Quantum Fisher information as efficient entanglement witness in quantum many-body systems

Philipp Hauke (IQOQI, University of Innsbruck)

With
M. Heyl, L. Tagliacozzo, P. Zoller
M. Gärttner, A. Safavi-Naini, M. Wall, and A. M. Rey

Heidelberg, 8.9.2016
Entanglement: Resource of Quantum Simulation

Too much entanglement for classical computer

Trotzky et al., *Nat. Phys.* (2012)
Entanglement: Fingerprint of Quantum Phases

Example: Disordered systems and many-body localization

\[S_{VN} \]

Many-body localized
Anderson localized

\[\log(Jt) \]

Znidaric, Prosen, Prelovsek, *PRB* 2008
Bardarson, Pollmann, Moore, *PRL* 2012
Vosk and Altman, *PRL* 2013
Serbyn, Papic, Abanin, *PRL* 2013
The problem with quantifying many-body entanglement

Entanglement measures

$S_{\text{Rényi2}}$

S_{vN}

$\mathcal{E}_{\text{geom}}$

Problem 1:
Which is the relevant one?

Problem 2:
Non-linear functions of density matrix

$\mathcal{E} = f_{\text{nl}}(\rho)$

Exponential number of measurements!

Entanglement entropy
Theory: Daley, Pichler, Schachenmayer, Zoller, PRL 2013
Entanglement is really hard to measure in experiment.
Workaround: entanglement witnesses

Toth, Gühne, Cramer, Brukner, Lewenstein. . .
Workaround: entanglement witnesses
Toth, Gühne, Cramer, Brukner, Lewenstein.

The art is to find witnesses that
• are easy to measure
• but also tell us something relevant

Here:
Quantum Fisher Information
+ genuine multipartiteness
+ efficient at $T=0$ and $T>0$
+ interesting many-body settings
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Content

Background Quantum Fisher Information

- metrological definition
- witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems

- Divergent entanglement at quantum phase transition
- Fingerprint of many-body localization
- Measure of coherence

Conclusions
Quantum Fisher Information F_Q bounds parameter estimation

Braunstein, Caves *PRL* 1994

Quantum Cramer-Rao bound

$$(\Delta \theta)^2 \geq \frac{1}{F_Q \# \text{meas.}}$$

How sensitive is a state ρ to change in parameter θ?

= distinguishability of ρ from

$$\rho' = e^{i \mathcal{O} \delta \theta} \rho e^{-i \mathcal{O} \delta \theta}$$

$$\sum_i \sigma_i^x h_x$$

squeezed state

entangled but not squeezed

See experiments groups
Oberthaler, Klempt, Bollinger

Quantum Cramer-Rao bound

$squeezed$ $state$

$entangled$ but not $squeezed$

e.g., Ma et al.,

Phys. Rep. 2011
It witnesses multipartite entanglement
Pezzé and Smerzi *PRL* 2009, Hyllus et al., *PRA* 2012, Toth *PRA* 2012

Precision limit of estimation

\[(\Delta \theta)^2 \geq \frac{1}{F_Q \# \text{meas.}}\]

Need entanglement for

\[F_Q > N\]

Need \(k + 1\)-body entanglement

\[F_Q/N > k\]
Calculation of the QFI
Braunstein, Caves *PRL* 1994

\[
F_Q = F_Q [\rho(\theta), \mathcal{O}]
\]

\[
\rho(\theta) \leftrightarrow \rho(\theta + \delta \theta) = e^{i\mathcal{O}\delta\theta} \rho(\theta) e^{-i\mathcal{O}\delta\theta}
\]

Pure states
\[
F_Q = 4 \left(\langle \mathcal{O}^2 \rangle - \langle \mathcal{O} \rangle^2 \right)
\]

Mixed states
\[
\rho = \sum p_\lambda |\lambda\rangle \langle \lambda| \\
F_Q = 2 \sum_{\lambda, \lambda'} \frac{(p_\lambda - p_{\lambda'})^2}{p_\lambda + p_{\lambda'}} |\langle \lambda | \mathcal{O} | \lambda' \rangle|^2
\]

How to measure this?
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Quantum Fisher Information F_Q bounds parameter estimation
Braunstein, Caves *PRL* 1994

How sensitive is a state ρ to change in parameter θ?

