Cross-over to quasi-condensation a non-gaussian challenge to mean-field theories

C. Henkel (Potsdam), A. Negretti (Ulm), S. P. Cockburn and N. P. Proukakis (Newcastle)

Abstract

We discuss in a low-dimensional Bose gas the cross-over from a dilute, degenerate system to a quasi-condensate where density fluctuations are suppressed. A few variants of mean-field theories are discussed who predict a critical point in a homogeneous system, as a condensate-related parameter is lowered: condensate, quasi-condensate, or anomalous density. We compare to numerical simulations within a stochastic Gross-Pitaevskii equation [1], to an interacting classical field theory [2] and to solutions of the Yang-Yang equations [3].

- [1] S. Cockburn, A. Negretti, N. Proukakis, and C. Henkel, *Phys Rev A* 83 (2011) 043619
 → C. Gardiner, H. Stoof, M. Gajda, K. Rzążewski, W. H. Zurek . . .
- [2] L. Gruenberg and L. Gunther, *Phys Lett A* 38 (1972) 463;
 D. Scalapino, M. Sears, and R. Ferrell, *Phys Rev B* 6 (1972) 3409
 → Y. Castin, *J Phys IV (France)* 116 (2004) 89

[3] C. N. Yang and C. P. Yang, *J Math Phys* **10** (1969) 1115 \rightarrow K. Kheruntsyan, (R. Walser) . . .

Motivation & Outline

low-dimensional Bose gas: fluctuations significant

- no condensation, but density fluctuations suppressed
- this talk: cross-over dilute (degenerate) \rightarrow quasi-condensate

problems with mean-field theories

- critical point when "condensate" parameter lowered

(quasi)condensate, anomalous density

benchmarks

— stochastic GP, classical $|\phi|^4$ theory, Yang-Yang thermodynamics

Cross-over to quasi-condensation (1D)

ideal gas, harmonic trap

dense phase $\mu > 0$ (quasi) condensate $\mu \approx gn$ Bogoliubov sound $mc^2 \approx \mu$ or gn_{qc} no long-range coherence $|x - x'| \rightarrow \infty : \langle \phi^{\dagger}(x)\phi(x') \rangle \rightarrow 0$

Cross-over to quasi-condensation (1D)

ideal gas, harmonic trap

dense phase $\mu > 0$

"quiet" density $\delta n \ll n$

"critical fluctuations"

dilute phase $\mu < 0$

chaotic complex field $\delta n^2/n\approx n$

Phase diagram

Cross-over units

density

temperature

chemical potential

"quantum scale"

 $n_x(T) = (T^2/g)^{1/3}$ $T_x(n) = (gn^3)^{1/2}$ $\mu_x(T) = (gT)^{2/3}$

$$\beta = (g^2/T)^{1/3} = \frac{\mu_x(T)}{T}$$

density
$$\frac{\mu_x(T)}{g} = \frac{1/\lambda_T}{\sqrt{\mu_x(T)/T}}$$

classical limit $\beta \rightarrow 0$

Typical numbers

radial confinement coupling constant $g = 2\omega_{\perp}a_{\rm s}$
$$\begin{split} &\omega_{\perp}/2\pi \approx 5\dots 100\,\mathrm{kHz} & \text{atom chip}\dots 2\mathrm{D} \text{ opt latt} \\ &g\sim (1\dots 20)\,\mu\mathrm{m}^{-1} & \text{weakly interacting: } g\ll n \\ &\approx (10\dots 4000\,\mathrm{nK})^{1/2} & \text{high temp: } g^2\ll T \leftrightarrow \beta\ll 1 \end{split}$$

units $\hbar=m=1$

→ review Bouchoule, van Druten & Westbrook (in *Atom Chips*)

