
Ruprecht-Karls-Universität Heidelberg

Department of Physics and Astronomy

Kirchhoff-Institute for Physics

Project Internship Report

Veri�cation of a Parameterizable

JTAG Driver Module

Marco Rettig

supervised by

Vitali Karasenko

January 2019

Abstract

The Electronic Vision(s) Group at the Kirchho�-Institute for Physics uses JTAG Test Access
Ports in di�erent parameterizations for the communication with the integrated circuits. For
the control of these Test Access Ports, an equally parameterizable driver module was designed
in SystemVerilog by a former group member. This driver module was only used with one
speci�c con�guration, since all other con�gurations had not yet been tested. The goal of this
project was therefore to verify the correct functionality of the driver module for all permitted
con�gurations. For the veri�cation, a parameterizable test bench was designed. With the
help of the test bench, di�erent tests were carried out which revealed various malfunctions
of the driver module. These malfunctions could be �xed in the course of a comprehensive
debugging process. The correct functionality of the driver module is now ensured for all
possible con�gurations. It thus can be used for di�erent projects such as the development
of the HICANN-X chip.

1

Contents

1 Introduction 4

1.1 Problem Description and Goal Setting . 4
1.2 Structure of the Project Thesis . 4

2 Interaction of the Driver Module and the JTAG Test Access Port 4

2.1 Structure and Operating Principle of the JTAG Test Access Port 4
2.2 Structure and Operating Principle of the Driver Module . 5

3 Design of a Test Bench for the Driver Module 7

3.1 De�nition of Test Criteria . 7
3.2 Design of the Test Bench . 7

4 Test and Debugging of the Driver Module 10

4.1 Test Results Before Debugging . 10
4.2 Debugging . 12
4.3 Test Results After Debugging . 13

5 Conclusion and Outlook 14

Bibliography 15

2

List of Figures

1 State diagram of the used JTAG TAP Controller . 5
2 Simpli�ed schema of the driver module structure . 7
3 Test bench veri�cation principle . 10
4 Ratio of correct to faulty test runs dependent on the DR and IR width before debugging 11
5 Average number of transactions per test run dependent on the DR and IR width before debugging 11
6 Number of correct and faulty test runs dependent on the scaler value before debugging 12
7 Ratio of correct to faulty test runs dependent on the DR and IR width after debugging 13
8 Average number of transactions per test run dependent on the DR and IR width after debugging 13
9 Number of correct and faulty test runs dependent on the scaler value after debugging 14

3

1 Introduction

1.1 Problem Description and Goal Setting

The Electronic Vision(s) Group at the Kirchho�-Institute for Physics deals with the development of an adaptive
neuromorphic computing system. This system is based on a physical model of a neural network consisting of
neurons and synapses. The networks are implemented in analog microelectronics which are placed on computer
chips. Communication with the analog part of those chips requires additional digital integrated circuits. The
proper functionality of these integrated circuits can be veri�ed in the installed state via a parameterizable
so-called JTAG Test Access Port (wherein JTAG stands for Joint Test Action Group). For the control of the
Test Access Port, an equally parameterizable driver module was designed by a former group member using
the hardware description language SystemVerilog. This driver module is currently used with only one speci�c
con�guration, since all other con�gurations have not yet been tested. The aim of this thesis is therefore to verify
the correct functionality of the driver module for all permitted con�gurations. This includes the identi�cation
of possible errors and their elimination.

1.2 Structure of the Project Thesis

In chapter 2, the structure and operating principle of the Test Access Port and the driver module and their
interaction are outlined. In chapter 3, a test bench for veri�cation of the proper functionality of the driver
module is designed. For this purpose, the criteria to be tested is �rstly de�ned and afterwards implemented in
the form of a VHDL �le. In chapter 4, the test of the driver module is carried out using the previously designed
test bench. In an initial test phase, the module is tested in the state in which it is already being used. It is then
modi�ed with regard to the elimination of the detected errors before undergoing a �nal test phase. In chapter
5, the achieved results are summarized and an outlook on further possible projects is given.

2 Interaction of the Driver Module and the JTAG Test Access Port

2.1 Structure and Operating Principle of the JTAG Test Access Port

The primary purpose of a JTAG Test Access Port (TAP) is to test the structure and functionality of complex
integrated circuits (ICs) that are already installed in their working environment. All �ip-�ops of a JTAG
compatible IC are equipped with an additional multiplexer at the input. In this way, it is possible to monitor
and control the state of each �ip-�op externally [2]. The TAP mainly consists of [2]:

• The control lines.

