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Cold atoms are almost perfectly isolated systems:
1. Probe coherent non-equilibrium dynamics for 
“long” times
2. Investigate foundations of statistical mechanics 
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ENSEMBLE AVERAGE over protocols and initial conditions



  

Von Neumann equation 
(quantum Liouville's theorem):

Isolated System = Unitary Evolution

is GENERAL, EXACT but VERY VERY HARD.

However unitary evolution is HIGHLY CONSTRAINED:
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(quantum Liouville's theorem):

Isolated System = Unitary Evolution

is GENERAL, EXACT but VERY VERY HARD.

However unitary evolution is HIGHLY CONSTRAINED:

1)

2) If                                is solution. 
    If                        is solution

3) …..



  

Outline

1. What I have learned about unitary evolution
2. Application to repeated quenches problem
3. Appendix



  

Unitary Evolution
, assuming the initial density matrix is diagonal:
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Unitary Evolution

and can be written as: (Birkhoff's theorem)

, assuming the initial density matrix is diagonal:

permutation matrix

    Where        is doubly stochastic,                                      ,  

conservation probability & unitary evolution

 1st advertisement:  Allahverdyan et al, EPL 95 (2011) 60004
                             Work extraction from a microcanonical bath
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Double Stochasticity:

No absorbing states

No probability 
localization close GSNO

NO

MAXIMUM 
ENTROPY 
STATE

First take-home message:
●Unitary evolution tends to bring you towards a maximum 
Shannon (diagonal) entropy state: 
●This is 2nd law of thermodynamics A. Polkovnikov Annals Phys 326, 486 (2011)
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During the waiting times diagonal 
elements are fixed while 
off-diagonal ones oscillate
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Off-diagonal elements

Memory is encoded in off-diagonal → 
for chaotic system take:   

Time after quench

energy shell Time trajectory

Write       in the base of 
During the waiting times diagonal 
elements are fixed while 
off-diagonal ones oscillate

Alternatives to ETH, 
by Rigol et al.

Restart each cycle from diagonal ensemble

Gedankenexperiment:                                                
Sequence of spins polarized (at random) in xy plane. 
Is there any way to distinguish that from 
the diagonal ensemble?



  

Off-diagonal elements



  

Master Equation

Algebra + Technical Reasons (appendix1)
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Master Equation

Exact if you restart each cycle from the diagonal ensemble

Algebra + Technical Reasons (appendix1)

QM is still encoded in the Transition rates (appendix2)

¾(hEi)

hEi

Expand (our goal is to calculate             )

where:                             is the microcanonical temperature.
This is “generalized Einstein relation” between drift and 
diffusion in open systems → Jarzynski equality (appendix3)
    



  

Master Equation
¾(hEi)

hEi

    

 Second advertisement:  
“Energy diffusion in a chaotic adiabatic billiard gas”. 
C. Jarzynski, Phys. Rev. E 48, 4340–4350 (1993)

“Thermalisation of a closed quantum system: 
From many-body dynamics to a Fokker-Planck equation” 
C. Ates, J. P. Garrahan, I. Lesanovsky, arXiv:1108.0270

Second take-home message:
Unitary evolution can be approximated by a      
Fokker–Planck equation where drift and diffusion are 
constrained a priori



  

Solve the Fokker–Planck equation

Evaluate these averages using saddle-point approximation
(narrow P(E) → mesoscopic systems)  

We turn the Fokker-Plank equation into a relation between 
the first and second moments (by integration by parts) 

Protocol dependent Protocol independent



  

Assume:
with:

As the energy increases (             )   the integral:

●Diverges  if
 

●Converges if Protocol
dependent

Protocol
independent

(Cv>0 and S(E) increasing 
unbounded function of energy)

(validity of FP)

Dynamical phase transition



  

Define:

●Diverges  if

●Converges if 
Run-away 
regime

Gibbs-like 
regime

Diverging
time scale: 

“Continuous
phase transition”

Dynamical phase transition
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Conclusions
First take-home message:

●Unitary evolution tends to bring you towards a maximum 
Shannon (diagonal) entropy state: 
●This is 2nd law of thermodynamics

Second take-home message:
Unitary evolution can be approximated by a 
Fokker–Planck equation where drift and diffusion are 
constrained a priori

 3rd advertisement:  Nature Physics doi:10.1038/nphys2057 

A. Polkovnikov Annals Phys 326, 486 (2011)

arXiv:1108.0270v1 [quant-ph]



  

Appendix:
Distinguish chaotic from not chaotic Phys. Rev. Lett. 107, 
040601 (2001) 
Is exp relevant <E>=int dE E P(E)
Makes my transition smooth

Appendix 1: Master Equation



  

Appendix 2: linear quench in 1D 
quantum piston 



  

1D quantum linear quench

A(E) » 0

B(E) » E
2A = ¯B + @E B

This expression doesn't work



  

1D classical integrable (L=1, L'=5/3)

A(E) = 0



  

Appendix 3: Jarzynski Equality (JE)

“Generalized Einstein relation”

AVERAGE OVER 
DISTRIBUTION:

EXACT

APPROXIMATE

C. Jarzynski, Phys. Rev. E 56, 5018–5035 (1997) 

EXACT

APPROXIMATE

State initially in thermal equilibrium:

Any unitary evolution (there is no temperature here): 
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