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1 Abstract

The aim of the internship was to translate the first two parts of the advanced lab
course on neuromorphic computing for physics students onto the BrainScaleS-
2 setup. This included the characterization of the membrane voltage which
yielded nearly the same linear translation of Vleak and Vreset for DAC values
over 550. In contrast, the dynamic range of Vth has been shown to be in the
lower half of the DAC values, but sharing the same range of values for the mem-
brane voltage. Furthermore, it could be shown that the intra-block deviation is
significant and makes the trial-to-trial variation negligible.
The subsequently conducted calibration of the leak conductance yielded an im-
provement that is limited by the trial-to-trial variation and required varying the
proportionality parameter which sets the strength of the correction and thereby
accounting for a non-oscillating adaption of the leak conductance.

2 Introduction

The advanced lab course on neuromorphic computing is designed to provide an
introduction for physics students to how neural networks operate and what they
are capable of. Emulating biological neural networks yields a higher power effi-
ciency compared to ordinary computers and also an increased processing speed
in specific tasks like image recognition. By building neuromorphic hardware,
it is possible to gain the same results as with just simulating the behavior of
spiking neural networks without the effort of solving sophisticated differential
equations.

The first task (of seven) in the lab course deals with the characterization of
a single neuron (”Task 1: Investigating a Single Neuron”) while the second task
concentrates on the calibration of the leak conductance gleak which is closely
linked to the membrane time constant τm (”Task 2: Calibrating Neuron Param-
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eters”). The scripts for those tasks (which are adapted to the new generation
of hardware) can be accessed in the according directory1.

2.1 Hardware of BrainScaleS-2

The basic model used to electronically describe the basic dynamics of neurons
is the leaky integrate-and-fire model (LIF). Mathematically this is expressed by
the following differential equation for the membrane voltage Vm:

Cm
dVm
dt

= gleak(Vleak − Vm) +
∑
i

gsyni (t)(Vsyn − Vm) (1)

There the voltage Vm over the membrane capacitance Cm is pulled towards the
leak voltage Vleak over time. This happens by current flowing through the leak
conductance gleak. Additionally, synaptic input which can either be excitatory
or inhibitory modulates the membrane voltage and depends on the conduc-
tance gsyni (t) of the synapse connection. For the internship the last term with
the sum won’t be considered since no synaptic input is applied. Actually, the
BrainScaleS-2 design uses a more advanced model which is based on the LIF
model and is called adaptive exponential integrate-and-fire (AdEx) model. It
has additional terms to emulate the biological behavior of neurons more pre-
cisely. However, the LIF model will be sufficient for the course of this report.
The hardware that will be used for the advanced lab course in the future is
based on the BrainScaleS-2 chip that has 512 neurons [3] in total. Those neu-
rons are distributed over four equally sized blocks which have own memories
storing the analog parameters for their 128 neurons (cf. figure 1) and therefore
potentially lead to different values for neurons on different blocks even if all
neurons are called with the same set of parameters. The chip has 256 synapses
per neuron which yields a total of 512 x 256 = 131 072 possible connections.
In contrast, the current chip used for the lab course is called Spikey and only
has 384 neurons in total. However, the main difference between the two chip
generations is the Plasticity Processing Unit (PPU) that is exclusively on the
BSS-2 setup. It is a CPU with a vector processor which for example can be used
to calculate the weight updates for several neuron connections simultaneously.
Important to mention is that the neurons themselves show fixed pattern noise
due to their manufacturing process which mainly results from differences in the
size and dotation of the transistors.
The communication between the host computer and the chip works via a Field
Programmable Gate Array (FPGA) which gets a playback program by the host
computer containing all the configurations and instructions, and executes it on
the chip. The recorded data on the chip is then sent back to the FPGA and
can be read out by the connected computer.