$= \text{distinguishability of } \rho \text{ from } \rho' = e^{i\hat{O}\delta\theta} \rho e^{-i\hat{O}\delta\theta}$

$(\Delta \theta)^2 \geq \frac{1}{F_Q \# \text{meas.}}$

See experiments groups
Oberthaler, Klempt, Bollinger

squeezed state
entangled but not squeezed

entanglement
e.g., Ma et al.,
Phys. Rep. 2011
In condensed matter: Sensitivity of state = susceptibility

Static susceptibility:
\[H = H_0 + h \mathcal{O} \]
\[M = \langle \mathcal{O} \rangle \]
\[\chi = \frac{\partial M}{\partial h} \]

Dynamic susceptibility:
\[H = H_0 + h \cos(\omega t) \mathcal{O} \]
\[\chi(\omega, T) = i \int_0^\infty dt \, e^{i\omega t} \langle [\mathcal{O}(t), \mathcal{O}] \rangle_T \]
\[\chi''(\omega, T) = \Im(\chi(\omega, T)) \]

Response function routinely measured in neutron scattering, Bragg spectroscopy, ...

Sengstock group
Nat. Phys. 2010
Quantum Fisher Information and dynamic susceptibility are the same (in thermal states)

\[F_Q(T) = \frac{4}{\pi} \int_0^\infty d\omega \tanh \left(\frac{\omega}{2T} \right) \chi''(\omega, T) \]

+ Makes QFI directly measurable

+ Connects notions of sensitivity from two fields

+ Allows efficient calculations and derivation of scaling laws

See also
Kolodrubetz, Mehta, Polkovnikov, arXiv:1602.01062
Greschner, Kolezhuk, and Vekua, PRB 2013
QFI = susceptibility – a short proof

Have
\[\chi(\omega, T) = i \int_0^\infty dt \, e^{i\omega t} \langle [\mathcal{O}(t),\mathcal{O}] \rangle_T \quad \text{and} \quad \chi''(\omega, T) = \Im(\chi(\omega, T)) \]

Lehmann representation (energy eigenbasis)
\[\rho = \sum_{\lambda,\lambda'} (p_\lambda - p_{\lambda'}) |\lambda\rangle \langle \lambda|, \quad p_\lambda = e^{-\beta E_\lambda} / Z \]
\[\chi''(\omega) = \sum_{\lambda,\lambda'} (p_\lambda - p_{\lambda'}) |\langle \lambda|\mathcal{O}|\lambda' \rangle|^2 \pi \delta(\omega + E_{\lambda'} - E_\lambda) \]

Use
\[2 \int_0^\infty d\omega \, \tanh \left(\frac{\omega}{2T} \right) \delta(\omega + E_{\lambda'} - E_\lambda) = \tanh \left(\frac{E_{\lambda'} - E_\lambda}{2T} \right) = \frac{p_\lambda - p_{\lambda'}}{p_\lambda + p_{\lambda'}} \]

\[F_Q(T) = \frac{4}{\pi} \int_0^\infty d\omega \, \tanh \left(\frac{\omega}{2T} \right) \chi''(\omega, T) \]

Independent of microscopic details
(only thermal states,
Kubo linear response)

Want
\[F_Q = 2 \sum_{\lambda,\lambda'} \frac{(p_\lambda - p_{\lambda'})^2}{p_\lambda + p_{\lambda'}} |\langle \lambda|\mathcal{O}|\lambda' \rangle|^2 \]
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Example

Ising chain in transverse field

\[H = -J \sum \sigma_i^x \sigma_{i+1}^x + h \sum \sigma_i^z \]

ferromagnet

quantum phase transition

paramagnet
Divergence of many-body entanglement at critical point

For $N=64$ at least 13-body entanglement

Entangled region at $T>0$
see also Tóth, and Wu et al., *PRA* 2005

Entanglement peak at criticality

Test scaling
Strong scaling in Ising chain

Finite-size
\[f_Q \approx L^{3/4} \phi_{Q_1}(LT) \]

