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Abstract

The Electronic Visions group is developing the neuromorphic BrainScaleS wafer-scale system,
which uses an on-wafer short range communications system named Layer 1 (L1). The aim of
this internship was to build a software test, which is able to verify and quantify L1 functionality.
This test uses the vertical repeaters to receive artificially generated spikes sent via the L1 bus and
thus checks for errors in the on-wafer communication. The quantification is achieved by using the
highly accurate Playback Memory module which is being developed by a collaborating group at TU
Dresden and part of the Kintex-FPGA setup used for I/O purposes. The main challenge was the
implementation of new communication protocols in the existing software stack and the debugging
of the Field-Programmable Gate Array (FPGA) setup because this technology hadn’t been used in
this way before.

Zusammenfassung

Die Electronic Visions Gruppe entwickelt das neuromorphe wafer-scale BrainScales, welches
einen wafer-internen Kommunikationsbus für kleine Reichweiten namens L1 hat. Das Ziel dieses Pro-
jektpraktikums war die Entwicklung eines Softwaretest, welcher in der Lage ist die L1-Funktionalität
zu verifizieren und quantifizieren. Dieser Test benutzt die Vertikal-Repeater um künstlich generier-
teSpikes, welche über den L1 Bus gesendet werden zu empfangen und überprüft diese dann auf
Fehler. Die Quantifizierung wird über die Benutzung des sogenannten Playback-Memory-Moduls
erreicht, welches von einer Forschungsgruppe der TU Dresden als Teil des für I/O Zwecke benutz-
ten Kintex-FPGA-setups entwickelt wird und eine sehr hohe Genauigkeit garantiert. Die größte
Herausforderung war die Implementierung neuer Kommunikationsprotokolle in den existierenden
Softwarestack und das Debuggen des FPGA-Setups, da diese Technologie noch nicht in dieser Art
und Weise benutzt wurde.
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2 1 INTRODUCTION

1 Introduction
The building blocks of the BrainScaleS wafer system are the 384 High-Input Count Analog Neu-
ronal Network Chips (HICANNs). Among other circuits, they consist of the synapse block, the
respective output buffers to buffer postsynaptic spikes and the merger tree to merge all of them
onto the L1 inter-HICANN communication bus. The signals coming from the merger tree get
injected onto the L1 by the so called sending repeaters, which are placed horizontally on one data
line and simultaneously drive the signals coming from other HICANNs. "The digital controller of
the HICANN uses a clock frequency [...] generated by an internal PLL (Phase locked loop) from
the external reference clock" [Schemmel et al., 2010, chapter 2.2.1]. This Phase-Locked Loop (PLL)
frequency can be set to values between 100MHz and 250MHz, which is suspected to influence the
signal quality by making bitflips more likely.

The repeaters in general are used to restore signal amplitude and timing precision of signals.
They include a Delay-Locked Loop (DLL), to which the signal is being resampled before being
passed on along the bus (cf. HBP SP9 partners [2014]). This DLL however first has to "learn"
the length of a packet by locking on spikes with neuron number 0, which takes some time. It
is possible to operate the repeaters in debugging mode, where they store the first three signals
(addresses and times) in an internal Static Random Access Memory (SRAM), which can be read out.

Rather then using ’real’ (on-chip-neuron generated) spikes, one can either generate artificial
spikes on the chip by using the Background Event Generators (BEGs) or send a predefined spike-
train from the computer down to the wafer using the Field-Programmable Gate Arrays (FPGAs)
Playback Memory (PbMem). The BEGs can be configured to send spikes with a certain inter spike
interval, but the start of the firing process can’t be timed exactly. The spike’s timing however can
be exactly defined as they are held in PbMem with a timestamp, which tells the FPGA when to
release it.

