Universal energy fluctuation in thermally isolated driven systems

Cold atoms are almost perfectly isolated systems:

1. Probe coherent non-equilibrium dynamics for
"long" times
2. Investigate foundations of statistical mechanics

Luca D'Alessio (BU), Anatoli Polkovnikov (BU), Yariv Kafri (Technion), Guy Bunin (Technion), Paul Krapivsky (BU)

Thermal Vs Not-Adiabatic Heating

Thermal Vs Not-Adiabatic Heating

-Can we increase the energy without increasing the uncertainty in its final value?
-Does the energy distribution look like a thermal energy distribution at some effective temperature?

Thermal Vs Not-Adiabatic Heating

-Can we increase the energy without increasing the uncertainty in its final value?
-Does the energy distribution look like a thermal energy distribution at some effective temperature?

$$
\text { Setup: } H(t)=H_{0}+\lambda(t) H_{1}
$$

long (random) time

$$
\text { Setup: } H(t)=H_{0}+\lambda(t) H_{1}
$$

long (random) time

$$
\text { Setup: } H(t)=H_{0}+\lambda(t) H_{1}
$$

$\boldsymbol{u}^{\lambda(t)} \quad H_{0}+H_{1}$

sudden or smooth

long (random) time

Adiabatic limit: $\quad E_{f}^{g a s}=E_{i}^{g a s}$
Not Adiabatic: $\quad E_{f}^{g a s}>E_{i}^{g a s}$ and $E_{f}^{g a s}$ is a random variable (random waiting times, initial energy of the gas does not fix the individual particles' positions and velocities)

$$
\text { Setup: } H(t)=H_{0}+\lambda(t) H_{1}
$$

Adiabatic limit: $\quad E_{f}^{g a s}=E_{i}^{g a s}$
Not Adiabatic: $\quad E_{f}^{g a s}>E_{i}^{g a s}$ and $E_{f}^{g a s}$ is a random variable (random waiting times, initial energy of the gas does not fix the individual particles' positions and velocities)

ENSEMBLE AVERAGE over protocols and initial conditions

Isolated System = Unitary Evolution

Von Neumann equation (quantum Liouville's theorem): $\overline{d t}=\frac{1}{i \hbar}[H(t) ; \rho(t)]$ is GENERAL, EXACT but VERY VERY HARD.

However unitary evolution is HIGHLY CONSTRAINED:

Isolated System = Unitary Evolution

Von Neumann equation (quantum Liouville's theorem): $\overline{d t}=\frac{1}{i \hbar}[H(t) ; \rho(t)]$ is GENERAL, EXACT but VERY VERY HARD.

However unitary evolution is HIGHLY CONSTRAINED:

1) $S_{V N}(t)=-\operatorname{Tr}(\rho \log \rho)=\mathrm{const}$

Isolated System = Unitary Evolution

Von Neumann equation (quantum Liouville's theorem): $\frac{d t}{d t}=\frac{1}{i \hbar}[H(t), \rho(t)]$ is GENERAL, EXACT but VERY VERY HARD.

However unitary evolution is HIGHLY CONSTRAINED:

1) $S_{V N}(t)=-\operatorname{Tr}(\rho \log \rho)=\mathrm{const}$
2) If $H=$ const $\Rightarrow \rho(H)$ is solution.

If $H(t) \Rightarrow \rho \sim I$ is solution

Isolated System = Unitary Evolution

Von Neumann equation (quantum Liouville's theorem): $\frac{d t}{d t}=\frac{1}{i \hbar}[H(t), \rho(t)]$ is GENERAL, EXACT but VERY VERY HARD.

However unitary evolution is HIGHLY CONSTRAINED:

1) $S_{V N}(t)=-\operatorname{Tr}(\rho \log \rho)=\mathrm{const}$
2) If $H=$ const $\Rightarrow \rho(H)$ is solution.

