
Implementation of a closed–loop homeostasis on the
BrainScaleS system

Felix Schneider – Internship report

March 27, 2018

1 Introduction 2

2 Theorertical background 3
2.1 AdEx neurons . 3
2.2 Homeostasis . 3
2.3 Closed–loop . 4
2.4 Closed–loop homeostasis . 5
2.5 Sea-of-noise network . 6

3 NEST – Simulation 7

4 Hardware – emulation 9
4.1 Timing – control . 9
4.2 Homeostasis emulation . 11

5 Conclusion and Outlook 13

1

Chapter 1

Introduction

Learning experiments are in general very time-consuming, due to its parallel architecture neu-
romorphic hardware has a huge advantage compared to usual van-Neumann architecture. The
BrainScaleS wafer-scale hardware system in Heidelberg emulates networks of simplified neuron
models and enables highly accelerated operations (x 104).
A full wafer module implements around 200 000 neurons which can be interconnected via synapses.
This allows to build up individual configured neuronal networks and analyse the interaction of
neurons with each other. The platform offers different types of operation modes — we wil use a
closed – loop operation mode which enables us to actively react and influence the spiking behavior
during emulation.
The goal during this internship was to implement a spike based homeostasis in this mentioned
mode. Applied on neurons, homeostasis can be used to set and maintain a target activity – this
is especially interesting if the neuron is disturbed by noise input from other spikes sources. At
the beginning of this report we will introduce the basic ideas behind homeostasis and closed–loop.
Afterwards we start with a simple implementation of a homeostasis using NEST, a simulator for
spiking neuronal networks. Therefore the PyNN API was used which is a programming language
to define neuronal networks at a high-level of abstraction. These defined networks can then be
simulated with NEST and later emulated on the BrainScaleS system.
A possible application for this mechanism is a Spike Based Expectation Maximation experiment
(SEM). This method can find maximum likelihood solutions in an unsupervised setup. An intro-
duction into this topic can be found in [1] and is beyond the scope of this report.

2

Chapter 2

Theorertical background

2.1 AdEx neurons
On the NM-PM1 (BrainScaleS system) we use deterministic neurons, namely adaptive exponential
integrate and fire (AdEx) neurons. The behavior of those neurons can be described by the following
differential equation

Cm
duk

dt
= −gl(uk − EL) + gL∆T exp

(
uk − VT

∆T

)
− w(t) + I(t) (2.1)

τw
dw

dt
= a(uk(t)− EL)− w (2.2)

uk describes the membrane potential, Cm the membrane capacitance, EL the leak reversal po-
tential, gL the leakage conductance, w the adaption current and VT the threshold. If uk reaches
this threshold, we detect a spike. Afterwards the membrane potential is reset to Vreset and stays
there for a time period τrefrac. We say the neuron is in a refractory period and is unable to elicit
a spike. If we take the limit ∆T → 0 and drop the adaptation current w, we receive the leaky
integrate-and-fire model.
To build up neuronal networks, we connect neurons via synapses. These synapses can have different
connection strength also called synaptic weight, which corresponds to the influence a spike from
one neuron has to the connected neuron.
Furthermore, the biological process of spike timing dependent plasticity (STDP) is implemented
on the hardware. This process adjustes the connection strength between neurons based on the
relative timing of a neurons input and output. It could be shown that STDP can be used as a
learning algorithm for artificial neuronal networks [7]. Therefore this is a important feature of the
BrainScaleS system.

2.2 Homeostasis
The biological term “homeostasis“ is a combination of the words “homeo“, standing for “similar“
and “stasis“, defining a period or state of equilibrium. It was coinded by Bernard and Cannon
referring to their concept of internal environment in which cells live and explains the effect of self
regularization. Examples for variables maintained by a homeostatic process are the human body
heat or the sugar level within the body.
In general one could compare homeostasis with a feedback control system, A simple non biological
example for such a feedback control system is a thermostat, it performs an homeostasis mechanism
by switching the heating in response to a temperature sensor. In Figure 2.1 we see the principle
workflow of these processes. The current value of the variable which should be kept constant can
differ from the target value due to some disturbances. This will be detected by a receptor which
acts like a sensor and transfers this information to a controller, in case of the human body the
brain. This controller reacts, based on the given informations, by activating an effector which will
counteract the current change of the variable – this is called a negative feedback loop.