Apart from spikes the Playback Memory can also hold HICANN configuration packets, which
are used to insure precise timing of configuration of HICANN components. The structure in which
the spikes are held in PbMem is called a "Pulse Group" and consists of the FPGA timestamp (when
the FPGA is to release this group), the number of spikes therein and for each spike the target
address and HICANN timestamp. HICANN configuration packets are held in a similar group
structure with a FPGA timestamp, a variable which holds the number of configuration packets
in this group and the configuration packets themselves. These packets get assembled in the lower
levels of the software stack and then loaded in the Playback Memory, where the program they
compound can be started at will.
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The software stack consists of the high-level Python for the Hybrid Multiscale Facility (PyHMF)
layer (a custom PyNN (PyNN) implementation), where neurons and weights can be defined and
networks can be constructed. This is being used by the mapping layer called marocco to generate
whole HICANN configurations, which are being passed down to the Stateful Hardware Abstraction
Layer (StHAL). This container uses Hardware Abstraction Layer Backend (HALbe) coordinates
and datastructures to call HALbe-Backend functions, which then configure the hardware us-
ing the hicann-system layer. There these commands are getting converted to bit-configurations
and network packets. As my test is a low-level hardware test it is located in HALbe and changes
were made to HALbe and hicann-system along this work (for further information cf. Müller [2014]).

The L1 test I implemented has the aim to verify and quantify the L1 functionality. It sets up a
connection from a Sending Repeater to a Vertical Repeater and then tests it by sending spikes along
this route and reading the Vertical Repeater’s SRAM to see whether or not they reached it. This
is done along all possible connections and with different PLL frequencies and can be used to study
the influence of the PLL frequency on signal quality. Further quantifications to be investigated with
this test would for example include the locking behaviour of the repeater’s DLLs. As the locking
process is highly time-critical, exactly timed HICANN configuration commands are required to
investigate this.
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2 Changes made to the Software Stack
2.1 Callstack for asynchronous usage
Until now the HICANN configuration was purely asynchronous (without exact timing insured
by PbMem) and only the spikes were buffered in the Playback memory. In the future it will be
possible to use the PbMem also for time-critical configuration (e.g. in L1 tests) and eventually for
the majority of experiments. In this section I firstly present the current workings of the software
stack (cf. Figure 1) and then the changes done made to insure PbMem integration (cf. Figure 2).

Because this software stack grew historically from only the hicann-system layer, there is no exact
layering and structure between HALbe and hicann-system as of now. In the future it is planned to
move all hardware abstraction to the HALbe layer and use hicann-system only for communication
protocols and bit formatting of commands. For now there are instances of abstracted objects in
HALbe as well as in hicann-system. The usual commandflow of the configuration of a repeater
block works as follows.

In HALbe-test a repeater block coordinate and an instance are initialized and the instance is
modified (configurations are set etc.), then these objects get passed on to the write_repeater_-
block subroutine in HICANNBackend.cpp. In HICANNBackend.cpp an instance of the hicann-system
repeater_control class gets initialized and the values which were set get extracted from the
RepeaterBlock instance. These get then packaged into multiple write commands which are sent
by using the write_data method of repeater_control.

In this method conversions are being made and the write_cmd method of the base class ctrlmod
is called. There the command is reformatted and passed on to the s2ctrl subobjects’ issueCommand
method, which immediately forwards it to the respective derived s2comm member. Normally
s2c_jtagphys_2fpga_arq gets this command and sends it down asynchronously via host_al_-
controller’s addHICANNConfigBulk method.

repeater_control
(write_data)

s2c_jtagphys_2fpga_arq
(issueCommand)

halbe-test
(RepeaterBlock)

HALbe

halbe-Backend
(set_repeater_block)

host_al_controller
(addHICANNConfigBulk)

hicann-systems
ctrlmod

(write_cmd)

s2ctrl
(issueCommand)

s2comm
(issueCommand)

Figure 1: Image of existing callstack for asynchronous usage
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2.2 Callstack after Pbmem integration
Changes on several layers to implement the usage of the PbMem for configuration data were done.
The major difference between the currently implemented Playback Memory spikes and HICANN
configuration data is, that there is a delay after each command due to a non-zero execution time
on hardware. The execution of this command may not be interrupted by another command,
because is possible that the commands do not arrive correctly at the specified components. To
track this implicit delay a second time variable (next_playback_reltime) had to be implemented
in host_al_controller.

Because of future plans to extend the capabilities of HALbe and reduce hicann-system to a
mere communications layer all changes presented here are preliminary. On the most low-level
layer (in host_al_controller) the existing addPlaybackConfig method was fixed and improved,
which now takes the delay, time (in cycles), payload and HICANN number and first checks if the
minimal distance to the last packet is met. Then it has to send overflow packets if the time (due to
an overflow in the 14 bit FPGA time counter) is greater then systime_ctr/2 to signal the FPGA,
that the timing is correct. Afterwards it has to override the last_playback_reltime variable with
the fpga_time of the current package and increments the next_playback_reltime by the given
delay time.