If $H(t) \Rightarrow \rho \sim I$ is solution
3)

Outline

1. What I have learned about unitary evolution 2. Application to repeated quenches problem 3. Appendix

Unitary Evolution

$\rho=U \rho U^{\dagger}$, assuming the initial density matrix is diagonal:

$$
\rho_{n n}=\sum_{m} U_{n m} \rho_{m m} U_{m n}^{\dagger}=\sum_{m}\left|U_{n m}\right|^{2} \rho_{m m} \equiv \sum_{m} T_{m n} \rho_{m m}
$$

Unitary Evolution

$\rho=U \rho U^{\dagger}$, assuming the initial density matrix is diagonal:
$\rho_{n n}=\sum_{m} U_{n m} \rho_{m m} U_{m n}^{\dagger}=\sum_{m}\left|U_{n m}\right|^{2} \rho_{m m} \equiv \sum_{m} T_{m n} \rho_{m m}$
Where $T_{m n}$ is doubly stochastic, $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$, conservation probability \& unitary evolution

Unitary Evolution

$\rho=U \rho U^{\dagger}$, assuming the initial density matrix is diagonal:
$\rho_{n n}=\sum_{m} U_{n m} \rho_{m m} U_{m n}^{\dagger}=\sum_{m}\left|U_{n m}\right|^{2} \rho_{m m} \equiv \sum_{m} T_{m n} \rho_{m m}$
Where $T_{m n}$ is doubly stochastic, $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$, conservation probability \& unitary evolution and can be written as: (Birkhoff's theorem)

$$
T=\sum_{\alpha} \lambda_{\alpha} \Pi_{\Lambda}, \sum_{\alpha} \lambda_{\alpha}=1, \lambda_{\alpha} \geq 1
$$

permutation matrix

Unitary Evolution

$\rho=U \rho U^{\dagger}$, assuming the initial density matrix is diagonal:
$\rho_{n n}=\sum_{m} U_{n m} \rho_{m m} U_{m n}^{\dagger}=\sum_{m}\left|U_{n m}\right|^{2} \rho_{m m} \equiv \sum_{m} T_{m n} \rho_{m m}$
Where $T_{m n}$ is doubly stochastic, $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$, conservation probability \& unitary evolution
and can be written as: (Birkhoff's theorem)

$$
T=\sum_{\alpha} \lambda_{\alpha} \Pi_{\alpha}, \sum_{\alpha} \lambda_{\alpha}=1, \lambda_{\alpha} \geq 1
$$

permutation matrix
$1^{\text {st }}$ advertisement: Allahverdyan et al, EPL 95 (2011) 60004
Work extraction from a microcanonical bath

Double Stochasticity: $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$ NO

Double Stochasticity: $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$

NO

No absorbing states

Double Stochasticity: $\sum_{m} T_{n m}=\sum_{n} T_{n n}=1$

NO

No absorbing states

NO
$2 / 3 \overbrace{}^{1 / 3} \quad 2 / 3 \bigcap^{1 / 3}$

Double Stochasticity: $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$

No

No absorbing states

NO

No probability localization close GS

Double Stochasticity: $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$

No

No absorbing states

NO

Double Stochasticity: $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$

No

No absorbing states

NO

Double Stochasticity: $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$

No absorbing states

NO

No probability localization close GS

First take-home message:
-Unitary evolution tends to bring you towards a maximum Shannon (diagonal) entropy state: $S_{s h}=-\sum \rho_{n} \log \rho_{n}$
-This is $2^{\text {nd }}$ law of thermodynamics A. Polkovnikov Annals Phys 326,486 (2011) $^{\prime}$

Off-diagonal elements

$H_{0}+H_{1} \quad$| Write ρ in the base of H_{0} |
| :--- |
| During the waiting times diagonal |
| elements are fixed while |

off-diagonal ones oscillate

Off-diagonal elements

Off-diagonal elements

Write ρ in the base of H_{0}
During the waiting times diagonal elements are fixed while off-diagonal ones oscillate

Memory is encoded in off-diagonal \rightarrow for chaotic system take: $T_{\text {wait }} \geq T_{\text {memory }}$

Time after quench Alternatives to ETH, by Rigol et al.