3

Effector Receptor

Controller

Variable

Figure 2.1: Schematic view of the underlying process of homeostasis. A receptor acts as a sensor and detects
if the value of the variable which should be maintained differs from the target value. This information will
be transfered to a controller which activates an effector that controls the variable.

2.3 Closed–loop
In conventional simulations on the BrainScaleS system, the data flow – from user input to mea-
surement results – is a one–way process. Figure 2.2 shows how the user input is evaluated in
the different layers of the system from translating, mapping and hardware configuration to the
emulated results which could be for example a membrane potential over time or a spike train of
a neuron. The user input in form of a PyNN script is evaluated by the PyNN API PyHMF. The
following mapping process is done by the marocco mapping tool. Marocco uses also calibration
and blacklisting informations for this process. The last layer, called HALbe, performs the conver-
sion of software configruation data to the hardware–specific format. An overview of these different
software modules can be found in [2].

Figure 2.2: Schematic of conventional experimental procedure. After the neuronal network is described in
PyNN, the network will be translated and mapped to the hardware where the emulation will take place.
After the emulation we receive the results of the described network but we have no influence on the neurons
during emulation. (Figure taken from [2])

Another approach is to use a closed–loop setup where data does not flow just in one way. The
neuromorphic system interacts with a regular computer – forming a hybrid system. A typical
example is the interactive control of a robotic system. The output of the neuromorphic part will
controll the movement of the robot and will influence the sensory data the robot receives. The
sensory information will then be send back to the neuromorphic part.

4

We will emulate a neuronal network on the BrainScaleS system, where the control host will read-out
spike information from the neuromorphic part. Based on this information the host will influence
the behavior of the neuromorphic part by sending spikes back. Figure 2.3 shows this closed–loop
concept.
For highly accelerated hardware like the BrainScaleS system, this task is very challenging due to
timing constraints. The computation on the host and the communication between the two systems
has to keep up with the accelerated neuromorphic system.

control hostBrainScaleS

control
(spikes)

feedback
(spikes)

Figure 2.3: Schematic view of the closed–loop mode of the BrainScaleS system. By combining the neuro-
morphic system and the conventional computer which acts as a controller, we form a hybrid system. The
host will receive a feedback in form of spike information from the neuronal network. The host can send
spikes back to the neuromorphic system and actively influence the emulation.

Because the BrainScaleS system operates in continuous time, it can not be paused during emula-
tion. Therefore we do not have synchronization points, where data can be exchanged between the
systems. A fast computability and precise timing control is therefore an important aspect of the
software implementation.

2.4 Closed–loop homeostasis
The goal of this internship was to apply the homeostasis mechanism (see Chapter 2.2) to the spike
frequncy of neurons on the BrainScaleS system. We used the closed–loop mode (see Chapter ??)
to influence the spiking behavior of a neuron. This could be achieved by sending spikes from the
host to the network in a negative feedback-loop. Figure 2.4 shows how this could be accomplished
using a proportional controller.

Controller Neuron

Disturbances

i

Measurement

ytarget e o

yreal

Figure 2.4: Schematic view of homeostasis, ytarget is the target frequency of the neuron and ytarget − yreal
the error (e), the controller adapts the input (i) to the neuron in a way that the output is closer to the
target frequency ytarget. The output o will then be measured and compared with the target frequency
ytarget where the loop starts again.