The host_al_controller achieves this by using a modified incrementation method, which
doesn’t only increment the time but also checks if the delay is bigger then the systime counter. In
this case an overflow packet has to be sent to the FPGA to catch the overflow. In general overflow
packets tell the FPGA to wait a specific number of systime counter overflows before it is allowed
to release the next packet. Other implemented methods are get_playback_reltime, which can
return either the next_playback_reltime or last_playback_reltime and a reset method, which
defaults the two reltimes to 100 and 0 respectively to avoid possible glitches in the PbMem.

In the layers above host_al_controller methods were implemented for compatibility reasons
allowing to call this function with respect to the aforementioned layering. To give the user the
option to use the Playback Memory a private bool variable (config_via_pbmem) was introduced in
the implementation of the ctrlmod class, which is the base class of all hardware abstracted objects.
This variable can be changed by calling the togglePbmemConfig method which is inherited by
e.g. the repeater and neuron control classes. On the same layer the write_cmd and read_cmd
methods were changed to check whether or not the config_via_pbmem parameter is set and to
use the issueCommandPbmem method of the communications classes if this were the case, which in
turn eventually calls the addPlaybackConfig method of host_al_controller. This effectively
provides a way to send the commands of every control module via the Playback Memory and to
turn this feature on and off at will.

The aforementioned delay due to busy hardware components or bottlenecks in the communica-
tion was implemented in the repeater_control and neuron_control classes as a private variable
and is being passed down from there by the write_cmd and read_cmd methods. In the future
this delay has to be investigated further and possibly split up in multiple delays depending on the
commands and repeaters in question for optimal access speeds.
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The big difference in experiment design between using the Playback Memory and sending down
the command asynchronously is the time at which answers to read commands are being received by
the host. For example, if some values are to be read out of a register until now the asynchronous
method sends down the respective command, then waits for its execution and blocks everything
else until it has received an answer. When using the Playback Memory all these commands have
to be stored in its program and then executed one after another at experiment start. Thus issuing
commands and evaluating return data is decoupled. Here the chip (and communications channels)
has to guarantee the order of the answers as the packets do not have any identification which would
enable the software to sort them by itself.

This difference in design was implemented by isolating the methods, which send the read
command and receive the answer from the combined read_data method in the respective con-
trol classes. This also required the same isolation being done in some of HALbes functions
like get_repeater_block or get_repeater, which were split into read_repeater[_block] and
receive_repeater[_block].

To implement the possibility of using the Playback Memory in HALbe several functions in
HICANNBackend.cpp and HICANNBackendHelper.cpp were changed to incorporate arguments like
the bool variable whether or not to use the Playback Memory and the release time for the first
packet. As the read_repeater_block and set_repeater_block functions for example consist of
many commands being sent, there has to be an automatic incrementation of the release time, which
is passed on to the send methods. However to not break existing use cases and provide a smooth
integration into the existing software stack these variables are defaulted to asynchronous use.
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repeater_control
(write_data)

s2c_jtagphys_2fpga_arq
(issueCommandPbmem)

halbe-test
(RepeaterBlock)

HALbe

halbe-Backend
(set_repeater_block)

host_al_controller
(addPlaybackConfig)

hicann-systems
ctrlmod

(write_cmd)

s2ctrl
(issueCommandPbmem)

s2comm
(issueCommandPbmem)

bool config_via_pbmem
void togglePbmemConfig(...)
bool get_config_via_pbmem(...)

uint64_t last_playback_reltime
uint64_t next_playback_reltime
uint64_t get_playback_reltime(...)
void addPlaybackConfig(...)
void increase_fpga_time(...)

uint del
uint get_delay()

FPGA::get_fpga_time(...)
FPGA::increase_fpga_time(...)

Figure 2: Image of callstack after integration of PbMem. The indexed text shows implemented
functions and variables.
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3 L1 Vertical Repeater Transmission Test
3.1 Test implementation
As mentioned in section 1 this test is used to verify and quantify the L1 functionality. As such
there is the test function itself, in which the address of the spikes as well as the delay with which to
release them and other parameters are defined. This function loops over different PLL frequencies
and within each frequency over all possible connections to vertical repeaters. These connections
are then given to the actual test function, which returns an object containing the connection
parameters (Sending Repeater and Vertical Repeater), the received addresses and respective times.
This information is then stored in a results vector, which is afterwards used to generate the statistics.

