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1 Introduction
Spiking neural networks (SNN) on analog neuromorphic hardware are a promising approach
to solve machine learning (ML) tasks with high energy efficiency. While training of SNNs
on the BrainScaleS-2 (BSS-2) system has already been shown in [12], this only holds for
SNNs that fit on a single chip. Most ML tasks however require network sizes that exceed
the BSS-2 hardware resources of a single BSS-2 chip by far. With this internship we set the
foundation to show that the BSS-2 system can be used in a multi-chip fashion for larger
networks by means of partitioning to demonstrate the system’s scalability. We approach
this problem with the MNIST dataset [2] as a toy example with a topology that requires
partitioning for hardware execution.

As a motivation for SNNs, this report covers an introduction to biological neurons and
their mathematical description, the LIF model. Their implementation on the BSS-2 system
together with an overview of the BSS-2’s architecture will be given as well. We will discuss
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learning in SNNs followed by a hands-on example with the MNIST dataset. After building a
baseline model, an implementation with hardware constraints is shown and compared. It
will be discussed how the model can be transferred to hardware and after revisiting and
reflecting the results, possible further steps are mentioned in the outlook.

2 Methods

2.1 Biological Neurons
A neuron consists of a soma, the cell body, containing the nucleus, several dendrites, an axon,
that is for some neurons covered in a myelin sheath, and axon terminals. The most important
parts are illustrated in figure 1. It typically receives input in form of electrical potentials via

Figure 1: Sketch of a biological neuron. [1]

its dendrites that are then superimposed at the soma. If the potential at the soma exceeds
a certain threshold ϑ, a spike called action potential is emitted, traveling along the axon
and axon terminals to other neurons. After that, a short refractory period is entered where
the neuron is unlikely to spike again. The neuron’s membrane is leaky, meaning ions can
be exchanged through it causing the membrane potential Vm to adjust back to a resting
potential Vl. Neurons communicate their spike events through synapses: The axon terminal
of a presynaptic neuron releases neurotransmitters upon an action potential, traversing to
the postsynaptic neuron and therewith changes its membrane potential. The change in the
membrane potential due to a presynapitc spike event is called postsynaptic potential (PSP)
the height of which depends on the synaptic strength, meaning, how many neurotransmitters
are released during the transmission. The ability to regulate synaptic strength over time is
called plasticity and allows learning in neural networks.

2.2 Neuron Model
Interconnected biological neurons (neural networks) as in mammal’s brains have proven
themselves to be extremely capable of solving tasks like object recognition, scene classification
and natural language processing, while only consuming very little energy due to their event
based nature. Consequently, they build a set of desirable properties for novel computing
devices that can solve problems in these categories (and beyond). The field of analog
neuromorphic computing tries to adapt these attributes in electronical chips. The foundation
is a mathematical description of a neuron, which for the leaky integrate-and-fire (LIF) model
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is the following differential equation, modeling membrane dynamics Vm(t) (the membrane
voltage) according to:

dVm(t)

dt
=

1

τmem

(
I(t)

gm
− (Vm − Vl)

)
− z(t)(ϑ− Vr), with (1)

z(t) =
∑
k

δ(t− tk) (2)

with the membrane time constant τmem = Cm/gm, the membrane capacitance Cm, leakage
conductance gm, the synaptic input current I(t), membrane threshold ϑ and spike times
tk. The membrane of the neuron is modeled by a capacitor with capacitance Cm. We get
the differential equation by differentiating the common capacitor equation CmVm = Q (Q
being the charge) with respect to time, where on the right side we can split the total current
Q̇(t) into −gm(Vm −Vl), which describes the leaking through the membrane, and I(t), which
resembles the sum of incoming currents triggered by neurotransmitters at the connection
to other presynaptic neurons. z(t) is called a spike train and implements the firing of the
neuron: If Vm = ϑ, Vm is set to a reset potential Vr and a spike is emitted at time tk.

