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Nonequilibrium condensates: condensates made of light

Absorption of photon by semiconductor ⇒ exciton ⇒ emitting photon ⇒
mirrors ⇒ exciton photon superposition ⇒ polariton mpol = 10−4me ⇒

BEC expected at “high” temperature!

Quantum WellsCavity
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Properties of exciton-polaritons

polariton-polariton interactions:
interactions between charged particles, saturation of the
exciton-photon interactions, electron-electron exchange;
for low densities pseudo-potential U(r)→ Uδ(r);
typical scale of U is 10−3 meVµm2.

short lifetime (5-10 ps):
(i) non-equilibrium condensate (ii) helps image the properties.
ck = ELP,UP

~k
sin(θ), therefore, refer to polariton momentum,

wavevector or emission angle θ interchangeably.

two polarisation states:
left- and right-circularly polarised photon states;

coupling between mechanical strain in the sample and the energy of
electron and hole breaks symmetry and favours a particular linear
polarisation.
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Superfluidity checklist

[J. Keeling and NGB, N & V, Nature (2009)]
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Modelling of non-equilibrium condensates

[Keeling & NGB, PRL, 100, 250401 (2008)]
Equation for the macroscopically occupied polariton state Ψ(r, t):

i~∂tΨ =
[
E (i∇) + U|Ψ|2 + V (r)

]
Ψ+i

[
Pcoh(r, t) +

(
Pinc(r)− κ− σ|Ψ|2

)
Ψ
]
.

Polariton dispersion, E (k) (eg. a quadratic dispersion
E (k) ' ~2k2/2mpol);
Strength of the δ−function interaction (pseudo)potential U;
External potential V (r);
Coherent pump field Pcoh(r)e iωpt ;
Incoherent pump field Pinc(r);
κ and σ describe linear and nonlinear losses respectively.

cf. ”generic laser model” of Wouters and Carusotto PRA (2007)
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Vortex formation

Vortex formation in equilibrium condensates:

interactions of finite amplitude sound waves;

existence of critical velocities of the flow;

modulational instabilities.

In addition in nonequilibrium condensates – pattern forming, interaction of
fluxes with a disorder etc.
Vortex formation due to interference of supercurrents

Analytical solution for the velocity u(r) on ∞ < r <∞.
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Pumping in three equidistant spots

Theory:

Experiment:

[Keeling and NGB, arXiv:1102.5302]
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Pumping in two spots

Quantum fluid pendulum
Experiment:

Theory:
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Pumping in two spots

Quantum fluid pendulum
Experiment: Theory:
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Nonequilibrium condensates: condensates made of light

[Balili et al Science 316,(2007)]:
A harmonic trapping potential is created by squeezing the sample by a
sharp pin.

Signatures of BEC:
spatial and spectral narrowing; coherence
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Gross-Pitaevskii equation with loss and gain

Mean-field model of a non-equilibrium BEC of exciton-polaritons

i~∂tψ =

[
−~2∇2

2m
+ Vext + U|ψ|2 + i(γnet − Γ|ψ|2)

]
ψ,

Vext is an external trapping potential, = 1
2mω

2r2, γnet– net gain,
Γ – effective loss, U – effective (pseudo-) interaction potential.
Length in units of oscillator length

√
~/mω, energies in units of ~ω, and

ψ →
√
~ω/2Uψ, yields:

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
α− σ|ψ|2

)]
ψ.

Two parameters: α = 2γnet/~ω (gain), and σ = Γ/U (loss).
Estimate from experiments: 0 ≤ α ≤ 10 and σ ∼ 0.3
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Radially symmetric stationary states

µψ =
[
−∇2 + r2 + |ψ|2 + i

(
α− σ|ψ|2

) ]
ψ

α not too large, Thomas-Fermi solution |ψ|2 = (µ− r2) for r < rTF =
√
µ∫

d2r
(
α− σ|ψ|2

)
|ψ|2 = 0 ⇒ µ = 3α/2σ.

Madelung transformation, ψ =
√
ρe iφ:

∇ · [ρ∇φ] = (α− σρ) ρ,

µ = |∇φ|2 + r2 + ρ−
∇2√ρ
√
ρ
.

High density =⇒ loss
low density =⇒ gain
currents ∇φ, between these regions
(in TF φ′(r) = −σrρ(r)/6)
Large currents =⇒ density depletion.
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Spiral vortex states

Theory:

ψ = f (r) exp[isθ + iφ(r)]

Leading order
φ′(r) ∼ α/2(s + 1)r .