We set a target activity ytarget and after each frequency measurement we can compare the target
activity and the current activity yreal and define an error e(t). The adjustments u(t) will then be
proportional to this defined error with some constant KP .

e(t) = ytarget − yreal(t) (2.3)

u(t) = KP · e(t) (2.4)

The proportionality constant Kp will define how strong the adjustments at every adaptation are
and can have a strong influence on the quality of the result. If Kp is to large, the frequency can

5

Neuron Disturbance

exc. Source
νexc

inh. Source
νinh

Figure 2.5: Schematic topology of the homeostatic setup. The neuron we want to apply homeostasis on
receives disturbing input in form of spikes from other neurons. The target frequency can be reached by
adapting the frequency of the connected inhibitory and excitatory spike sources correspondingly.

oscillate around the target frequency, if it is to small, the adjustments will be very slow or the
target frequncy will never be reached – a steady state error ess = lim

t→∞
e(t). These are typical

proplems of a proportional controller and will be discussed later in this report.
Figure 2.5 shows schematically how input in form of spikes is sent from the control host to the
neuron to regulate the neurons frequency. The control host acts as a controller in this setup.
It reads out the current frequency and adjusts the frequencies νinh and νexc of the inhibitory
and excitatory spike source. These excitatory and inhibitory spike soure are the effector in this
homeostasis implementation. νinh and νexc is adjusted in a way that they counteract the behaviour
of the neuron when the frequency starts to differ from the target frequency.

2.5 Sea-of-noise network
If we apply homeostasis to a neuron without input from other neurons, νexc will be increased
till the target frequency is reached. But we also want to investigate how homeostasis behaves
with additional disturbing input from other neurons. A method for a background spike source
is a Sea-of-noise network (SoN). We connect a population of neurons inhibitory with each other
randomly. The threshold of each neuron is set below the resting potential and all neurons spike
permanently. Some of these neurons in the SoN–network can then be connected to the neuron.
The spike frequency of this neuron depends on the amount of connections to the SoN–network, the
synaptic weigh, the amount of neurons in the SoN network and their refractory period τref . This
kind of background source was choosen because it will be necessary in a Spike based Expectation
Maximation experiment which is the goal after this internship.

Neuron

Figure 2.6: For neurons in a SoN -network the threshold vthresh is set below the resting potential vrest. This
leads to a bursting behaviour of the neurons. These neurons have a random inhibitory (blue) connection
whith each other. Some of these neurons from the SoN population are excitatory (red) or inhibitory
connected to the external neuron.

6

Chapter 3

NEST – Simulation

This NEST implementation was carried out to understand the principles of homeostasis and to get
used to work with PyNN which will also be used on the hardware implementation. The spiking
neuronal network simulator NEST can be used to simulate the dynamics of neuronal systems.
Important to note is that this simulation was not done in real–time. After a simulation time of
1000 ms the simulation is paused and the corresponding parameters are adapted based on the past
simulation step before the simulation continues.
In Figure 3.1 we can see the topology for the implemented model, which is slightly different
compared to Figure 2.5. In this case we can adapt the frequency of the inhibitory and excitatory
source as well as the synaptic weights which connect the sources and the neuron. In the emulation
on the BrainScaleS system in chapter 4 we will only adjust the frequencys of the spike sources but
a weight adaptation should be implemented later. Because the weight resolution on the hardware
is limited to 4 bits, increasing the weight by one will have a strong influence on the neuron. This
weight adaptation can only be used for a rought adaptation of the neurons frequency. The rate
adaptation of the spike sources will be used for fine–tuning. However, this is only valid for the
hardware emulation and not for the NEST – simulation. The weight resolution in the NEST
simulation is not limited and we could use it for fine–tuning of the neurons frequency as well.

Neuron Disturbance

exc. Source
νexc

inh. Source
νinh

wexcwinh

Figure 3.1: The figure shows the topology for this NEST–simulation. The neurons frequency will be main-
tained by adjusting the rates of the inhibitory and excitatory source and the synaptic weights which connect
the spike sources and the neuron. The adjustmends will be determined through a negative feedback–loop
as described in chapter 2.2.

Figure 3.2 shows how homeostasis is applied to the neuorns frequency. Plot A shows the rate of the
neuron over time steps. The red dashed line shows the target rate, the gray line how the neuron
would behave if we would not appy homeostasis. We can see that between time step 25 and 50 and
from time step 100 till the end the neuron receives disturbing input. Plot B and C show how the
weights and rates of the spike sources is adapted over time. At the beginning the neuron receives
no input from other neurons and the target frequency is reached by increasing excitatory weights
and the excitatory rate. After we introduce some external input as disturbance, the weights and
rates are adapted correspondingly to counteract these distrubances till the target frequency is

7

reached. The goal is now to use the same mechanism on neurons on the BrainScaleS system. As
described before, we will start with adaptation of the spike source rates, weight adaptation will
not be discussed in this report.