The synaptic currents to neuron i due to presynaptic events at neurons j can be described
by

d

dt
Ii(t) = − 1

τsyn
Ii(t) +

∑
j

∑
k

wijδ(t− tjk), (3)

with τsyn being the synaptic time constant, describing the time scale on which the current
exponentially falls. The synaptic strengths between the presynaptic neurons j and neuron i
are modeled by a multiplicative factor wij called synaptic weight. In total with spike events
incoming at times tjk, we can model Ii(t) as follows:

Ii(t) =
∑
j

∑
k

wije
− 1

τsyn
(t−tjk)θ(t− tjk), (4)

with the heaviside function θ(t). The non-spiking version of the LIF model is called leaky
integrator (LI).

2.3 The BrainScaleS-2 System
The BSS-2 system [12] is a neuromorphic computing platform that emulates networks of
spiking neurons in analog circuits. The circuits implement 512 AdEx neurons, which can
be configured to behave like the models discussed above (LIF, LI). They are placed in two
hemispheres with 256 neuron circuits each (see figure 2). Each hemisphere has two synapse
matrices that consist of 128 synapse arrays (columns) and can receive inputs from 256
synapses, each synapse array connecting to one neuron. Events arriving in synapses trigger
exponentially decaying currents into the respective neuron, matching the mathematical
description in section 2.2. Equation 1 is implemented without the resetting term, which is
replaced by a jump condition, that resets the membrane potential as soon as Vm(t) ≥ ϑ which
can be implemented using a voltage comparator. These membrane potentials can be sampled
in parallel via the Columnar ADC (CADC), of which one exists on each hemisphere, and
read out by the host computer. The spike events can also be recorded. The synaptic weights
can be configured with 6 bit values. Also, up to 64 neurons can be connected to form larger
neurons, allowing for more fan-in per neuron. As synaptic weights can either be row-wise
inhibitory or excitatory, signed weights can be realized by using two hardware synapses, one
inhibitory and one excitatory, but effectively halving the total fan-in. The neuron parameters
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Figure 2: Floorplan of the BSS-2 chip. Image taken from [12].

are subject to calibration, including membrane and synaptic time constants. Inputs to the
chip can be injected externally and routed internally to realize different network topologies.
In comparison to the biological time domain, the BSS-2 system is accelerated by a factor of
103.

2.4 Spiking Neural Networks
In general, SNNs are neural networks that mimic natural neural networks. Typically, the
artificial spiking neurons, based on some neuron model, are arranged into layers that are
then interconnected. An example of a simple feed forward architecture is shown in figure 3.
At neuron i in the input layer, input spike trains zi(t) of the form

zi(t) =
∑
k

δ(t− tik) (5)

are inserted into the network and propagate through it with each neuron evolving in time
according to it’s own dynamic. Typical tasks that need to be considered to set up an SNN to
successfully solve a given task are: input encoding, output decoding and learning on SNNs.
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Figure 3: Sketch of a fully connected feed forward type network architecture for SNNs. The
circles represent (artificial) spiking neurons, the arrows the connections and synapses between
them.

2.4.1 Encoding and Decoding

For encoding, the input data has to be encoded into spike trains with a time axis such that
the SNN can efficiently work with it. Once this sequence length is chosen, there are multiple
ways for encoding. The method of constant current encoding injects a constant current onto
the membrane of a LIF neuron, resulting in a constant firing rate. With Poisson encoding,
the value is assigned an average firing rate with deviations according to Poisson statistics.
Another method is the time to first spike (TTFS) method, where the spike time of the spike
encodes the value. The decoding depends on the type of neurons that are used in the output
layer. A reasonable choice is an LI neuron and using the maximum value of the membrane
voltage trace as the output value (max-over-time decoding). Another possibility is to use a
spiking output layer with a TTFS output-spike decoding.

2.4.2 Learning in SNNs

There are multiple approaches to learning and optimizing in SNNs [10, 14]. While there
are methods involving biologically inspired learning rules, we will focus on gradient based
learning in this report. The basis of gradient based learning is a loss function L(x,W), with
x being the input data and W the parameters of the network, like the synaptic weights
wij , describing the weight of the connection from neuron j to neuron i. L(x,W) measures
how far the evaluation of the network is from the expected output. Then, the gradient of L
with respect to a parameter Wij is computed to adjust the parameters afterwards into the
direction of steepest descent:

W(n+1) = W(n) − κ
∑
i

∂L(x,W)

∂Wij

∣∣∣∣
W=W(n)

eij , (6)

where κ is the learning rate and eij = δij · 1N×N , 1ij = 1 ∀ i, j for N2 parameters. In
repetition, this procedure is called gradient descent. Typically the gradient of a network with
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respect to its parameters can be computed conveniently by applying the backpropagation
algorithm. When applied to a large amount of data, the network parameters will minimize
L(x,W), approaching the error of the desired output. How good this local minimum of loss
is, e.g. with regards to unseen data, i.e., how good the model generalizes, depends on variety
of factors: the network architecture, the degrees of freedom in comparison to the complexity
of the task, the size of the training set and many more.