Experiment:
[Lagoudakis et al. Nature Physics (2008)]

Exciton-polariton BECs () 14 / 34



Spiral vortex states

Theory:

ψ = f (r) exp[isθ + iφ(r)]

Leading order
φ′(r) ∼ α/2(s + 1)r .

Experiment:
[Lagoudakis et al. Nature Physics (2008)]

Exciton-polariton BECs () 14 / 34



Instability of rotationally symmetric states

1

2
∂tρ+∇ · [ρv] = (α− σρ) ρ, ∂tv +∇(ρ+ r2 + |v|2) = 0

If α, σ small, find normal modes in 2D trap: δρn,m = e imθhn,m(r)e iωn,mt

ωn,m = 2
√
m(1 + 2n) + 2n(n + 1).

Add weak pumping and decay

ωn,m → ωn,m + iα
[ m(1 + 2n) + 2n(n + 1)−m2

2m(1 + 2n) + 4n(n + 1) + m2

]
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Finite Spot Size

In experiments: finite spot, of size comparable to observed cloud, is used.
Model this as α = α(r) ≡ αΘ(r0 − r)
For small r0 ( r0 < rTF ∼

√
3α/2σ), this stabilises the radially symmetric

modes and vortex modes:
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Development of instability?
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Vortex Lattices
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Vortex Lattices

Stationary µ ∼ 3α/2σ; Vortex lattice µ ∼ α/σ

r0

In rotating frame

∇ · [ρ(∇φ− Ω× r)] = (αΘ(r0 − r)− σρ) ρ,

µ = |∇φ− Ω× r|2 + r2(1− Ω2) + ρ−
∇2√ρ
√
ρ
.

In TF regime away from boundaries solution is
∇φ = Ω× r + v .c ., ρ = α/σ = µ,Ω2 = 1.
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Experiments on spinor polariton condensates

Results so far do not involve polariton spin:
[Lagoudakis et al, Science, November 2009]:

Phase maps of left- and right-circular polarized polariton states

Observed all possible (±1,±1) vortex states.
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Polariton spin degree of freedom

[Borgh, Keeling, NGB, PRB, 81, 235302 (2010)]

Include spin degree of freedom: left- and right-circular polariton
states ψL and ψR .

For weakly-interacting dilute Bose gas model:

H =
~2|∇ψL|2

2m
+

~2|∇ψR |2

2m
+

U0

2

(
|ψL|2 + |ψR |2

)2

− 2U1|ψL|2|ψR |2+ΩB

(
|ψL|2 − |ψR |2

)
+ J1

(
ψ†LψR + H.c

)
+ J2

(
ψ†LψR + H.c .

)2

Tendency to biexciton formation → U1 . Magnetic field: ΩB

J2 Circular symmetry broken – two equivalent axes.
J1 preferred direction – inequivalent axes.
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Spinor condensates—vortex lattices

[J. Keeling and NGB, arXiv:1102.5302 (2011)]
Vortex patterns generated by superposition of fluxes.
Spinor complex Ginzburg-Landau equation:

2i∂tψl ,r =

[
±∆

2
−∇2 + v(r) + |ψl ,r |2 + (1− ua)|ψr ,l |2

+i
(
α−2iη∂t − σ|ψl ,r |2 − τ |ψr ,l |2

)]
ψl ,r + Jψr ,l .

η – energy relaxation [Wouters and Savona arXiv:1007.5431 (2010)];
τ – cross-spin nonlinear dissipation;
∆ – effect of the magnetic fied;
J – electric field, stress or due to asymmetry of quantum well interfaces;
Parameters estimated from [Larionov et al, PRL, 105, 256401 (2010)]
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Synchronized/desynchronized regimes

For nonzero η there is a second transition at ∆c2 back to synchronized
state, ∆c2 ' (2α/η)(σ − τ + ηua)/(σ + τ + η(2− ua)) (dashed line)

• –synchronized states ( vortex-free states or synchronized vortices);
◦– desynchronized states (vortices of opposite sign for l and r).
Conclude: homogeneous model gives good prediction of spatially varying
system.
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Pumping in three equidistant spots

(a) ∆ = 0 showing geometry of
pumping;
(b) Desynchronized: steady majority
density with streamlines;
(c) Lower synchronized: steamlines
of both polarizations;
(d) Upper synchronized: steamlines
of both polarizations.
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Half-vortices

”Half-vortices” have been seen in experiments:
[Lagoudakis et al Nature Phys. (2008)]
Are ”half-vortices” pinned and stabilized by disorder?