1Change 12143 with ID I32e579... and Change 12424 with ID I26453b...
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Figure 1: Schematic setup of the BrainScaleS-2 chip [3]

2.2 Software of BrainScaleS-2

In order to operate on neuromorphic hardware it is necessary to have software
that translates the user’s instructions into commands that can be executed by
the chip. In my case, all the characterizations are made with the PyNN API
which is based on Python and specialised for simulations on neural networks.
It is based on other software stacks (haldls, stadls) which have a lower level
of abstraction. In contrast to the others APIs in use, the focus of PyNN lies
in the non-expert usability due to its high level abstraction of the hardware
setup. It also allows to group several analog neuron circuits together in order
to have one logical neuron. Currently the set values for the voltages, currents
etc. must be entered in units of the digital-to-analog converter (DAC). It is
planned to also give the possibility to set those parameters in biological values.
The advantage of switching away from DAC values is that users don’t have to
apply a transformation themselves and have a better intuition for the values
right away which leads to an improvement in the overall user friendliness. For
more details on the implementation of PyNN for BSS-2 the according internship
report should be read [2].

3 Characterization

In order to conduct the calibration of gleak in the next section, it is necessary
to investigate the behavior of Vleak, Vth and Vreset first. The characterization
differs for each measurement that is taken. Not only does it differ for neurons
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on different chips, but also for neurons on the same chip (cf. fixed pattern noise
from chapter 2.1) and even for the same neuron for repeatedly conducted mea-
surements (trial-to-trial variation).
In general, characterizations for the membrane voltage have already been done,
however the aim of the internship was to conduct them on the default working
point and examine how well PyNN is suited for such tasks. Important to men-
tion is that a characterization of the Membrane Analog-to-Digital Converter
(MADC) is necessary in the first place. Accordingly, a prewritten script was
used for the following measurements and the experiments were conducted on
the same chip (setup 68) to get less systematic errors.

3.1 Observing the membrane voltage

The first part of the advanced lab course investigates the firing behavior of a
single neuron without input. Therefore, the neuron is brought into a continuous
firing regime by setting Vleak above Vth (cf. figure 2a). A first comparison of
different neurons is done in task 2a by recording the membrane voltage of four
neurons with the same parameters and plotting them together (cf. figure 2b).

Figure 2: The membrane voltage in the continuous firing regime for a single
neuron (left) and for four different neurons (right). The time when the neurons
spike are indicated by the vertical lines (top left) and the red dotes (right).

3.2 Fixated DAC value for Vleak

For measuring Vleak, the neuron is brought into a stable regime, i.e. Vth is well
above Vleak to prevent any spiking (here: Vleak = 800), while the remaining
values stay at their defaults.
Then the membrane voltage has been measured for 0.2 ms and the mean is
associated with the neuron’s leakage voltage. The 128 neurons that are selected
are all in the same block to find the intra-block-deviation. The error between
the different neurons has been observed and shows deviations around 5 % (first
row in table 1). For the differences between the different blocks of one chip the
previous step has been repeated for all 128 neurons of the respective block. The
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obtained values for Vleak (cf. table 1 and figure 3) indicate that the different
blocks are responsible for significantly different values between neurons (at least
at the default working point) which partly deviate more than 20 % (between
block 0 and block 2). Therefore, the following experiments are all conducted on
the same block.

Figure 3: The histograms which contain the Vleak values of all 128 neurons of
each block show significant deviations

Block Vleak[mV ] Error in %

0 499 ± 22 4.41
1 557 ± 25 4.49
2 644 ± 15 2.33
3 534 ± 22 4.12

Table 1: Differences in Vleak due to the differences in the blocks

3.3 Whole DAC value range for Vleak

To set the histogram into context, it is necessary to examine the dynamic range
of the neurons. Therefore, figure 4 shows the values of 30 neurons for Vleak
over all possible DAC values (gray lines). The limitation to 30 neurons instead
of all 128 neurons of one block is due to time constrains for the experiment
duration. It can be seen that the linear regime starts when the DAC value is
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set to approximately 500. The measured values for Vleak then starts at 0.073 ±
0.020V and ends at 0.78 ± 0.16V . With a fit in the linear regime from a x-
value of 540 until the last measurement at 1020, one obtains the translation
y = 0.001269 × x− 0.514 to determine the actual voltage (y-value) out of the
set DAC value (x-value).