While this approach holds in its entirety for non spiking artificial neural networks (ANNs)
when all applied functions are differentiable everywhere, i.e. linear functions or activation
functions such as the sigmoid sig(x) = (1 + e−x)−1, this differentiability is not given for
non-differentiable activation functions and spiking neuron models such as the LIF (which, in
the context of ANNs, can be understood as an activation function). Another issue that has
to be addressed is the time dependency of the neurons.

The latter is resolved when viewing SNNs as recurrent neural networks (RNNs). RNNs
are neural networks whose neuron states evolve to a set of recurrent dynamical equations, as
equations (1) and (3) are. This can be shown clearer by formulating a numerically suitable
approximation of these equations. We therefore introduce a time step ∆t, in which the
numerical integration of the neuron dynamics can be performed. With n representing the
n-th time step, a suitable approximation is then given by (following [10]):

Ii[n+ 1] = αIi[n] +
∑
j

wijZj [n], and (7)

Vi[n+ 1] = βVi[n] +
1

gm
Ii[n]− Zi[n](ϑ− Vr) (8)

for current Ii and voltage Vi at neuron i with α ≡ exp
(
−∆tn

τsyn

)
, β ≡ exp

(
−∆tn

τsyn

)
and with

Zi ≡ θ(Vi[n]− ϑ) - the last expression coming from integration of the δ-spikes in zi(t). Now,
as the mapping onto an RNN is clear, we can solve the time dependencies issue by unrolling
the network in time. Therefore we generate copies of the network for each time step, which
share feedforward weights and can be additionally interconnected by recurrent weights. To
this network, standard backpropagation applies, while this procedure is referred to as back
propagation through time (BPTT).

The approach to resolving the non-differentiability issue is given with surrogate gradients.
When differentiating L(x,W) for a weight wij , at some point, one will have to differentiate
Zi[n] with respect to Vi[n], involving the heaviside step function θ, the derivative of which is
zero for all points except zero, where it is ill defined. This causes the training to effectively
vanish. However, when replaced with a surrogate derivative that has a non-vanishing interval
around zero (where the step occurs), backpropagation and BPTT can be applied without
intrinsic problems. This method is proven to be very effective in training SNNs and also
remarkably robust, even in the choice of the surrogate gradient itself [10]. Possible choices for
surrogate gradients are the SuperSpike [6] (which is the derivative of a fast sigmoid function),
the derivative of a standard sigmoid function and a piecewise linear function [3, 4]. They are
shown in figure 4 and are discussed in detail in [10].

2.4.3 Software Framework for Training SNNs

Norse [9] is a deep learning Python library, extending PyTorch [8] with primitives for bio-
inspired neural components such as an LIF and LI model as well as the encoding options
discussed above (2.4.1). The input spike train is projected onto a discrete time grid of evenly
spaced binary events on which the dynamics of the SNN are integrated numerically. When
implementing neural networks in Python, PyTorch’s autograd functionality allows for an
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Figure 4: Plots of different surrogate gradients for the heaviside step function and different
values of α. Left: Superspike (fast sigmoid derivative) (1 + α|x|)−2. Middle: Rescaled
sigmoid derivative 4 · exp (−αx)

(1+exp (−αx))2 . Right: Piecewise linear function with slope ±α.

easy computation of the loss-gradient by keeping track of all operations in a computational
graph. Norse also implements surrogate gradients for the LIF models, making use of the
computational graph while resolving non-differentiability issues.

2.5 The MNIST Data Set
MNIST (Modified National Institute of Standards and Technology database) [2] is a widely
known dataset and former benchmark for machine learning models. The data are 28×28
gray-scale images showing handwritten numbers (0 to 9) and their corresponding labels.
MNIST consists of 60000 training examples and 10000 test examples.