(a) Desyncronized: half-vortex lattice;
(b) -(c) -(d) evolution of minority
component in desyncronized regime.

Majority component is stationary in both regimes;
Minority component is stationary in syncronized regime only.
In desyncronized regime averages to vortex-free state.
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Vortex Lattice Spacing

Currents are neglible at the pumping centre, µ(ρl ,r );
away from pumping spot – densities are neglible.

Synchronized regime: away from the pump
µ− |~u|2 ∓∆/2 = J (ρl/ρr)

∓1/2 cos(θ) and
∇ · (ρl ,r~u) + α1ρl ,r = ∓J√ρlρr sin(θ).
These are solved by sin(θ) = 0 and ∇(ρl/ρr ) = 0,
so |~u|2 = µ+

√
J2 + ∆2/4.

Desynchronized regime: θ and ρl/ρr are not time independent, so one
calculates averages. If ρr � ρl , then for majority component
〈|~ur |2〉 = 〈µr 〉+ ∆/2.
Superposition of such currents results in hexagonal vortex lattice with
spacing l = (2π/|~u|)× 2/3

√
3.

∆
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Turbulence

Classical Turbulence
In 50th Batchelor wrote to his friend and close colleague, Alan Townsend,
who remained in Australia:

You will come to Cambridge, study turbulence, and work with G. I. Taylor.

The answer came immediately: I agree, but I have two questions:
who is G. I. Taylor and ... what is turbulence?
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Turbulence

Classical turbulence – cascading vorticity;
Superfluid turbulence – quantisation of velocity circulation – differences
with classical turbulence;
Strong turbulence– unstructured vortices (distance between vortices of the
order of their core);
Weak turbulence regime – almost independent motion of weakly
interacting dispersive waves.

Stages in condensate formation from a nonequilibrium state:
[Berloff & Svistunov Phys Rev A (2002)]
weak turbulence → strong turbulence → superfluid turbulence →
condensate
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Experimental realization in ultra-cold atoms

Vortex formed during nonequilibrium kinetics of BEC
[Weiler et al. Nature (2008)]

Reverse the process going from condensate to weak turbulent state?
[Henn at el PRL (2009)]: applied an external oscillatory perturbation to
produce vortices.
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Interference of currents

[ N.G.Berloff, arXiv:1010.5225 (2010)]
Regular emission of vortices Many irregular spots: turbulence

Two regimes: forced turbulence and turbulence decay.
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Weak turbulence

In forced turbulence it is possible to reach a weak turbulence state:
g2 = 〈|ψ|4〉/〈|ψ|2〉2. Weak turbulence implies g2 ∼ 2.

Red Squares – nonzero η facilitates the transition to weak turbulence.
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Conclusions-1

Nonequilibrium condensates: condensates made of light
Gross-Pitaevskii equation with loss and gain

i∂tψ =
[
−∇2 + r2 + |ψ|2 + i

(
αΘ(r0 − r)− σ|ψ|2

)]
ψ.

Radially symmetric stationary states: narrowing of density profile
Spiral vortex states

Vortex lattices
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Conclusions-2

Non-equilibrium spinor system

i∂tψL =

[
−∇2 + V (r) +

∆

2
+ |ψL|2 + (1− ua)|ψR |2

+ i
(
αΘ(r0 − r)− σ|ψL|2

)]
ψL + JψR

Effect of ∆ and J on vortices.

Densities of L and R components for J = 1
Trajectories for ∆ = 4

Spirographs
(epitrochoids/hypotrochoid)

Synchronization/desynchronization with the region of bistability.
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Conclusions-3

Turbulence in exciton-polariton condensates may lead to novel
regimes of turbulence of classical matter field.

The regimes can be distinguished by finding second order correlation
function.
What are the stages in transition from strong turbululence to weak
turbulence and back?

Spinor condensates: predictions of homogeneous model
(syncronization/desynchronization) are not significantly modified by
spatial inhomogeneity.

Observation of the experimental behaviour in an applied field can thus
be used to distinguish the loss nonlinearities σ, τ and η.
Vortices, vortex lattices and half-vortex latices in spinor condensates.
Being stationary these textures can be studied experimentally.

Turbulence in spinor condensates.

Scaling laws? Cross-overs of different regimes? Interplay between
turbulent regimes and the effects of magnetic field?...
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