• The TAP Controller, a state machine that controls the test logic.

• The Instruction Register (IR) and other shift registers that are subsumed under "Data Register" (DR).

The control lines comprise [2]:

1. The Test Data Input (TDI): Serial input of the shift registers.

2. The Test Data Output (TDO): Serial output of the shift registers.

3. The Test Clock (TCK): The clock signal for the entire test logic.

4. The Test Mode Select (TMS): It controls the TAP Controller.

5. The Test Reset (TRST): Reset of the test logic.

The TAP Controller is a state machine being clocked by TCK and controlled by the TMS line. All possible
states and state transitions are illustrated in �gure 1. In each state, certain control functions are triggered.
Transitions to other states are made depending on the current state and the value of the TMS line (0 or 1).
There are states in which the controller can remain for only one test clock cycle and so-called stable states that
can be maintained for several consecutive test clock cycles. In the Test Logic Reset state, the test logic is reset.
The Run Test/Idle state is chosen for waiting times after the reset or between two successive complete shift
phases. In the two Shift states, the respective register is shifted by exactly one bit per test clock cycle. With
the help of the two Pause states, shift operations can be interrupted.

According to the IEEE 1149.1 standard, the TAP contains an instruction register and further shift registers
which are classi�ed as data registers. These are [1]:

4

Figure 1: State diagram of the used JTAG TAP Controller (Adapted from [1]).

• The Boundary Scan Register.

• The Bypass Register.

• An optional Device Identi�cation Register.

• Further test data registers that can be de�ned by the user for test purposes [1].

The registers are serially accessed via the TDI and TDO lines. During a shift operation of a particular register,
the TDI input is pushed into the foremost bit of the register while its rearmost bit is shifted out to the TDO
output. Whether the instruction register or one of the data registers is shifted depends on the branch of the state
diagram in which the TAP Controller is currently located. The instruction register is used to shift in instructions,
which select and operate the data registers. Which data register is selected and what operation is performed
during a particular instruction, has to be implemented in user-de�ned instruction decode logic [1]. Furthermore,
the IEEE 1149.1 standard prescribes a few mandatory instructions for the Boundary Scan Register which are
already implemented. The latter provides access to the logic signals of the IC, containing a shift register cell
for each signal pin. The connected cells represent a certain path around the IC's boundary which allows for
detailed visibility and controllability of the signals [3]. The Bypass Register is a 1-bit register enabling a direct
connection between TDI and TDO. If several TAPs are serially concatenated to a so-called "JTAG-Chain"
and only the data register of one single TAP is to be read or written, the Bypass Register of all other TAPs
can be selected via the corresponding instruction. In this way, the desired register can be accessed directly
instead of shifting values through all registers of the chain. This minimizes the latency [2]. The optional Device
Identi�cation Register can be used for loading a 32-bit number to identify the TAP.

2.2 Structure and Operating Principle of the Driver Module

The driver module is connected to the TAP via the control lines. It generates the TCK signal, controls the
TAP Controller via the TMS line and writes or reads the TAP registers by shifting in instructions and data.
These functions are performed by di�erent shifter modules being implemented within the driver module:

• The TCK shifter.

• The TMS shifter.

5

• The IR shifter.

• The DR shifter.

Since in synchronous mode all TAP operations depend on the test clock signal generated by the TCK shifter, all
other shifters work with the same clocking as the TCK shifter. This clocking usually corresponds to the system
clock of the driver module itself. However, it is also possible to set lower frequencies than that of the system
clock by changing the so-called scaler value. This value is transferred to a counter module also implemented
within the driver module. The counter module increments an internal variable at every positive edge of the
system clock and generates a hit signal if the variable value corresponds to the scaler value. A shift operation
of a certain shifter is therefore only triggered when the hit signal appears and the shifter is enabled. Which
shifter is enabled is controlled by an internal state machine.