3 Learning MNIST
On the software basis of Norse, we will implement an SNN and train it with the MNIST
dataset. In this application we will use the constant current encoding for the inputs. Figure
5 shows how this encoding can look like for a sequence length of T = 30 time steps. As
a baseline for further comparisons with hardware realizations on BSS-2, we will choose a
topology of the network in accordance to the full capacity of the chip.

3.1 Network Topologies
Firstly, we will discuss, how the baseline model is chosen, making use of the full chip capacity
if transferred to hardware realizations on BSS-2. As we want excitatory inputs as well as
inhibitory inputs to the neurons, two rows of synapse arrays would have to be used, one for
each input type in order to realize signed hardware weights. To keep the same fan-in size, we
will have to create a larger neuron compartment by connecting two atomic neurons, sharing
the same membrane potential, while only one of them emits spikes. With this constraint, one
BSS-2 chip provides 256 input arrays to each of the 256 compartment neurons. Then, the
maximum input size that fits the chip with no other issues is a ⌊

√
256⌋ × ⌊

√
256⌋ = 16× 16

sized image. For one hidden layer and a readout layer of size 10 (for the 10 classes of the
MNIST set), this leaves 246 neurons for the hidden layer. The baseline topology that exploits
the maximum capacity of the chip is therefore: 16× 16 → 246LIF→ 10LI. The 10 readout
neurons are chosen to be LI-types for decoding purposes (max-over-time). This has already
been implemented on BSS-2 [11].
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Figure 5: Left: Input image showing a 9 in 16 by 16 format. Right: Encoding of image to
the left using the constant-current-LIF-encoder method by Norse with a sequence length of
30 time steps.

When adding additional hidden layers using neuron compartments of two neurons, chip-
suitable sizes are 512/2 = 256 hidden units as this does not require partitioning of layers and
at the same time allows to efficiently exploit all fan in when the output is passed on to the next
layer. The resulting topologies of multiple hidden layers of size 256 require a multi-chip setup.
A partitioning of the network is then to evaluate each layer in consecutive hardware runs,
storing the results of the previous hardware execution and feeding it as an input into the next.

The other expanding possibility is to increase the number of hidden units in a hidden
layer. As the neurons are not interconnected within a layer, partitioning can be done by
splitting the layer into parts containing 256 neurons or less. When connecting this oversized
layer to the next layer, again with 256 neurons, we will have to partition again due to a
fan-in larger than 256. Creating neuron compartments with more than two neurons for
the next layer solves this issue as the fan-in can be adjusted to n · 128, n ∈ {1,2,..., 64} by
connecting n neurons per compartment, resulting in ⌈256/⌈512/n⌉⌉ necessary layer partitions.

Consider, for example, the topology 22×22 → 256 → 10. Firstly, the fan in to the hidden
layer is 22× 22 = 484 > 256. While maintaining signed hardware weights, this means, that
we will have to use compartments of ⌈484/128⌉ = 4 neurons in the hidden layer, resulting in
⌈256/⌈512/4⌉⌉ = 2 partitions for the hidden layer. These two partitions have to be executed
in two consecutive hardware runs. Their results however can be injected into the readout
neurons all at once, resulting in a total of three partitions for this topology.

In hxtorch.snn [13], a machine learning based modeling framework for BSS-2, these
partitions can be manually implemented for the specific use case via experiment instances
that are defined before the execution on hardware. The discussed partitioning possibilities
can therefore be directly implemented in hardware compatible software.

3.2 Implementing Weight Quantization and Saturation
As synaptic weights on the BSS-2 system can only be chosen in unsigned 6 bit (or signed 7 bit
(counting 0 twice) with signed hardware weights (see above), this is an important hardware
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constraint when considering the standard float value weights. When implementing into the
model, a suitable range for the 7 bit quantization has to be found. When reviewing weight
histograms of trained networks without weight quantization (see figure 6), a reasonable
choice for this range is given by the interval [−2.5, 2.5], minimizing the number of weights
effected by saturation.
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Figure 6: Histograms of weights for the two weight matrices of a baseline model (16 ×
16 → 246LIF→ 10LI). Left: histogram for the weights between input and LIF-layer, right:
histogram for the weights between LIF-layer and LI-layer.