Figure 4: The gray lines show the Vleak values for 30 different neurons over the
whole DAC value range, the red line is the mean of the single runs and used for
the linear fit (blue)

3.4 Vth and Vreset

In order to bring the neuron into a continuous spiking regime, the value for Vth
is set well below Vleak (here: Vth = 400). Whereas, Vleak has been set to its
maximum of 1022 for the purpose of observing a spiking chip for the largest Vth
range possible. With this setup, the maximum value of each action potential
is associated with Vth while the minimum value belongs to Vreset. In a similar
manner as with Vleak, the measured voltages for the whole range of the two
parameters are observed.
Figure 5 shows on the left how Vth changes for increasing DAC values. For
values below 0.8 V (or 550 in DAC values) one can observe a linear increase
which behaves according to y = 0.001432×x+ 0.050 (the fit is from 90 to 510).
The plateau occures because the chip behavior changes from spiking to non-
spiking as soon as Vth crosses the value of Vleak. Since the latter is set to 1022,
we can calculate a leakage voltage of 0.783 V with the linear fit from figure 4.
This is in good accordance with the plateau at 0.802 ± 0.053V .
In figure 5 on the right side, one can see how Vreset behaves for increasing DAC
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values. As expected, this graph shows nearly the same behavior as Vleak (cf.
figure 4), therefore the linear fit (from 550 to 1020) yields almost the same
translation, namely y = 0.001246 × x− 0.499.

Figure 5: Vth (left) and Vreset (right) for 30 different neurons over the whole
DAC value range, containing single runs (gray), mean (red) and linear fit (blue)

3.5 Chip-to-chip variation

The setups yield significantly different MADC characterizations in the first place
(cf. figure 6) which can accounted for with the script mentioned in chapter 3.
After doing so, the objective is to observe the differences in the characterization
of Vleak (cf. chapter 3.3) in order to judge whether or not there is significant
inter-chip variation that for instance can be caused by differences in the supply
voltage.
As it can be seen from figure 7, there is a deviation for different setups. While
the shape of setup 62 resembles the one of setup 68 (cf. figure 4) and only the
translation differs, for setup 69 one can also see how the leakage voltage goes
into saturation for DAC values at the upper end of the range.

Figure 6: MADC characterization for setup 62 (left), setup 68 (middle) and
setup 69 (right) with the respective linear translation fit (blue)
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Figure 7: Vleak characterization for setup 62 (left) and setup 69 (right)

3.6 Trial-to-trail variation

For the in chapter 4 following calibration of the leak conductance based on
the interspike intervall, it will be reasonable to characterize the trial-to-trial
variation of gleak first. Therefore, the aim was to measure the leak conductance
500 times with exactly the same parameters for the same neuron. The result
(cf. figure 8) is a leak conductance of gleak = (3.30 ± 0.07) × 10−10 S which
means a trial-to-trial variation of 2.1 % for this specific neuron and therefore
lies in the expected range for deviations caused by noise (here coming from the
power supply and digital crosstalk). However, the variation is probably in large
parts due to the method of measurement since related quantities have already
been determined more precisely.

Figure 8: Histogram containing 500 gleak measurements for one neuron with
constant parameters
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4 Calibration of gleak

To get the same result no matter what neuron on a chip is used for a measure-
ment, it is important to conduct a calibration. That’s why the second task in
the advanced lab course aims to calibrate the leak conductance gleak towards
one chosen value.

4.1 Theoretical background

We start with Kirchhoff’s equation for a standard leaky integrate and fire (LIF)
neuron without synaptic input[1]:

CmV̇m = IC(t) = gleak(Vleak − Vm) (2)

This ODE has the solution:

V (t) = Vleak + (Vreset − Vleak) · exp(−gleak
Cm

· t) (3)

To obtain the time it takes for the membrane voltage to rise from Vreset to Vth,
it has to be:

V (trise) − V (t = 0) = Vth − Vreset (4)

If Vth is set to the following, the rise time is simply trise = Cm/gleak = τm :

Vth = Vleak − 1/e · (Vleak − Vreset) (5)

Then the measured interspike intervall (ISI) is simply given by (where τrefrac
is the time it takes for the membrane voltage to go from Vth to Vreset):

ISI = τm + τrefrac (6)

In order to calculate gl = Cm/τm we have to know τrefrac which is given by the
frequency of the internal clock (default: fclock = 10MHz):

τref = τref DAC value/fclock (7)

For this calibration the membrane capacity has been set to the maximal DAC
value of 63 which equals a capacity of approximately 2.2 pF.