The TCK shifter always alternately shifts ones and zeros into the TCK control line and thus requires no data
dependent input from outside the driver module. Since the TMS sequences for the required state transitions
of the TAP Controller are also independent of the data to be transmitted, they can also be generated within
the driver module. The instructions and data to be shifted by the IR and DR shifter, on the other hand, are
transmitted to the module via two separate input buses (jtag_ir and jtag_dr). The outputs of both shifters are
connected to the TDI control line feeding the currently selected TAP register. Which of the shifters is supposed
to shift data bits into the line is again controlled by the state machine of the driver module. Furthermore, one
of the input lines of the DR shifter is connected to the TDO control line. In this way the data bits being shifted
out of the selected TAP data register are captured and can be read out via an additional output bus of the
DR shifter (data_out). The driver module also provides the possibility to shift only a certain number of the
transmitted data bits into the selected TAP data register. The bit vectors containing the number of bits to be
shifted are transmitted to the module via an additional input bus (num_shift_data_bits). There are further
input lines and buses for the transmission of the scaler value (clk_scaler) and the signals which trigger TAP IR
or DR shift operations (start_instruction or start_data) or the reset of the test logic (start_reset). The reset
input line transmits the signal which triggers the reset of the internal state machine. The signal of the system
clock of the driver module is transmitted via the clk input line. Apart from the TCK, TMS and TDI control line,
the module is equipped with further output lines which are used to send various status messages (processing,
cmd_accept, error and read_data_available). The jtag_read_data bus forwards the data_out signal from the
DR shifter.

The structure described above represents the core module of the driver module and is referred to as jtag_driver.
Due to the number of di�erent inputs, control of the jtag_driver is relatively complex. For this reason, it was
integrated into another module which is denoted as ut_jtag_driver where ut stands for universal translator.
The ut_jtag_driver acts as an interface between the external user and the jtag_driver enabling an easier control
through fewer inputs. The write_data input bus is used for transmission of:

• The instructions for the IR shifter.

• The data for the DR shifter including the number of bits to be shifted and an additional so-called
keep_response bit in�uencing the start of DR shift operations.

• The scaler value.

The signals which trigger shift operations, the reset of the test logic or changes of the TCK frequency, are
transmitted by the write_idx bus. For this purpose, the ut_jtag_driver encodes each trigger signal with a
certain value. Depending on the value received via the write_idx bus, it then initiates the corresponding
operation unless the jtag_driver is currently performing other operations. Its availability is signalled via the
processing line. If the TCK frequency is supposed to be changed, the corresponding scaler value transmitted
by the write_data bus is forwarded to the clk_scaler input of the jtag_driver. For shift operations of the
DR shifter, the part of the received bit vector containing the number of bits to be shifted is forwarded to
the num_shift_data_bits input while the part containing the actual data is forwarded to the jtag_dr input.
Whether a DR shift operation is initiated, does not only depend on the availability of the jtag_driver but also
on the keep_response bit and the signal received by the read_rdy input line. The latter indicates whether the
user is ready to read the data which is sent back to him. If the write_idx bus transmits the signal for the
reset of the test logic, the start_reset line of the jtag_driver is simply fed with a high bit triggering the TMS
shifter to shift the appropriate bit sequence into the TMS control line. The write_valid input line indicates
whether the user is currently sending data to the driver module. The TDO input line forwards the data bits
being shifted out of the selected TAP data register to the jtag_driver TDO input. The read_data output is
connected to the jtag_read_data output of the jtag_driver. The write_next line sends a high bit when a new
shift operation, the reset of the test logic or a change of the TCK frequency is initiated. The end of a DR

6

shift operation is communicated via the read_next output line. The signal of the system clock is received via
the clock input line and directly forwarded to the clk input of the jtag_driver. The reset input analogously
forwards the reset signal to the corresponding jtag_driver input. A simpli�ed schema of the structure of the
entire driver module is illustrated in �gure 2.

Figure 2: Simpli�ed schema of the driver module structure (own presentation).

3 Design of a Test Bench for the Driver Module

3.1 De�nition of Test Criteria

The purpose of the test bench is to verify the correct interaction between the driver module and the JTAG
TAP and to identify any malfunctions that occur. The primary test criterion is the proper writing and reading
of the TAP registers. This includes:

• Selection of the appropriate TAP register (IR or DR).

• Shifting of the speci�ed number of bits of the desired bit sequence into the selected register while main-
taining the initial bit order.

• Correct display of the data bits being shifted out of the TAP DR.