For the implementation with Norse and PyTorch, it is useful to define a new function
that extends from a torch-autograd-function [8]. While in the forward method, we just apply
the rounded weights, the backward method has to implement the gradient for this function.
As the rounded weights can be described by a step function, we will use a surrogate gradient
for this application. When considering a linear surrogate gradient, the results match the
case for non-quantized weights and therefore prove its effectiveness.

3.3 Results
Figure 7 shows how accuracies and losses evolve during the training of a network and
thus show that one gets good results even though weight quantization and saturation is
implemented. In total, the networks listed in table 1 were trained and give an overview on
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Figure 7: Accuracies and losses (negative log-likelihood of the log-softmax of the maximum
voltages) of the test data set evolving with the number of epochs in training a 16× 16 →
246LIF→ 10LI network using weight quantization. Different seeds (0, 15, 20, 26) show
different curves, the mean of all final accuracies is listed in table 1.
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performance. It should be noted that the implementations are far from optimized and can
be further improved in many ways, a few of which are pointed out in chapter 4.

model parameters performance (in % acc.)

Inp. Lay. Hidd. Lay. 1 Hidd. Lay. 2 weight quant. Acc. Tr. Acc. Test

16× 16 246 LIF - × 99.911± 0.007 96.94± 0.10

16× 16 256 LIF 256 LIF × 99.91± 0.08 97.12± 0.21

16× 16 246 LIF - ✓ 99.866± 0.009 97.02± 0.09

16× 16 256 LIF 256 LIF ✓ 99.938± 0.008 97.16± 0.16

22× 22 246 LIF - × 99.995 97.53± 0.10

22× 22 256 LIF - × 99.995± 0.001 97.51± 0.08

22× 22 256 LIF 256 LIF × 99.95± 0.07 97.66± 0.16

22× 22 246 LIF - ✓ 99.993± 0.003 97.47± 0.05

22× 22 256 LIF 256 LIF ✓ 99.985± 0.008 97.77± 0.07

Table 1: Overview of different topologies that were used to train an SNN in Norse with the
MNIST data set. The accuracies are averaged over trainings with seeds 0, 15, 20 and 26,
each after 40 epochs. Hyperparameters: Batch-Size: 100; Sequence Length: 30; Encoder:
ConstantCurrentLIFEncoder; τsyn = 6 × 10−3; τmem = 5.7 × 10−3; α = 100; dt = 0.001;
ϑ = 1; learning rate: 1.5× 10−3; l.r.-decay: 0.03 each epoch.

4 Discussion and Outlook
In this report, we showed how training on BSS-2 can be approached by discussing network
topologies that exploit the hardware resources of BSS-2 in a single-chip use case as well as
a multi-single-chip fashion, the goal being comparisons to future hardware executions on
BSS-2. Surrogate gradients were presented as an effective way to overcome differentiability
issues and how unrolling RNNs shows that backpropagation (through time) can be used as a
training method. With topologies that are suitable for partitioning and considering hardware
resources, we implemented SNNs in Norse/PyTorch and trained them on the MNIST data
set as a toy example for demonstration purposes, building a baseline for further comparisons
with hardware executions on BSS-2. However, this baseline still leaves room for optimization,
mainly with regards to hyperparameters. As table 1 shows, the instances with implemented
weight quantization even tend to be better than the corresponding model without. That
might be due to randomness or not optimized hyperparameters (e.g. learning rate and
it’s decay, number of epochs) as the fluctuations in performance with each epoch can be
minimized with a better choice. Another optimization possibility is to modify the input
data, generating more training data. One such modification would be to tilt the inut image
by a small angle. Additionally, a spiking regularization can be implemented, suppressing
unnatural and (for hardware executions) energy-inefficient high firing rates.

The partitioning of networks is of great significance for the scalability of the BSS-2 system
in order to approach increasingly complex tasks. One such task is landscape classification of
satellite images for which a data set for training already exists with the EuroSAT data set [5,
7]. Together with showing how partitioning can be approached and optimized for different
tasks in a more general fashion, it would also be desirable to develop auto-partitioning
algorithms for BSS-2.
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