Finite-temperature
\[f_Q \approx T^{-3/4} \phi_{Q_2}(LT) \]

\[f_Q = c T^{-3/4} \] from known scaling of \(\chi''(\omega, T) \)

\[F_Q(T) = \frac{4}{\pi} \int_0^\infty d\omega \tanh \left(\frac{\omega}{2T} \right) \chi''(\omega, T) \]

see also works by Zanardi, Campos-Venuti, Gu, and others for metric tensor/fidelity susceptibility
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
QFI as fingerprint for exotic quantum behavior: many-body localization (MBL)

Entanglement growth and MBL, e.g.:
Znidaric, Prosen, Prelovsek, *PRB* 2008
Bardarson, Pollmann, Moore, *PRL* 2012
Vosk and Altman, *PRL* 2013
Serbyn, Papic, Abanin, *PRL* 2013
Indications for log-growth in trapped-ion experiment

Variance
[= QFI if state pure]

(a) No Disorder

(b) $W = 6J_{\text{max}}$

$W = 8J_{\text{max}}$
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Resource theoretic definitions of coherence

1. Define what is an incoherent state
2. Define what are “free” operations (do not generate coherence)
3. Define measure for coherence: does not increase under free operations
Resource theoretic definitions of coherence

Baumgratz, Cramer, Plenio, *PRL* 2014

Coherence with respect to a basis
e.g., S_i^z

$\rho_{\text{inc.}} = \begin{pmatrix}
|\uparrow\uparrow\uparrow\rangle |\uparrow\uparrow\downarrow\rangle \\
|\uparrow\downarrow\uparrow\rangle |\downarrow\downarrow\rangle
\end{pmatrix}$

Marvian and Spekkens, several works

Coherence with respect to a Hamiltonian
e.g., $H = \sum_i S_i^z$

Resource for various tasks:
reference-frame alignment,
thermodynamic tasks, quantum metrology

F_Q is a strict measure for coherence
Coherence in NMR: multi-quantum coherences

Collaboration M. Gärtnner, A. Safavi-Naini, M. Wall, and A. M. Rey

Different magnetization sectors

\[S_z |M_z\rangle = M_z |M_z\rangle \]

\[\rho = \sum_{m=-N}^{N} \rho^{(m)} \quad \rho^{(m)} = \sum_{M_z} \rho_{M_z M_z - m} |M_z\rangle \langle M_z - m| \]

multi-quantum coherences

\[I_m = \text{tr}(\rho^{(-m)} \rho^{(m)}) \]

Multi-quantum coherence and
quantum Fisher information

Martin Gaerttner et al., in preparation

\[2 \sum_{m=-N}^{N} I_m m^2 \leq F_Q [\rho, S_z] \leq 4d \sqrt{\sum I_m m^2} \]

\(F_Q \) is a strict measure for coherence (in the Marvian-Spekkens sense)
\(I_m \) are actually only witnesses for coherence
\(I_m \) are also witnesses for entanglement
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Content

Background Quantum Fisher Information
 metrological definition
 witness for multipartite entanglement

Measurability via response functions

QFI in quantum many-body systems
 Divergent entanglement at quantum phase transition
 Fingerprint of many-body localization
 Measure of coherence

Conclusions
Conclusion

• Connected Quantum Fisher Info and dynamic susceptibility
 – measure QFI efficiently, also at T>0
 – independent of microscopic details
 – Scaling theory for QFI (predictions from known critical exponents)

\[F_Q(T) = \frac{4}{\pi} \int_0^\infty d\omega \tanh \left(\frac{\omega}{2T} \right) \chi''(\omega, T) \]

• QFI: from metrology to quantum many-body systems
 – divergent entanglement at quantum phase transition
 – fingerprint of many-body localization
 – measure of coherence as resource

EU IP SIQS, SFB FoQuS (FWF Project No. F4016-N23), ERC synergy grant UQUAM