Furthermore, it is necessary to check whether the TAP Controller can be reset and the TCK frequency can be
changed. The proper functionality of the driver module must be guaranteed for di�erent IR and DR widths as
well as for di�erent data alignments and TCK frequency settings. It is thereby assumed that the JTAG TAP
itself works error-free with every con�guration.

3.2 Design of the Test Bench

The test bench must be suitable for testing the functionality of the driver module for all possible con�gurations.
It is therefore designed in such a way that the width of all data buses and the length of the bit vectors to be
transmitted are adapted according to the speci�ed parameters. The completed test bench will be composed of
the following sections:

7

1. Parameter speci�cation: IR and DR width, the scaler value and other parameters are determined.

2. Data structure and function de�nition: Di�erent data structures for the communication with the driver
module and various functions that are required for the state machine are de�ned.

3. Driver module and JTAG TAP integration: The internal signal lines of the test bench are connected to
the appropriate input and output ports of the driver module and the TAP.

4. Test program: The system clock is generated for a speci�ed test runtime and the reset times are de�ned.
Display of information on the test con�guration during a test run is initiated.

5. State machine: Di�erent states, state transitions and the data to be generated and sent in each state are
de�ned.

6. Functional check: The proper functionality of the driver module is veri�ed by comparing the data which
was sent to the module and the TAP with the data which was written into and read out from the TAP
registers.

The parameters can be speci�ed by indicating concrete values or by randomly choosing a value from the permit-
ted range. For the �nal test of the driver module, random parameter generation will be used. The parameter
values are thereby only pseudo random numbers, as they are generated based on a certain seed value. In this
way, it is possible to reproduce a random test run with a speci�c parameter con�guration simply by indicating
the same seed value as used for the initial test run. The possible values for the IR width are speci�ed in the
TAP data sheet and range from 2 to 32 [1]. In order to avoid the random generation of a mandatory instruction
which would trigger an unintended TAP behaviour, the permitted range for the IR width is reduced to 3 to 31.
The DR width is determined by the IC to be analyzed. For the test of the driver module, a test data register as
mentioned in section 2.1 will be de�ned instead of accessing real physical boundary scan circuitry. Although the
width of such a test data register can be arbitrarily selected, a permissible range from 3 to 64 is de�ned. The
scaler value can range from 0 to 2scaler_width - 1 where scaler_width is the width of the data bus transmitting
the scaler value to the clk_scaler input of the jtag_driver. This width is set to 8, so that the scaler value can
adopt all values between 0 and 255. For the data alignment, a range from 1 to 32 is de�ned. In addition to
these parameters, a so-called active_probability and a ready_probability are randomly generated. They will be
used by the state machine for generating idle periods of random length between consecutive sending procedures
of the test bench.

For the communication with the driver module, the following data structures are de�ned:

• data: This data structure consists of the components keep_response, len and payload. The keep_response
component always comprises a single bit indicating whether the data being sent back to the test bench is
to be read or not. The len component speci�es the number of bits to be shifted into the TAP DR. The
minimum number of bits to be shifted is 3, which is due to the structure of the driver module. The largest
possible number corresponds to the selected width of the test data register. The payload component �nally
contains the actual bit sequence to be shifted. The length of this sequence is always equal to the selected
DR width.

• transaction: This data structure contains all information for a complete transaction, comprising an in-
struction for the TAP IR (included in the ins component), the data for performing a DR shift operation
(in the form of the data data structure) as well as the data which is loaded into the test data register and
supposed to be sent back to the test bench (included in the response component). The instruction length
thereby corresponds to the selected IR width whereas the length of the response component is determined
by the DR width.

• raw_data: This data structure contains the same information as data, but combined to one bit vector
taking the selected data alignment into account.

• write_data: This data structure is used for transmitting data to the driver module. write_data is a bit
vector like raw_data and contains either an instruction, a raw_data vector or a scaler value. Consequently,
it has the length of the longest bit vector to be transmitted.

As with the parameters, the transaction components are randomly generated on the basis of the selected seed
value. For this purpose, a randomize function is de�ned. The range for the permitted instruction values is
thereby again limited to 3 to 2IR_width - 2 in order to avoid the random generation of a mandatory instruction.
For the generation of the raw_data vector, a serialize function is de�ned.

