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“In all affairs it’s a healthy thing now and then to hang a question mark on the things you
have long taken for granted. ”

Bertrand Russell
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Abstract

In order to detect quantum correlations between three-component vector solitons in
a spin-1 Bose-Einstein condensate, the noise contribution of the local rotation setup
has to be as low as possible. In our experimental setup, the positional fluctuations
of the laser have been found to be the dominant source of noise. This thesis presents
a scheme in which the laser, used for the generation of local rotations, is vertically
pulsed 6 times, to effectively broaden the vertical intensity profile and achieve a ho-
mogeneous rotation amplitude. In compensating the relative motion between the
condensate and laser, we observe a reduced fluctuation of the Fz amplitude. Locally
rotating the state mF = 0 leads to fluctuations of ∆2Fz = 0.21 ± 0.02. This devi-
ates 15 − 30% from the theoretically determined value ∆2Ftri

z = 0.16, but shows an
improvement by an order of magnitude compared to the results obtained via a con-
tinuous sweep of the vertical laser position. Applying a π/2 rotation to the mF = −1
state leads to a fluctuation of the rotation angle of

√
∆2α = (5.62± 0.84)◦, which is on

the same order of magnitude as the extension of the coherent state, αcoh ≈ 6.2◦. The
enhanced precision of the local rotation setup is used to gain a better understanding
of the soliton splitting process. First observations show that the lowest fluctuations
of the combined variables F±

z = Fleft
z ± Fright

z fall slightly below the shot noise limit,
which is represented by the ratio between the experimental and theoretical (coher-
ent state) value, r+ = 0.81 ± 0.11 and r− = 0.86 ± 0.13. Even after separating the
evaluation regions to account for classical correlations at the boundary, this result
remains consistent up to a separation of 10.08 µm. The analysis of the atom number
distribution between the different bright components of the soliton shows a devi-
ation from the coherent state level σ2

coh = 1. The lowest value, obtained for the
difference N− = Nl − Nr is ∆2N− = 1.40 ± 0.22, after normalisation with the total
atom number.
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Zusammenfassung

Um Quantenkorrelationen zwischen dreikomponentigen Vektorsolitonen in Spin-
1 Bose-Einstein Kondensaten nachweisen zu können, muss das Rauschen, welches
durch den lokalen Rotationsaufbau erzeugt wird, so gering wie möglich sein. In
unserem Versuchsaufbau sind die Positionsfluktuationen des Lasers als dominante
Rauschquelle festgestellt worden. Diese Arbeit präsentiert ein Verfahren, bei dem
der Laser, der für die Erzeugung lokaler Rotationen verwendet wird, 6 mal vertikal
gepulst wird, um das vertikale Intensitätsprofil zu verbreitern und ein homogenes
Rotationsprofil zu erreichen. Durch eine Kompensation der relativen Bewegung
zwischen Kondensat und Laser ist eine Verringerung der Fluktuation der Fz Am-
plitude zu beobachten. Eine lokale Rotation des Zustands mF = 0 führt zu Fluktu-
ationen von ∆2Fz = 0.21 ± 0.02. Diese weicht 15 − 30% vom theoretisch erwarteten
Wert ∆2Ftri

z = 0.16 ab, zeigt aber eine Verbesserung um eine Größenordnung im
Vergleich zu den Ergebnissen, welche für eine kontinuierliche Rampe der vertikalen
Laserposition bestimmt wurden. Eine π/2-Rotation des Zustands mF = −1 führt
zu Fluktuationen des Rotationswinkels

√
∆2α = (5.62 ± 0.84)◦, was in der gle-

ichen Größenordnung ist wie die Ausdehung des kohärenten Zustands, αcoh ≈ 6.2◦.
Die verbesserte Genauigkeit des lokalen Rotationsaufbaus wird verwendet, um ein
besseres Verständnis des Separationsprozesses von Solitonen zu erlangen. Erste
Beobachtungen zeigen, dass die kleinsten Fluktuationen der kombinierten Variablen
F±

z = Fleft
z ± Fright

z leicht unterhalb des Schrotrauschlimits sind, was durch das Ver-
hältnis zwischen dem experimentellen und theoretischen (kohärenter Zustand) Wert
r+ = 0.81 ± 0.11 und r− = 0.86 ± 0.13 dargestellt wird. Auch nach Separation
der Auswertungsbereiche, um klassische Korrelationen an der Grenze zu berück-
sichtigen, bleiben die Ergebnisse bis zu einer Separation von 10.08 µm konsistent.
Die Analyse der Atomzahlverteilung zwischen den unterschiedlichen hellen Kom-
ponenten der Solitonen zeigen eine Abweichung vom erwarteten Level eines ko-
härenten Zustands, σ2

coh = 1. Der niedrigste Wert wurde für die Differenz N− =
Nl − Nr bestimmt und ist ∆2N− = 1.40 ± 0.22, nachdem mit der Gesamtatomzahl
normiert wurde.
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Chapter 1.