Off-diagonal elements

Write ρ in the base of H_{0}
During the waiting times diagonal elements are fixed while
off-diagonal ones oscillate
Memory is encoded in off-diagonal \rightarrow for chaotic system take: $T_{\text {wait }} \geq T_{\text {memory }}$

Time after quench
Alternatives to ETH, by Rigol et al.
energy shell Time trajectory
Gedankenexperiment:
Sequence of spins polarized (at random) in xy plane. $\begin{array}{ll}\text { Is there any way to distinguish that from } & \rho=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right) \\ \text { the diagonal ensemble? } & \end{array}$

Off-diagonal elements

Restart each cycle from diagonal ensemble

energy shell Time trajectory
Gedankenexperiment:
Sequence of spins polarized (at random) in xy plane. $\begin{aligned} & \text { Is there any way to distinguish that from } \\ & \text { the diagonal ensemble? }\end{aligned} \quad \rho=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 1 / 2\end{array}\right)$

Off-diagonal elements

We assume that between the cycles the system reaches a steady state (or a diagonal ensemble [21] in the quantum language) so that its state is fully characterized by its energy distribution. In ergodic systems this requirement can be satisfied by waiting between cycles a time which is longer than the relaxation time of the system. In non ergodic (integrable) systems this can be achieved by having a long fluctuating time between cycles. This effectively leads to an additional time averaging which is equivalent to the assumption of starting from a diagonal ensemble. (For more details about relaxation to asymptotic states in integrable systems see Ref. [5] and refs. therein). To make this discussion more concrete consider, for example, a compression and expansion of the piston in Fig. 四 according to an arbitrary protocol. The gas is allowed to relax between the cycles (when the piston is stationary) at a fixed energy. For a weakly interacting ergodic gas such a relaxation implies that the momentum distribution of individual particles assumes a Maxwell-Boltzmann form together with a randomization of the coordinate distribution. For a noninteracting gas in a chaotic cavity the relaxation implies conservation of the individual energies of each particle and a randomization of the coordinates and directions of their motion. And finally for noninteracting particles in a regular non-chaotic cavity the relaxation implies a randomization of the coordinates within individual periodic trajectories. Therefore, in the beginning of each cycle there are no correlations between positions and velocities of particles within the available phase space.

Master Equation

$$
\rho_{n}=\sum_{m} T_{m n} \rho_{m}, \quad \sum_{m} T_{n m}=\sum_{n} T_{n m}=1
$$

$P(E)=\Omega(E) \rho(E) \square$ Algebra + Technical Reasons (appendix1)

$$
P(E, t+d t)=\int_{-\infty}^{\infty} d W T_{E-W}(W) P(E-W, t), \quad \Omega(E) T_{E \rightarrow E^{\prime}}=\Omega\left(E^{\prime}\right) \widetilde{T}_{E^{\prime} \rightarrow E}
$$

Master Equation

$P(E)=\Omega(E) \rho(E) \square$ Algebra + Technical Reasons (appendix1)
$P(E, t+d t)=\int_{-\infty}^{\infty} d W T_{E-W}(W) P(E-W, t), \quad \Omega(E) T_{E \rightarrow E^{\prime}}=\Omega\left(E^{\prime}\right) \widetilde{T}_{E^{\prime} \rightarrow E}$
Exact if you restart each cycle from the diagonal ensemble QM is still encoded in the Transition rates (appendix2)

Master Equation

$\rho_{n}=\sum_{m} T_{m n} \rho_{m}, \quad \sum_{m} T_{n m}=\sum_{n} T_{n m}=1$

$P(E)=\Omega(E) \rho(E) \square$ Algebra + Technical Reasons (appendix1) $P(E, t+d t)=\int_{-\infty}^{\infty} d W T_{E-W}(W) P(E-W, t), \quad \Omega(E) T_{E \rightarrow E^{\prime}}=\Omega\left(E^{\prime}\right) \widetilde{T}_{E^{\prime} \rightarrow E}$
Exact if you restart each cycle from the diagonal ensemble QM is still encoded in the Transition rates (appendix2)

Expand (our goal is to calculate $\sigma(\langle E\rangle)$)
$\partial_{t} P(E)=-\partial_{E}(A(E) P(E))+\frac{1}{2} \partial_{E E}(B(E) P(E))+\ldots ., \quad 2 A(E)=\beta(E) B(E)+\partial_{E} B(E)$
where: $\beta(E)=\partial_{E} S(E)$ is the microcanonical temperature.
This is "generalized Einstein relation" between drift and diffusion in open systems \rightarrow Jarzynski equality (appendix3)