The control and monitoring of the driver module and the TAP is only possible by connecting their input

8

and output ports to the corresponding internal signal lines of the test bench. In addition to the control line
ports, the TAP, like the driver module, is equipped with further ports that provide information on the current
TAP status. This includes an instructions port displaying the current content of the TAP IR and other ports
which indicate the current state of the TAP Controller as well as the imminent beginning or the end of a DR
shift operation. They will be used in the course of the functional check of the driver module.

The test runtime, the reset times and the information displayed during a test run are speci�ed in the test
program section of the test bench. The runtime can be set to arbitrary values. The test is designed so that the
internal state machine of the jtag_driver is reset directly at the start of each test run.

The state machine of the test bench comprises 4 states: scaler, init, ins and data. Depending on the cur-
rent state, di�erent data is generated and sent to the driver module. In the scaler state, the write_idx bus is
fed with a binary 1, signaling the transmission of a scaler value to the driver module. At the same time, the
randomly determined scaler value is sent to the module via the write_data bus. In the init state, a binary
0 is sent to the module via write_idx what is supposed to trigger the transition of the TAP Controller into
the Test Logic Reset state. In the ins state, a random transaction is generated by calling the randomize func-
tion. While a binary 2 is transmitted via write_idx, write_data is fed with the instruction of the generated
transaction. In the data state, write_idx sends a binary 3 announcing data for a DR shift operation. The
corresponding data component of the transaction is converted to a raw_data vector by calling the serialize
function and then transmitted to the driver module via write_data. Test runs always start in the scaler state
in order to set the TCK frequency for the run. From there, the state machine passes through all other states
in the abovementioned order up to the data state. It then switches periodically between the ins and the data
state, thus alternately initiating TAP IR and DR shift operations with randomly varying transactions. For
more realistic testing, an active signal is de�ned triggering the generation and transmission of new data. This
signal is generated randomly, whereby the probability of generation is given by the active_probability which
was also determined randomly based on the selected seed value. In this way, idle periods of random length
between consecutive sending procedures of the test bench are created. An additional variation factor is given
by the randomly selected keep_response bit of the raw_data vector which indicates whether the data being
sent back from the TAP DR via the driver module is to be read or discarded. If the data is supposed to be
read (keep_response = 1), it must not be sent back by the module until the test bench is ready to read it. This
decision is also made at random (based on the ready_probability) and communicated to the driver module via
the read_rdy line. If the data is supposed to be discarded (keep_response = 0), it is immediately shifted out of
the TAP DR and sent to the test bench by the module by shifting new data into the DR. Once, the test bench
is ready to read, this readiness is maintained until it has received data.

For the functional check, a test data register with the randomly determined DR width is de�ned. Its fore-
most bit is connected to the TDI input of the TAP while its rearmost bit is connected to the TDO output of
the TAP. Since, apart from the mandatory decoded instructions, no instruction decode logic is de�ned and no
boundary scan circuitry is connected for the tests, the test data register is automatically accessed when the TAP
Controller is located in the DR branch. In this case, the bits entering the TAP via the TDI input are directly
forwarded to the test data register while those being shifted out of it leave the TAP via the TDO output. If,
however, the TAP Controller is located in the IR branch, the TDI bits are forwarded to the instruction register
instead. Accidental access to another data register than the test data register (e.g. to the Bypass Register)
caused by the driver module sending a mandatory instruction can be excluded, as the speci�ed ranges for the
IR width and the instruction value do not allow the random generation of these instructions. The connection
of the test data register to the TDI and TDO port of the TAP makes it behave like a normal data register
contained within the TAP. However, since the register is de�ned in the test bench, it is also possible to access
all register cells simultaneously from the test bench. This feature enables the implementation of the following
functional checks:

• Check of correct TAP IR write operations: The transactions which are randomly generated in the ins state,
comprise an instruction, the data for a DR shift operation and a response component. The instruction of a
newly generated transaction is always directly sent to the driver module before in the following state, which
is always the data state, the corresponding data for the DR shift operation is sent. Consequently, shortly
before the start of a DR shift operation, the TAP IR must contain the instruction of the last transaction
that was generated. At this moment, which is signaled to the test bench via the corresponding TAP
status port, the content of the TAP IR displayed via the instructions port is therefore compared to the
instruction of the lastly generated transaction. If the driver module has worked correctly, the comparison
must be positive. At the same time of the comparison, the response component of the transaction is
written into the test data register. This step is necessary in order to be able to check for correct TAP DR
read operations.