0

100

200

300

400

500

ra
te

 [H
z]

A
NEST Simulation - Homeostasis

with homeostasis
without homeostasis
target rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

we
ig

ht
 [u

S]

B exc weight
inh weight

0 25 50 75 100 125 150 175 200
time steps

180

200

220

240

260

ra
te

 [H
z]

C exc rate
inh rate

Figure 3.2: The X-axis is given in time-steps because this simulation was not carried out in real-time.
After a simulation time of 1000 ms the simulation was paused, the current reight of the neuron computed
and weights and rate adapted correspondingly. This plot shows this computed rates and the adjustments
on the parameters. In the upper plot we can see how the frequency of the neuron changes, the blue graph
shows the applied homeostasis, the gray plot shows how the neuron would behave without homeostasis.
The plots below show how the weights and the frequency of the two poisson sources are adapted. At the
beginning there is no external signal connected to the neuron and the frequency will be regulated towards
the target frequency of 120 Hz. Between time-step 25 and 50 there is an DC current with an amplitude of
0.5 nA connected to the neuron to show how the homeostatis deals with such external disturbances. After
time step 100 there is an external poisson source with a rate of 500 Hz connected (weight = 0.05 uS) to
the neuron to simulate another form of disturbance.

8

Chapter 4

Hardware – emulation

All units in this chapter are given in hardware time. For biological time one has to take the speed–
up factor of 104 into account. We will use the closed–loop operation mode as described in figure
2.3 for this implementation. We will use two different threads during the emulation on the control
host. The first thread will read–out spike information of the neuron from the corresponding FPGA.
Combined with the elapsed time we can compute the current frequency of the neuron. The second
thread will react on this frequency information and adjust the amount of excitatory or inhibitory
spikes which are sent to the neuron. This is similar to the previous NEST simulation but without
weight adaptation. There are two more differences to the NEST simulation we have to deal with.
We can either send excitatory or inhibitory spikes but not both simultaneously as we did in the
NEST simulation. The second point is that we can not define a rate νexc or νinh for the spikes we
are sending from the host. We can only call a send_spike function to send a single spike to the
neuron. We will use this function within a while–loop to send spikes continuously.
With a sleep–time within this loop after every sent spike, we can control the amount of spikes we
are sending. We use variables sleepexc and sleepinh which define the sleep–time between every
sent excitatory or inhibitory spike. These variables can be adapted during emulation and can be
used to control the amount of spikes we are sending from the host.

4.1 Timing – control
If we set this sleep time to zero, which means sending spikes to the neuron as fast as possible, this
send–process should always take the same time period. We measured the time period between
sending a spike and sending the next spike. This can be seen as an interspike interval distribution,
but it is important to note that we measure only the time when we send a spike from the host and
not when the neuron spikes. We will refer to this as ISIsend. This measurement is important to
quantify the latency caused by the software.
Figure 4.1 shows this measruement where we sent one million spikes and plotted this distribution
in a histogram. The x-axis shows the different time durations which occured during the measure-
ment, the y-axis shows the relative occurence logarithmically scaled. All four plots show the same
measurement but different cut–outs. We want to adjust the amount of spikes we are sending to
the neuron by adjusting the sleep between each spike. Therefore this distribution should become
as narrow as possible. Otherwise outliers wich are several orders of magnitude away from the main
peak would disturb the rate adaptation of the neuron.
To avoid outliers and to get a sharper peak, we did the following adjustments. The simplest and
most straightforward modification was to pre–allocate all necessary memory before the emulation.
The next step was to use the linux schedtool which allows us to controll the CPU scheduling
behavior, because sending spikes and receiving information about the spikes of the neuron are two
functions running simultaneously in two different threads. The scheduler decides on the basis of
the used scheduling policies and the priority of each thread which thread will be executed next. A
real time scheduling policie is SCHED_FIFO which stands for First in - first out scheduling.
SCHED_FIFO uses lists of runnable threads for every possible priority (1 (low) -99 (high)) to decide
which thread will be executed next. If a thread with higher priority than the current thread
becomes runnable, the current thread will be paused and added to the head of the corresponding
priority – waiting list. If we want to put a thread to the end of the list, we cann call sched_yield

9

and the next thread will be executed. This is useful in our context because we have long waiting
times in the send and read–out thread where nothing happens and other processes can be executed.