4.2 Results

Using this theory, the ISI for four different neurons have been calibrated with a
proportional control which operates according to the following formula:

gset new = (α · gaim − gmeasured

gmeasured
+ 1) · gset old 0 < α ≤ 1 (8)

This yields a correction that is proportional to the difference between the aimed
and the measured value of the leak conductance. The proportionality factor α
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is set to 1 for the first measurement. This means that the set value in PyNN
is increased by 10 % if the measured gleak is 10 % lower than the desired value.
The result for 50 iterations can be seen in figure 10a. It becomes apparent that
this approach corrects too much for the deviations and results in an oscillating
behavior of the gleak values. As a consequence, the first step was to test whether
a linear change in the set value of the bias current which is used to adjust gleak,
really results in a linear change for the measured gleak. Therefore, it was neces-
sary to characterize the measured gleak for the whole range of values that can
be set for the DAC. The result (figure 9) is a clearly linear and therefore it is
not the cause for the oscillating behavior.

With this verification, the next step was to vary the parameter α between 0
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Figure 9: Measured gleak over the whole DAC value range with parameters of
the linear fit

and 1 which causes a weaker calibration than before. The results for different
values for this parameter can be seen in figure 10. From this heuristic approach
one could estimate that a value of around α = 0.25 leads to the best calibra-
tion. However, the calibration reaches its limit if the difference in gleak for two
adjacent iteration steps has the same magnitude as the trial-to-trial variation
(cf. subsection 3.6).
For the lab course, it is more suitable to have less iterations which means a
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shorter runtime for the experiment. Then the proportional parameter should
be increased to get an effectual calibration. In figure 11 an example is made
with two iterations, a target firing rate of 50 kHz and α set to 0.9.

Figure 10: Each color represents one neuron that is calibrated over 50 iterations
using different values for the calibration parameter α
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Figure 11: The uncalibrated setup (top) has a firing rate of 47 ± 18 kHz and
a leak conductance of (2.1 ± 2.2)×10−9 S while the calibrated setup (bottom)
has a value of 48 ± 7 kHz for the firing rate and (2.1 ± 0.7)×10−9 S for gleak.

5 Summary & Outlook

The main task of the internship was to characterize the membrane voltage in
order to find a translation from DAC values into voltages. With that in place,
the first two tasks of the advanced lab course could be transported onto the new
chip generation. Additionally, it was possible to examine and quantify the dif-
ferent variations. While the trial-to-trial variation could be determined around
2 %, the intra-block variation was a magnitude higher and also the deviation
between different chips has to be accounted for. Consequently, the characteri-
zation of the membrane voltage has been all done on the same block of neurons.
There, it could be shown that Vleak and Vreset effectively show the same behav-
ior and within their errors yield the same (linear) translation from DAC values
into voltage values. In contrast, Vth has its linear regime in the lower half of
the DAC value range although it shares the same Volt range.
The calibration of the leak conductance has been successfully realised by adapt-
ing the proportionality parameter which is responsible for the strength of the
correction. Naturally, the limitation of the calibration is given by the trial-to-
trial variation.
The next steps involve the implementation of the found translation into PyNN
and thereby accounting for the intra- and inter-chip variation. The idea is to
create new types of neurons that can be selected in PyNN, so that it is possible
to switch between calibrated and uncalibrated neurons as well as between neu-
rons in hardware and biological parameters. However, the main task will be to
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transfer the remaining scripts of the advanced lab onto the new setup and to
amend it with new experiments that demonstrate the new features of the chip
(this might involve exploring the capabilities of the PPU).
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