Universal energy fluctuation in
thermally isolated driven systems

Cold atoms are almost perfectly isolated systems:

1. Probe coherent non-equilibrium dynamics for
“long” times
2. Investigate foundations of statistical mechanics

Luca D'Alessio (BU), Anatoli Polkovnikov (BU),
Yariv Kafri (Technion), Guy Bunin (Technion), Paul Krapivsky (BU)
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*Can we increase the energy without increasing the
uncertainty in its final value?

*Does the energy distribution look like a thermal energy
distribution at some effective temperature?
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ENSEMBLE AVERAGE over protocols and initial conditions
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Outline

1. What | have learned about unitary evolution
2. Application to repeated quenches problem
3. Appendix
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p=UpU" assuming the initial density matrix is diagonal:

m m m

Where T, is doubly stochastic, Z Thm = Z Tin =1,

conservation probability & unitary evolution

and can be written as: (Birkhoff's theorem)

T = Z)\ ITIQ,ZAQ,,:1 A, > 1

permutation matrix

1% advertisement: Allahverdyan et al, EPL 95 (2011) 60004
Work extraction from a microcanonical bath
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First take-home message:
*Unitary evolution tends to bring you towards a maximum
Shannon (diagonal) entropy state: Ss, = — »  pn log pr

*This is 2™ law of thermodynamics

n
A. Polkovnikov Annals Phys 326, 486 (2011)
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Off-diagonal elements

) We assume that between
the cycles the system reaches a steady state (or a diagonal
ensemble IE] in the quantum language) so that its state
15 fully characterized by i1ts energy distribution. In er-
godic systems this requirement can be satisfied by waiting
between cycles a time which is longer than the relaxation
time of the system. In non ergodic (integrable) systems
this can be achieved by having a long fluctuating time be-
tween cycles. This effectively leads to an additional time
averaging which 1s equivalent to the assumption of start-
ing from a diagonal ensemble. (For more details about
relaxation to asymptotic states in integrable systems see
Ref. lﬂ] and refs. therein). To make this discussion more
concrete consider, for example, a compression and ex-
pansion of the piston in Fig. [l according to an arbitrary
protocol. The gas is allowed to relax between the cycles
(when the piston is stationary) at a fixed energy. For a
weakly interacting ergodic gas such a relaxation implies
that the momentum distribution of individual particles
assumes a Maxwell-Boltzmann form together with a ran-
domization of the coordinate distribution. For a nonin-
teracting gas in a chaotic cavity the relaxation implies
conservation of the individual energies of each particle
and a randomization of the coordinates and directions of
their motion. And finally for noninteracting particles in
a regular non-chaotic cavity the relaxation implies a ran-
domization of the coordinates within individual periodic
trajectories. Therefore, in the beginning of each cyvcle
there are no correlations between positions and wveloci-
ties of particles within the available phase space.
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Expand (our goal is to calculate o({(£)))
0;P(E) = —0p(A(E)P(E)) + %8EE(B(E)P(E)) + ..., 24(E) = B(E)B(E) + 0 B(E)
where: B(F) = 0gS(FE) Is the microcanonical temperature.

This is “generalized Einstein relation” between drift and
diffusion in open systems — Jarzynski equality (appendix3)



P(E)

Master Equation

Second take-home message:

Unitary evolution can be approximated by a

Fokker—Planck equation where drift and diffusion are
constrained a priori

Second advertisement:

“Energy diffusion in a chaotic adiabatic billiard gas”.
C. Jarzynski, Phys. Rev. E 48, 4340—4350 (1993)

“Thermalisation of a closed quantum system:
From many-body dynamics to a Fokker-Planck equation”
C. Ates, J. P. Garrahan, I. Lesanovsky, arXiv:1108.0270



Solve the Fokker—Planck equation

We turn the Fokker-Plank equation into a relation between
the first and second moments (by integration by parts)
0o _ (B) +2({AE) — (A)(E))

o(E) (A)

Evaluate these averages using saddle-point approximation
(narrow P(E) —» mesoscopic systems)

Protocol dependent Protocol independent



Dynamical phase transition

- 2A%(E) / i e

B, A2(E')B(E")

Assume: A(E)~E*, B(E)~E% o5(E) =0

with: s <1 (validity of FP) . 0 < o« < 1 (Cv>0 and S(E) increasing
unbounded function of energy)

As the energy increases (E — oo ) the integral:

E
Diverges il 20— <1 0%(E) ~ s (OIS

Converges if 2s —a >1— ¢?(F) ~ A(E)? Protocol
dependent



Dynamical phase transition

Define: n=2s—a—1
| | 0 JZ(E) Q_Q Gibbs-like
Diverges if 7 ’ o2 (E) " |nl regime

{

c4(E) 2« (E )" Run-away

n \E,y regime

*Convergesif n >0 o7 (E) ;

. . 1 1 — 1 .
Diverging T~ exp] 3] Continuous

time scale: 1 —s " phase transition”
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Results

*Can we increase the energy without increasing the
uncertainty in its final value?
ALMOST.

*Does the energy distribution look like a thermal energy
distribution at some effective temperature?

SOMETIMES.
1l — o 1 4+ «

Gibbs-like regime (7 < 0) j Run-away regime (n > 0)

Reminder: s<1, 0<a<l1l, n=2s—a—1



Conclusions
First take-home message: ZTnm = ZTmn =1

*Unitary evolution tends to bring you towards a maximum

Shannon (diagonal) entropy state: S, = an l0g pn
*This is 2" law of thermodynamics

A. Polkovnikov Annals Phys 326, 486 (2011)

Second take-home message:
Unitary evolution can be approximated by a
Fokker—Planck equation where drift and diffusion are

constrained a priori arXiv:1108.0270v1 [quant-ph]

3" advertisement: Nature Physics doi:10.1038/nphys2057




Appendix 1: Master Equation

Appendix:

Distinguish chaotic from not chaotic Phys. Rev. Lett. 107,
040601 (2001)

Is exp relevant <E>=int dE E P(E)
Makes my transition smooth



Appendix 2: linear quench in 1D

quantum piston

| The state n before the cycle has weights on the state m after the cycle}

P




<Work's

1D quantum linear quench

Quantum, L{expanded)=1; L{compressed)=1/2, Vwall=50, Nstates=500
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1DcIaSS|CaI mtearable (L=1, L'=5/3)

L{expanded)=5/3; L{compressed)=1, VwallComp=1 , YwallExp=1
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Appendix 3: Jarzynski Equality (JE)

State initially in thermal equilibrium:

C. Jarzynski, Phys. Rev. E 56, 5018-5035 (1997)

EXACT QE) T = UENTp 5

APPROXIMATE  2A(E) = 8(E)B(E) + 8pB(E)

“Generalized Einstein relation”

AVERAGE OVER
DISTRIBUTION:




Example: particle in chaotic cavity
arXiv:1007.4589v2 & Physical Review E 83,011107 (2011) -
A(E) = gE'/?

B(E)=g75E*? } -2A =B+ 9gB
BE) = 57
2FE # d.o.f=2d

i c?(E 2+3/d
flv,7)dv ~ e % Tdv = gq((E))—Hl;d > 2

%—daf | /082']0
or  Ov  Ov2

F(V,7) ~e 7 = f(E,t) ~e VE
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