this is

not a major problem. The firing patterns represent a

rather demanding benchmark, so this behavior was not

unexpected.

Never the less we can expend the testing to get a bet-

ter knowledge about the behavior of the circuits. This

could include on the one hand to find robust parameters

with a qualitatively similar behavior than the now used

parameters for the firing patterns and also to simulate

more Monte Carlo samples of the circuit. On the other

hand, this should include more than AdEx extensions,

so e.g. different EL or Vr. The virtual infinite reset con-

ductance is not realistic. Also the offset of the τw-OTA

should be calibrated with all its dependencys.

Even not discussed before in detail, the circuit’s depen-

dency on temperature was investigated. We performed

simulations for 40 ◦C and 60 ◦C and received accept-
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able result for the adaptation term, just the exponential

term is exponential term is influenced. These effects can

clearly be compensated by providing calibration data for

multiple operating temperatures. The exponential term

circuit also includes a compensation mechanism, which

was not used thus far.

Another aspect is the digital-analog-converter (DAC)

has a finite resolution. So it would be interesting to test

the simulation of the benchmarks with rounded calibra-

tion values. Also a simulation with noise on the param-

eters is conceivable. All this could have an impact on

the results of the benchmark test and could give new im-

pressions on the circuits. To simulate more neurons, it is

planned to clean up the calibration and simulation code

for CI (Jenkins). The last step would to implement the

circuits on the next chip generation.

5 Appendix

See table 1.
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