Figure 4.1: This four histograms show different ranges of the same distribution. On th x-axis are the
different occured time periods given, on the y-axis the relative occurence of these time periods. We sent
spikes to the neuron as fast as possible and measured the time period between sending a spike and sending
the next spike. Due to disturbances like other processes which are running on the host or memory allocating
we receive such a widespreaded distribution. The goal is to get this distribution as narrow as possible for
a precise timing control.

In general such a scheduled thread runs until it is blocked, the thread calls sched_yield() or a
thread with higher priority becomes runnable.
The host will distribute all runnable processes on all available CPUs in the most efficient way.
Switching the process on different CPUs could also cause latencies, therefore we fixed this process
on an appointed CPU to avoid this.
In Figure 4.2a we can see how these adjustments affect the distribution. This Figure shows the
whole measurment and is not a cut–out as before. The histogram has become more contracted
and the biggest outlier is around 11 µs, unfortunately we do not know where these outliers are
comming from, yet. The main peak is around 2 µs which would be a frequency of 500 kHz. Due
to the speed–up this represents 50 Hz in biological time.

1 last = gettime();
2 send_spike();
3 while(True){
4 if((gettime() - last) > sleep)
5 break;
6 sched_yield()
7 }

Listing 4.1: This code snippet shows how the sleep process is implemented. last gives the sended spike
a time-stamp and the while loop will not be leaved until the sleep period is elapsed. Until then the while
loop will call sched_yield and the other thread will continue.

During the emulation we set the sleep–time to some value and the next spike will be sent if this

10

sleep–time has elapsed. Figure 4.2b shows how the distribution looks like if we set sleep–time to
11 µs. This means that we try to reach an interspike interval of ISItarget = 11 µs. Here we used
again the ISIsend definition described above. The main peak contains now 99.95 % of the entries
in the histogram (in total one million) and has a width of 0.1 µs. Furthermore, outliers several
orders of magnitude away from the main peak could be avoided. The code snippet in listing 4.1
shows how the wait process is implemented. last gives the sent spike a time stamp and the while
loop will be exited if the sleep–time sleep has elapsed. Otherwise, sched_yield() will be called,
the current thread will be added to the waiting list by the scheduler and other processes can be
executed.

(a) Sending spikes with maximum speed (b) Sending spikes with a set ISItarget of 11 µs

Figure 4.2: These two plots show the ISIsend distribution after the described optimization. The x-axis
shows the occured time durations and the y-axis the relative occurence. Plot a) shows how the distribution
looks like if we send spikes to the neuron as fast as possible, b) shows a distribution with a sleep (compare
Listing 4.1) of 11 µs.