This test uses the HALbe API; it is based on an existing asynchronous test written by Sebastian
Schmitt, which uses the Python API of HALbe which was modified to be able to use the Playback
Memory. The Test does a number of configuration steps before sending down the spikes and read
commands. A bool variable use_pbmem was implemented which, as the name implies switches
between Playback Memory and asynchronous mode.

First of all the HICANN::Init is being executed to set up the connections (high speed links
etc.). Afterwards the merger tree is configured and one of the BEGs is turned on and provided
with the address and the period with which to generate the spikes. The Digital Network Chip
(DNC) merger configuration is adjusted, so that they merge the incoming spikes from the Playback
Memory with the BEG events onto the L1 bus. Then the gigabit link to the reticle itself is
configured and the directions of the DNC mergers get set. Furthermore the crossbar switch cor-
responding to the respective connection and the input direction of the vertical repeater are being set.

Now the repeater’s full flag has to be reset and the dllresetb register has to be resetted to enable
locking. After waiting for the repeaters to lock, the BEG used for locking has to be turned off
(in PbMem mode) or set to the correct data address (in asynchronous mode). To avoid jamming
the FPGA a HICANN::flush was inserted, which insures the cleanliness of the Host and HICANN
ARQ (cf. Müller [2014]). The repeaters’ start testdata input bit now is being set to true and
thus the repeater is ready to record incoming traffic.

After sending the spikes down a read command for the repeater block is being sent. As this is a
PbMem test, all timing-critical commands are actually buffered in the Playback Memorys external
Double Data Rate Synchronous Dynamic Random Access Memory (DDR3-SDRAM) and a start
signal has to be given. After the experiment is finished, the FPGA has to be stopped and the data,
which is received from the HICANN has to be read out and then processed. After it being stored
in the RepeaterBlock variable, the experiment is evaluated.

There are three possible outcomes: the time of the event is

• greater then zero

• equal to zero and the full flag is set

• equal to zero and the full flag is not set
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In the first case the spike was successfully received with the respective address. In the second and
third case the transmission wasn’t successful due to a counter overflow in the repeater’s SRAM
register (which can just mean spikes don’t come fast enough, but they are valid nonetheless) or
no spike at all being received. Having this in mind a passed experiment is defined by all spikes
being received (so counter overflow is not an error) and them having the right addresses (when the
operation is more stable a check on the times could also be defined to see, whether they have the
right distance (with some tolerance)).

The statistics generated after all the PLL frequencies with all connections have been tested
include the total number of connections versus the number of successful tests (also in percent), the
output of all failed connections with the type of error and what went wrong as well as three most
frequent false addresses. After the PLL frequency wise output, there is a list of connections sorted
by the number of fails, which aims to help the user to detect transmission errors.

A file output was implemented, which stores the name of the connections in the first line followed
by the information if there was a fail on this connection per test run in a Comma seperated values
file (CSV) and a directory, which is created from the current timestamp at the beginning of each
test. For each PLL frequency the test results are stored in a separate file, which can be evaluated
using a python script. This script is located in the results directory and takes the directory of the
data, the wafer number and the FPGA number as commandline arguments.

For debugging purposes a switch RAM test (SwitchRAMHWBackendTest) was implemented and
the VerticalRepeaterHWTest was changed to support Playback Memory execution. Both tests
essentially generate random data, which is written in the respective configuration SRAMs, read
out again via Playback Memory and then checked against the generated data.

3.2 Test results
For the test to run correctly it is imperative to make sure, that all the external voltages (par-
ticularly VOL and VOH) are set correctly or otherwise there will be a high error rate. After
this configuration the results from the test will (as expected) vary from HICANN to HICANN.
Exemplarily a run of a PLL frequency sensitive HICANN (cf. Figure 3), a HICANN with a great
likelyhood of hardware defects (cf. Figure 4) and a HICANN without hardware defects (cf. Figure
5) will be shown.