Mean-field theories and beyond

Gross-Pitaevskii	$T=0$ and $n\gg n_x$	artefact: long-range order
Popov-Bogoliubov [mP][exB]	$0 \leq T \ll T_x$ and $n \gg n_x$	variants fail at cross-over
Hartree-Fock [HF]	dilute phase $\mu \ll -\mu_x$	perturbative in g
[HFc]	dense phase $\mu_x \ll \mu$	artefact: critical point
quantum kinetics [QKT]	any T , n	(thermo)dynamics is coupled
Lieb-Liniger-Yang-Yang	any T , n	higher moments difficult
thermal field theory [TFT]	high T , classical n	no quantum effects
c-field simulations [SGP]	high T , in trap	full thermal cloud dynamics?
 [mP] Andersen, Al-Khawaja, Proukakis, Stoof & al ≥ 2002 [exB] Mora & Castin 2003 [HF] Kheruntsyan, Drummond, Shlyapnikov, Deuar & al ≥ 2003 [TFT] Gruenberg, Scalapino & al ≥ 1972 [QKT] Drummond, Griffin, Holland, Walser, Zaremba, Zoller ≥ 1998/2002 [SGP] Drummond, Gajda, Gardiner, Proukakis, Rzążewski, Stoof, Zurek > 1998/2002 		

Failure of mean field theories

Challenges for mean field theories

Onset of condensation:

need larger set of "relevant moments"

— similar to critical fluctuations (\rightarrow shift in T_c)

Non-gaussian field statistics

Thermal field theory (TFT) \rightarrow field distribution function $P(\phi)$

classical path integral

$$n = \int \frac{\mathcal{D}\phi}{Z} |\phi(x)|^2 \exp\left[-\frac{1}{T} \int_0^L \mathrm{d}z \left(\frac{1}{2} \left|\frac{\partial\phi}{\partial z}\right|^2 - \mu |\phi^2| + \frac{g}{2} |\phi|^4\right)\right]$$

imaginary time action $S = \int_0^L \mathrm{d}\tau \left[\frac{1}{2} \left|\frac{\mathrm{d}\phi}{\mathrm{d}\tau}\right|^2 + V_{\mathrm{eff}}(\phi)\right]$

mapping to QM: generate translation operator $U(x,0) = \exp(-xK)$ thermodynamic limit: "ground state"

$$K\sqrt{P} = \left[-\frac{T}{2}\frac{\partial^2}{\partial\phi\partial\phi^*} - \frac{\mu}{T}|\phi|^2 + \frac{g}{2T}|\phi|^4\right]\sqrt{P} = \kappa_0\sqrt{P}$$

Non-gaussian field statistics

Non-gaussian field statistics

• non-trivial correlation $\langle \hat{n} (\nabla \hat{\theta})^2 \rangle \neq n \langle (\nabla \hat{\theta})^2 \rangle$

phase-locked field amplitudes

Penrose-Onsager analysis of $\langle \phi^*(z)\phi(z')\rangle \rightarrow \phi_c(z), N_c$ condensate amplitude $a_c = \int dz \, \phi^*_c(z)\phi(z) \rightarrow \text{phase } e^{i\theta_c}$ statistical sample of $e^{-i\theta_c} \phi(z)$ vs. $\mu(z)$

Conclusion & Perspectives

Cross-over to quasi-condensation

- occurs at $\mu\approx 1.8\dots 2\,(gT)^{2/3}$
- smooth equation of state $n(\mu, T)$
- "order parameter" from density fluctuations quasi-condensate density: $\delta n^2 = n^2 - n_{\rm qc}^2$ peak in $\delta n^2/n =$ super-Poisson fluctuations

"No man's land" for mean field theories

- inconsistent density split $n = n_{qc} + n'$
- self-consistent dispersion relation,
 occupation numbers, structure factor

Conclusion & Perspectives

Thermal field theory

- limited to high T ($t=2\beta^{-3}=\infty)$
- non-perturbative in interactions
- captures critical fluctuations, counting statistics

exploit full potential

- check against Yang-Yang (difficult at $t \to \infty$!)
- all correlations (density, phase)
- check superfluid response