4.2 Homeostasis emulation
Now we can use the variables sleepexc / sleepinh to control the amount of spikes we are sending
to the neuron. At the beginning we will not use any background spike source and the neuron
will only receive spikes which we send from the host. In Figure 4.3a it is shown how the neurons
frequency reaches the target frequency (red dashed line) after approximately 200 ms. A typical
problem for a proportional controller is the oscillation around the target value. We can reduce this
oscillation by decreasing the proportionality constant KP . But this will lead to a longer period of
time to reach the target value (see Figure 4.3b). A compromise between accuracy/oscillation and
speed has to be made. A discussion how this can be improved can be found in the last chapter.
The proportionality constant KP for Figure 4.3a is five times as big as in Figure 4.3b. In Figure
4.3a the target value is reached after around 160 ms but with strong oscillations around the target
value. In Figure 4.3b, the target value is reached with smaller oscillations around the mean but
only after around 790 ms.
In later experiments the neuron will receive input from other neurons and homeostasis applied
to this neuron should keep the neuron on a set target activity. Therefore we use a Sea-of-noise
network (see chapter 2.5) as source for the neuron. Figure 4.4 shows how this looks like. The plot
A shows the frequency of the neuron over time and the target rate (red dashed line). Plot B and
C show how the corresponding sleeps are adjusted. This plot can be separated into four parts.
The first part is from 0 ms to 500 ms. The neuron receives only input from the SoN network and
its frequency is around 100 Hz. After 500 ms the homeostatic process starts. We start sending
excitatory spikes from the host to the neuron to reach the target frequency of 200 Hz. Because the
waiting time between two spikes is at the beginning at 200 µs very high, the impact on the neurons
frequency is very low. When we start to decrease sleepexc, we send more spikes to the neuron and
its frequency rises. Around 750 ms the target frequency is reached and sleepexc stays constant.
After 1000 ms the target frequency switches to 50 Hz and sleepexc increases till it reaches again
200 µs and has almost no effect on the neurons frequency. Because the current frequency of the
neuron is still above the target frequency, we start sending inhibitory spikes around 1300 ms. After
1900 ms the target frequency is reached and sleepinh stays constant.

11

0

50

100

150

200

ra
te

 [k
Hz

]

A

Closed-loop homeostasis

neuron rate
target rate

50 100 150 200 250 300 350 400
time [ms]

0

50

100

150

ex
c.

 sl
ee

p
[

s]

B

(a)

0

50

100

150

200

ra
te

 [k
Hz

]

A

Closed-loop homeostasis

neuron rate
target rate

0 200 400 600 800 1000
time [ms]

0

50

100

150

200

ex
c.

 sl
ee

p
[

s]

B

(b)

Figure 4.3: These plots show how the frequency of a neuron can be adjusted. The neuron receives no other
input than the spikes we are sending from the host. The left plot uses a five times higher proportionality
constant KP than the right plot. The upper plots show the frequency of the neuron (blue line) and the
target frequency (red dashed line). The plots below show how the sleep between each sent spike is adjusted.
We can see that a trade–off between accuracy and speed of the adjustments has to be made. A faster
adaptation of the frequency, lead to stronger oscillations.

0 250 500 750 1000 1250 1500 1750 2000

100

200

ra
te

 [k
Hz

]

A

Closed-loop homeostasis
neuron rate
target rate

0 250 500 750 1000 1250 1500 1750 2000

100

200

ex
c.

 sl
ee

p
[

s]

B

0 250 500 750 1000 1250 1500 1750 2000
time [ms]

0

100

200

in
h.

 sl
ee

p
[

s]

C

Figure 4.4: A shows the frequency of the neuron over time and the target frequency. B and C show how
sleepexc and sleepinh evolves over time. This plot can be subdivided into four parts. 1) 0 ms-500 ms, no
spikes from the host, input only from SoN network. 2) 500 ms - 1000 ms, sending excitatory spikes from
the host to reach the target frequency of 200 Hz. 3) 1000 ms - 1300 ms, increasing sleepexc till 200 µs. 4)
1300 ms - 2000 ms start sending inhibitory spikes and decrease sleepinh till the target frequency of 50 Hz
is reached.