In the given figures, the y axis enumerates the test run and the x axis identifies the tested
connection. The color of each connection is dependent on the number of fails of this connections
over the PLL frequencies.
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Figure 3 shows a HICANN, for which there are fails for a couple of repeaters at some PLL
frequencies (namely 100MHz and 250MHz). We can see here, that all the connections, which show
errors show them only at a few PLL frequencies. However, the failing component is not everywhere
the same. One can see from the fail of the 0->60 connection and that none of the other connections
from Sending Repeater 0 failed, that the component which is error-prone is somewhere behind the
Sending Repeater and thus either the connection (due to bitflips, crosstalk or other problems), the
switch or the Repeater 60 itself.

The next block of fails is seen in the connections coming from Sending Repeater 2 and only
occurs at the PLL frequency 250MHz. Here we see a pattern which is supposedly random in nature
and points to the Sending Repeater itself, being sensitive to too high PLL frequencies as there are
fails at all connections.

The third block of fails is the most interesting, as this points to sensitivities of the Sending
Repeater to changes on macroscopic timescales like e.g. fluctuation in the supply voltage. It could
also be related to an incomplete initialization of other HICANNs on the reticle, which is currently
being investigated.
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Figure 3: Visualization of the test results of a PLL frequency sensitive HICANN.

In Figure 4 one can see a broken Vertical Repeater, which fails every time (every PLL frequency
and every repetition of the test) whereas all the other repeaters work fine.

And finally Figure 5 shows a HICANN, which works perfectly fine. Here all connections work
on all PLL frequencies.
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Figure 4: Visualization of the test results of HICANN with possible hardware defects.
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Figure 5: Visualization of a HICANN without hardware defects.
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4 Discussion & Outlook
The final implementation of Playback Memory usage in the software stack will take much more
effort, because big chunks of it have to be rewritten and rethought. As outlined above, there
will be a new communications mode in the future, which will take care of the bit-formatting for
Playback Memory and thus the host_al_controller class will be made obsolete. Existing code,
which implements pipelined spike sorting written by C. Mauch will be integrated and extended to
provide these functionalities. Also some of the HALbe functions have to be amended, because the
PbMem case requires at least the fpga_release_time and at best also the use_pbmem variable.

Over the course of designing this Playback Memory test several roadblocks in the form of bugs
in the FPGA code were encountered. At first there were problems because of implicit assumptions
over the sequence of configuration packets, spikes and overflow packets, which were reported and
later fixed (personal communication). For bug reports the tools tshark and Wireshark were used
to monitor the packages going from host to FPGA and vice versa. This took an extraordinarily
long time as one had to gather data over these bugs, which were only occurring at a specific
length of the spiketrain in the Playback Memory. Another bug was found using the modified
VerticalRepeaterHWTest, which occurs when the delays between the configuration packages are
too small. This issue remains unresolved and is circumvented by using very large delays between
packages (cf. UHEI [2016]).

Although many bugs were found and fixed, the test remains unstable. Occasionally the FPGA
will drop repeater block read packets and thus the exception "No HICANNConfig packet received"
will be thrown in the software, because the answer to a read command is missing. For the moment
also this will remain unresolved and is handled using an exception handler in the software, which
catches this exception and retries this connection 10 times until eventually the exception is rethrown.
Although I suspect that this has to do with timing difficulties in the FPGA and possibly the
aforementioned bug, investigations are ongoing as of now.



13

Glossary
BEG Background Event Generator. 8

CSV Comma seperated values file. 9

DDR3-SDRAM Double Data Rate Synchronous Dynamic Random Access Memory. 8

DLL Delay-Locked Loop. 2, 3

DNC Digital Network Chip. 8

FPGA Field-Programmable Gate Array. I, 2, 8, 9, 12 2, 5.

HALbe Hardware Abstraction Layer Backend. 3–6, 12

HICANN High-Input Count Analog Neuronal Network Chip. 2–5, 8–11

HICANNARQ HICANN ARQ protocol. 8

L1 Layer 1. I, 2–4, 8

marocco marocco. 3

PbMem Playback Memory. 2, 4, 5, 7, 8, 12

PLL Phase-Locked Loop. 2, 3, 8–10

pyHALbe Python implementation of the Hardware Abstraction Layer Backend. 8

PyHMF Python for the Hybrid Multiscale Facility. 3

PyNN PyNN. 3

RAM Random Access Memory. 9

SRAM Static Random Access Memory. 2, 3, 9

StHAL Stateful Hardware Abstraction Layer. 3
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