Master Equation

Second take-home message:
Unitary evolution can be approximated by a
Fokker-Planck equation where drift and diffusion are constrained a priori

Second advertisement:
"Energy diffusion in a chaotic adiabatic billiard gas".
C. Jarzynski, Phys. Rev. E 48, 4340-4350 (1993)
"Thermalisation of a closed quantum system:
From many-body dynamics to a Fokker-Planck equation"
C. Ates, J. P. Garrahan, I. Lesanovsky, arXiv:1108.0270

Solve the Fokker-Planck equation

We turn the Fokker-Plank equation into a relation between the first and second moments (by integration by parts)

$$
\frac{\partial \sigma^{2}}{\partial\langle E\rangle}=\frac{\langle B\rangle+2(\langle A E\rangle-\langle A\rangle\langle E\rangle)}{\langle A\rangle}
$$

Evaluate these averages using saddle-point approximation (narrow $\mathrm{P}(E) \rightarrow$ mesoscopic systems)

$$
\sigma^{2}(E)=\sigma_{0}^{2} \frac{A^{2}(E)}{A^{2}\left(E_{0}\right)}+2 A^{2}(E) \int_{E_{0}}^{E} \frac{d E^{\prime}}{A^{2}\left(E^{\prime}\right) \beta\left(E^{\prime}\right)}
$$

Dynamical phase transition

$$
\sigma^{2}(E)=\sigma_{0}^{2} \frac{A^{2}(E)}{A^{2}\left(E_{0}\right)}+2 A^{2}(E) \int_{E_{0}}^{E} \frac{d E^{\prime}}{A^{2}\left(E^{\prime}\right) \beta\left(E^{\prime}\right)}
$$

Assume: $\quad A(E) \sim E^{s}, \quad \beta(E) \sim E^{-\alpha}, \quad \sigma_{0}^{2}\left(E_{0}\right)=0$ with: $s \leq 1$ (validity of FP), $0<\alpha \leq 1 \quad$ ($\mathrm{C} v>0$ and $\mathrm{S}(\mathrm{E})$ increasing unbounded function of energy)

As the energy increases $(E \rightarrow \infty)$ the integral:
-Diverges if $\quad 2 s-\alpha<1 \rightarrow \sigma^{2}(E) \sim \frac{E}{\beta(E)} \quad \begin{aligned} & \text { Protocol } \\ & \text { independent }\end{aligned}$
-Converges if $2 s-\alpha>1 \rightarrow \sigma^{2}(E) \sim A(E)^{2} \quad$ Protocol dependent

Dynamical phase transition

$$
\sigma^{2}(E)=\sigma_{0}^{2} \frac{A^{2}(E)}{A^{2}\left(E_{0}\right)}+2 A^{2}(E) \int_{E_{0}}^{E} \frac{d E^{\prime}}{A^{2}\left(E^{\prime}\right) \beta\left(E^{\prime}\right)}
$$

Define:

$$
\eta=2 s-\alpha-1
$$

-Diverges if $\quad \eta<0 \rightarrow \frac{\sigma^{2}(E)}{\sigma_{e q}^{2}(E)} \sim \frac{2 \alpha}{|\eta|} \quad \begin{aligned} & \text { Gibbs- } \\ & \text { regime }\end{aligned}$
-Converges if $\eta>0 \rightarrow \frac{\sigma^{2}(E)}{\sigma_{e q}^{2}(E)} \sim \frac{2 \alpha}{\eta}\left(\frac{E}{E_{0}}\right)^{\eta} \quad \begin{aligned} & \text { Run-away } \\ & \text { regime }\end{aligned}$
Diverging $\quad \tau \sim \frac{1}{1-s} \exp \left[\frac{1-s}{|\eta|}\right]$
time scale:
"Continuous
phase transition"

Results

-Can we increase the energy without increasing the uncertainty in its final value?
-Does the energy distribution look like a thermal energy distribution at some effective temperature?

Results

-Can we increase the energy without increasing the uncertainty in its final value?
ALMOST.
-Does the energy distribution look like a thermal energy distribution at some effective temperature? SOMETIMES.