9

• Check of correct TAP DR write operations: During the DR shift operation, the number of shifts is checked
by incrementing a count variable at every positive edge of the TCK. The end of the operation is signaled
via another TAP status port. The count variable should now correspond to the number of bits to be shifted
which was speci�ed by the len component of the data part of the generated transaction. Furthermore,
this number of bits of the payload component of the data part should be contained in the left section of
the test data register. These two aspects are checked for verifying the correct writing of the TAP DR.

• Check of correct TAP DR read operations: While a certain part of the payload component is shifted into
the test data register during the DR shift operation, an equally large part of the response component,
which was written into the register shortly before the start of the operation, is shifted out via TDO. At
the end of the operation, which is signaled by the read_next port of the ut_jtag_driver, these response
bits should be displayed at its read_data port. If yes, the DR read operation was correct.

The described veri�cation principle is visualized in �gure 3. The �gure shows the register contents after a DR
shift operation. The transaction containing all relevant data is thereby abbreviated with trans.

Figure 3: Test bench veri�cation principle. Shown are the register contents after a DR shift operation (own
presentation).

4 Test and Debugging of the Driver Module

4.1 Test Results Before Debugging

With the help of the designed test bench, the proper functionality of the driver module can be veri�ed for
one con�guration (i.e. for one speci�c combination of IR width, DR width and scaler value) per test run. In
order to verify its correct functionality for all possible con�gurations, a corresponding number of test runs was
performed. In the �rst part of the test phase, the IR and DR width were randomly varied within the permitted
ranges while the scaler value was permanently set to 0 thus generating a TCK signal with half the frequency
of the system clock of the driver module. The results of 10.000 test runs are illustrated in �gure 4. The color
hereby represents the ratio of correct to faulty runs for a speci�c con�guration. Furthermore, the intensity of a
color indicates how many test runs were performed with a certain con�guration related to the most frequently
tested con�guration. A weakly colored square thus indicates that the corresponding con�guration was tested
much fewer times than at least one other con�guration. Whereas the majority of con�gurations produced cor-
rect results, there is also a triangular area of adjacent con�gurations which almost exclusively exhibit faulty
test runs. Only the columns with a DR width of 4, 8 and 16 seem to show partly correct and partly faulty runs.

In the course of the debugging process, a seemingly working con�guration with a conspicuously low number of
transactions compared to the duration of the test run was detected. Therefore, the number of transactions per
test run dependent on the IR and DR width was also examined. In order to guarantee a constant number of
transactions for a speci�c con�guration, the active_probability and the ready_probability were permanently set
to 1. The results of this analysis are illustrated in �gure 5. The diagram con�rms the detected abnormality
showing irregularities for all con�gurations whose DR width corresponds to a power of 2. These are the same

10

Figure 4: Ratio of correct to faulty test runs dependent on the DR and IR width before debugging (own
presentation).

DR widths which had already shown partly correct and partly faulty test runs in the previous analysis. Ob-
viously, the correct test runs were hereby produced by signal paths which had ended before they could reach
the functionality checks of the test bench. Apart from the irregularities and the triangular faulty region, the
diagram shows the expected behaviour, meaning that the average number of transactions per test run decreases
with increasing IR and DR width.

Figure 5: Average number of transactions per test run dependent on the DR and IR width before debugging
(own presentation).

In the second part of the test phase, the scaler value was randomly varied within the permitted range while
the IR and DR width were constantly set to 3. The results of 10.000 test runs are illustrated in �gure 6. The
diagram shows the number of correct and faulty test runs dependent on the scaler value. As can be seen, only
a value of 0 or greater than approximately 195 produced exclusively correct results.

11

Figure 6: Number of correct and faulty test runs dependent on the scaler value before debugging (own presen-
tation).

4.2 Debugging

The low number of transactions for DR widths corresponding to a power of 2 was caused by a false de�nition of an
input port and a register of the jtag_driver. On the one hand, the width of its num_shift_data_bits input port
was chosen one bit too small, so that the most signi�cant bit of the vector sent by the ut_jtag_driver was always
discarded. Whenever the latter sent a bit vector whose value corresponded to a power of 2, the jtag_driver only
received a bit vector consisting of zeros. This caused the internal state machine of the jtag_driver to stop in an
intermediate state in which it remained until the end of the test run. Consequently, no further transactions were
executed. On the other hand, the width of an internal register used for counting the number of DR shifts was
also one bit too small, so that values corresponding to a power of 2 could never be reached. This also prevented
the state machine from getting back into the idle state and therewith from executing further transactions. The
width of the num_shift_data_bits port and the internal register could easily be corrected.