12

Chapter 5

Conclusion and Outlook

The goal of this internship was to implement a closed–loop homeostasis on the BrainScaleS system.
This goal could be fulfilled, but there are still some possibilities for improvement which we want
to discuss here.
To perform homeostasis in real-time, we had to make sure that the period of time for sending a
spike takes always the same period of time. This could be achieved by using a scheduling tool,
pre–allocating the necessary memory and pinning the process to a CPU. From the software side,
the maximum speed with which spikes from the host can be sent defines an upper limit for the
maximum frequency. This upper limit is around 500 kHz (50 Hz biological). A possibility to push
this limit upwards could be to send several spikes during one iteration of the while–loop. It would
be useful to improve this even further to reach higher frequencies.
In general, a benchmark seems meaningful to examine which frequencies can be reached and to
what accuracy the frequency can be maintained.
The next point is that currently either excitatory or inhibitory spikes are sent to the neuron. To get
a smooth transition between sending inhibitory and excitatory spikes, we have to increase sleepexc
/ sleepinh till the sent spikes have a neglectable impact on the neurons frequency. Afterwards we
can start to decrease sleepinh / sleepexc correspondingly. By sending excitatory and inhibitory
spikes and adapting the corresponding sleeps simultaneously, this transition can be done smoother
and faster. This can be done by using different threads for excitatory and inhibitory spikes.
As mentioned before, with a proportional controller problems like oscillation around the target
value or a steady-state error can occur. Therefore in Figure 4.4 we choosed a proportionality
constant in the range of the constant from Figure 4.3a. This leads to a fast adaptation of the
frequency and the oscillation can be neglected compared to the variance of the background source.
This proportionality constant is choosen by hand and should be computed automatically and
adapted by hand only if necessary.
There exist rules of thumb like the ”Ziegler–Nichols” method how to set the proportionality con-
stant. The idea of this method is to find a critical constant KP,crit. which leads to constant
oscillation. The corresponding constants can then be looked up in tables. For a simple propor-
tional controller this is KP = 1

2KP,crit.. The problem is that we can not determine KP,crit. for
every setup the homeostasis is applied on.
Another possibility to improve the behaviour of this controller is by adding a derivative or integral
term. A derivative term adapts the adjustment u(t) proportional to the derivative of e(t).

u(t) = KD · d e(t)
d t

(5.1)

A strong adaptation leads to overshooting which is the reason for an oscillating behavior of the fre-
quency. The derivative term can decrease overshooting because the influence of this term decreases
if the error does not change.
The third possible term is an integral term, it accumulates the errors from the past and can
eliminate the steady-state error which can occur with a simple proportional controller.

u(t) = KI ·
∫ t

0

e(τ)dτ (5.2)

The disadvantage of this term is that it increases the oscillatory behavior of the controlled variable.
Therefore it is important to choose the right proportionality constants to determine the influence

13

of these three terms on the frequency. These three terms are added up and the final adjustment
for every update will be calculated as follows.

u(t) = KP · e(t) +KI ·
∫ t

0

e(τ)dτ +KD · d e(t)
d t

(5.3)

A realization of these points and the usage in a spike based expectation maximation experiment
could be done as part of a bachelor thesis. First ideas for such an experiment werde developed,
were we would use three neurons for the learning process.
It can be shown (see [4]) that a group of neurons receiving structured input and using spike timing
dependent plasticity perform expectation maximation. In a regular SEM experiment patterns need
to be normalized, otherwise some patterns would have an intrinsic advantage compared to other
patterns. This normalization could be avoided by applying homeostasis to the activity of the
neurons which receive the patterns as structured input in form of Poisson spike trains – the cause
layer neurons. A detailed introduction into this topic can be found in [1].

14

Bibliography

[1] Oliver Breitwieser, Towards a Neuromorphic Implementation of Spike-Based Expectation Max-
imization, Master Thesis, University Heidelberg, 2015.

[2] Eric Müller, Novel Operation Modes of Accelerated Neuromorphic Hardware, PhD Thesis,
University Heidelberg, 2014.

[3] Andrew P. Davison, Eric Müller, Sebastian Schmitt, Bernhard Vogginger, David Lester,
Thomas Pfeil, HBP Neuromorphic Computing Platform Guidebook , 09.03.2018

[4] Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W., Bayesian computation emerges in generic
cortical microcircuits through spike-timing-dependent plasticity. PLoS Computa- tional Biology,
9(4):e1003037., 2013

[5] Ziegler, Nichols, Optimum settings for automatic controllers, Trans. ASME, 64 (1942), pp.
759-768

[6] man7 – Linux Programmer’s Manual, http://man7.org/linux/man-pages/man7/sched.7.html,
21.03.18

[7] O’Connor P, Neil D, Liu SC, Delbruck T and Pfeiffer M (2013) Real-time classifica-
tion and sensor fusion with a spiking deep belief network. Front. Neurosci. 7:178. doi:
10.3389/fnins.2013.00178

15