Results

-Can we increase the energy without increasing the uncertainty in its final value?
ALMOST.
-Does the energy distribution look like a thermal energy distribution at some effective temperature? SOMETIMES.

	$\frac{1-\alpha}{2}$	$\frac{1+\alpha}{2}$
$\frac{\sigma^{2}(E)}{\sigma_{e q}^{2}(E)}<1$	$\frac{\sigma^{2}(E)}{\sigma_{e q}^{2}(E)}>1$	$\frac{\sigma^{2}(E)}{\sigma_{e q}^{2}(E)} \sim \frac{2 \alpha}{\eta}\left(\frac{E}{E_{0}}\right)^{\eta}$

Gibbs-like regime ($\eta<0$) Run-away regime ($\eta>0$)

$$
\text { Reminder : } s \leq 1, \quad 0<\alpha \leq 1, \quad \eta=2 s-\alpha-1
$$

Conclusions

First take-home message: $\sum_{m} T_{n m}=\sum_{n} T_{m n}=1$
-Unitary evolution tends to bring you towards a maximum Shannon (diagonal) entropy state: $S_{s h}=-\sum \rho_{n} \log \rho_{n}$
-This is $2^{\text {nd }}$ law of thermodynamics
A. Polkovnikov Annals Phys 326, 486 (2011)

Second take-home message:
Unitary evolution can be approximated by a
Fokker-Planck equation where drift and diffusion are constrained a priori

$3^{\text {rd }}$ advertisement: Nature Physics doi:10.1038/nphys2057

Appendix 1: Master Equation

Appendix:
Distinguish chaotic from not chaotic Phys. Rev. Lett. 107, 040601 (2001)
Is exp relevant <E>=int dE E P(E)
Makes my transition smooth

Appendix 2: linear quench in 1D

quantum piston

\{The state n before the cycle has weights on the state mafter the cycle\}

1D quantum linear quench

1D classical intearable ($\mathrm{L}=1, L^{\prime}=5 / 3$)

Appendix 3: Jarzynski Equality (JE)

 State initially in thermal equilibrium:C. Jarzynski, Phys. Rev. E 56, 5018-5035 (1997)

$$
\text { EXACT } \quad P(w) e^{-\beta W}=\widetilde{P}(-w) \rightarrow\left\langle e^{-\beta W}\right\rangle=1
$$

APPROXIMATE $-\beta\langle W\rangle+\frac{\beta^{2}}{2}\left\langle\delta W^{2}\right\rangle_{c}=0 \rightarrow 2 A=\beta B$
Any unitary evolution (there is no temperature here):

$$
\text { EXACT } \quad \Omega(E) T_{E \rightarrow E^{\prime}}=\Omega\left(E^{\prime}\right) \widetilde{T}_{E^{\prime} \rightarrow E}
$$

APPROXIMATE

$$
2 A(E)=\beta(E) B(E)+\partial_{E} B(E)
$$

AVERAGE OVER DISTRIBUTION:

$$
2 A=\beta B+\left(1-\frac{\sigma^{2}(E)}{\sigma_{e q}^{2}(E)}\right) \frac{\partial B}{\partial E}
$$

Example: particle in chaotic cavity

 arXiv:1007.4589v2 \& Physical Review E 83, 011107 (2011)$$
\begin{aligned}
& \begin{array}{r}
A(E)=g E^{1 / 2} \\
\left.\begin{array}{l}
E(E)=g \frac{4}{d+1} E^{3 / 2} \\
\beta(E)=\frac{d-2}{2 E}
\end{array}\right\} \rightarrow 2 A=\beta B+\partial_{E} B \\
f(v, \tau) d \mathbf{v} \sim e^{-v / \tau} d \mathbf{v} \Rightarrow \frac{\sigma^{2}(E)}{\sigma_{e q}^{2}(E)}=\frac{2+3 / d}{1+1 / d} \rightarrow 2 \\
\quad \text { \# d.o.f=2d } \\
\frac{\partial f}{\partial \tau}=d \frac{\partial f}{\partial v}+v \frac{\partial^{2} f}{\partial v^{2}} \\
f(V, \tau) \sim e^{-\frac{V}{\tau}} \rightarrow f(E, t) \sim e^{-\sqrt{E}}
\end{array}
\end{aligned}
$$