The analysis of the triangular faulty region revealed that tests were failing whenever the inequation

IR_width > DR_width+ 5 (1)

applied. This information could be used to �nd the source of error which was a wrong width of the jtag_driver
registers used for generating the TCK signal. This signal is generated by the registers alternately shifting out
ones and zeros until the ones are consumed. The width of these registers was only dependent on the DR width,
assuming that a DR shift operation would always take longer than an IR shift operation. If, however, the IR
width is larger than the DR width, so that the abovementioned inequation applies, the number of TCK cycles
required to traverse the IR branch of the TAP Controller is larger than the number required to traverse its DR
branch. In this case, the TCK stopped before the IR branch was left, causing a transition into the Pause-IR
state instead of the Update-IR state. The following TMS sequence of the jtag_driver then moved the TAP
Controller back into the Shift-IR state instead of the Shift-DR state. While the state machine of the jtag_driver
then started a DR shift operation, the TAP Controller still accessed the IR. Consequently, the TAP IR was �lled
with the content which was intended for the DR whereas the DR content was not changed. The subsequent
DR write and read checks thus returned faulty results. This problem was solved by implementing an additional
dependence of the register widths from the IR width.

The malfunctions that occurred due to changes of the scaler value were caused by insu�cient conditions for some
state transitions of the state machine of the jtag_driver. Due to these insu�cient conditions, the jtag_driver
stopped its IR and DR shift operations before all relevant data bits were shifted into the corresponding register.
This problem could be �xed by an appropriate adjustment of the transition conditions and the introduction of

12

an additional counter.

4.3 Test Results After Debugging

After the debugging of the jtag_driver code, the functionality of the driver module was tested again for di�erent
settings of the IR and DR width and the scaler value. The test results are shown in the following �gures. The
yellow squares in �gure 8 hereby represent con�gurations which have not been tested. As can be seen, the driver
module now works properly for all tested con�gurations.

Figure 7: Ratio of correct to faulty test runs dependent on the DR and IR width after debugging (own presen-
tation).

Figure 8: Average number of transactions per test run dependent on the DR and IR width after debugging (own
presentation).

13

Figure 9: Number of correct and faulty test runs dependent on the scaler value after debugging (own presenta-
tion).

5 Conclusion and Outlook

The goal of the project was to verify the correct functionality of a parameterizable driver module for a JTAG
Test Access Port at all permitted con�gurations. For the veri�cation, a parameterizable test bench was designed.
With the help of the test bench, di�erent tests were then carried out which revealed various malfunctions of the
driver module. These malfunctions could be �xed in the course of a comprehensive debugging process. Whereas
the driver module was only used in a speci�c con�guration before the project, its correct functionality is now
guaranteed for every possible con�guration. It thus can be used for di�erent projects such as the development
of the HICANN-X chip.

However, the driver module currently doesn't provide the option to enter the Pause-DR state between con-
secutive DR shift operations. Consequently, it is not possible to read out the states of all logic signals of an
IC at a given moment by initiating various consecutive DR shift operations, since the initial signals will be
overwritten by new ones whenever the TAP Controller traverses the Capture-DR state while reentering the
Shift-DR state. It is therefore recommended to extend the driver module in such a way that a transition from
the Shift-DR into the Pause-DR state and vice versa can be made.

14

References

[1] Synopsis, Inc. DW_tap: TAP Controller, June 2018.

[2] Wikipedia. Joint Test Action Group. https://de.wikipedia.org/wiki/Joint_Test_Action_Group, August
2018.

[3] Wikipedia. JTAG. https://en.wikipedia.org/wiki/JTAG, October 2018.

15

	Introduction
	Problem Description and Goal Setting
	Structure of the Project Thesis

	Interaction of the Driver Module and the JTAG Test Access Port
	Structure and Operating Principle of the JTAG Test Access Port
	Structure and Operating Principle of the Driver Module

	Design of a Test Bench for the Driver Module
	Definition of Test Criteria
	Design of the Test Bench

	Test and Debugging of the Driver Module
	Test Results Before Debugging
	Debugging
	Test Results After Debugging

	Conclusion and Outlook
	 Bibliography