Introduction

Modern approaches in the experimental study of quantum mechanical phenomena
are often concerned with ultra cold quantum gases, where atom clouds are kineti-
cally frozen to very low temperatures and which provide a high level of experimen-
tal control. A particular milestone was the generation of the so-called Bose-Einstein-
condensate, an exotic state of matter, where a major fraction of the atoms occupy
one quantum state. As a result, the condensate can be described by one single wave-
function and is said to manifest quantum mechanics on macroscopic scales.

First proposed by S. Bose [1] and later theoretically predicted for matter by A.
Einstein in 1924 [2], it was until 1995 that the first BECs were realised experimen-
tally by C. Wieman and E. Cornell at the JILA [3] using rubidium (87Rb) and by
W. Ketterle’s group at the MIT [4], who condensed sodium atoms (23Na), resulting
in the shared win of the Nobel prize. Main candidates for the realisation of BECs
have been alkali metals, e.g. 7Li [5], 41K [6], and alkaline earth metals, e.g. 40Ca [7],
84Sr [8], providing one and two valence electrons and appearing to be particularly
suitable for the application of the common cooling and trapping techniques. But
also lanthanide atom BECs using e.g. 164Dy [9] or 170Yb [10] were accomplished,
mixture experiments comprising two atomic species developed [11] and molecules
condensed to a BEC [12]. Recently, even a BEC orbiting the earth, as a part of an
international research laboratory, has been built [13].

The here presented work will be concerned with a spin-1 BEC in the quasi one-
dimensional regime consisting of 87Rb atoms. This type of condensate is also called
a spinor-BEC [14], because it provides the spin as a degree of freedom, suitable for
the investigation of the interplay between spatial and spin dynamics.
In the theoretical mean-field limit of spin-1 BECs solitons, but in particular three-
component vector solitons were predicted as analytical solutions of the Manakov
model [15]. At their heart, solitons, short for solitary waves, are non-dispersive
wave packets propagating at a constant velocity, while maintaining their structure.
In order to support stable solutions, the system has to provide a non-linearity to
counteract the dispersive effects.
In recent years this experimental platform has been used to successfully generate
vector solitons in our group ([16], [17]). To this end, a laser setup is employed to
induce spatially localised radio-frequency transitions, further referred to as local ro-
tations in this thesis. The subsequent characterisation of the macroscopic properties
of the solitons showed a good agreement with the underlying theoretical model. The
richness of these vector solitons compared to e.g. simple dark solitons arises from
the fact that not only studies of the macroscopic properties can be conducted, but
also of the internal structure, namely the spin. Future prospects are geared towards
the exploration of quantum correlations in scenarios like soliton collisions [17]. De-
tecting quantum correlations is in general experimentally challenging, because they
are usually overshadowed by different kinds of classical correlations caused by the
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experimental setup, but is at the heart of revealing entanglement between systems.
In this thesis, an experimental setup will be presented which aims to reduce the tech-
nical noise in the preparation of three-component vector solitons, to be able to detect
signals below the shot noise limit in future experiments. To this end, the vertical
positional fluctuation between the condensate and laser, necessary to generate the
soliton, will be eliminated utilising a pulse sequence in vertical direction in order to
provide a vertically broader and homogeneous intensity profile.
Additionally, the soliton formation phase will be of interest, where two solitons
emerge out of an initial local density perturbation. Thereupon, we want to quan-
tify if we can prepare solitons on coherent state level. We use observables like the
atom number and spin to compare the fluctuations of combined variables as sums
and differences between the two solitons (EPR-variables) to the shot-noise limit set
by a coherent state.
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Chapter 2.

Theoretical Background

The aim of this chapter is to build the basic understanding of spinor bose gases, in
particular of the spin-1 Bose Einstein condensates. We will first start with the general
symmetry assumptions and the operators that can be concluded from these. Further,
the basic concepts of a spin-1 BEC and the theory behind solitons will be introduced.

2.1 The Spin-1/2 system

Many physical problems in atomic physics can be reduced to a so-called pseudo
spin-1/2 system, since the coupling and transition of states can be mapped onto the
two level systems. Revisiting the ideas of the spin-1/2 system is therefore an instruc-
tive way to introduce the concept of spin observables and understand the necessity
of the unitary transformations. We can then use these ideas then to build the frame-
work of the spin-1 system in a similar way. More details can be found in [18], [19]
and [20].

The spin-1/2 system is considered the most fundamental spin system because it
can be represented by the generic quantum mechanical two-level system. The basis
states in the single particle description can be written as

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
(2.1)

and the wave function of a pure state can be described by the coherent superposition

|ψ⟩ = eiϕL cos(
θ

2
)|0⟩+ e−iϕL sin(

θ

2
)|1⟩. (2.2)

The Larmor phase ϕL is defined as the phase difference between the states |0⟩ and
|1⟩, so ϕL = ϕ0 − ϕ1. The two angles ϕL ∈ [0, 2π] and θ ∈ [0, π] define the resulting
state uniquely and its norm must be ⟨ψ|ψ⟩ = 1. It can most conveniently be repre-
sented on the surface of the so-called Bloch sphere (see fig. 2.1), which also serves as
a good tool to visualise the transformation of the states. Since the system contains
only two free parameters, the transformations are group elements of SU(2), which
contains the complex 2x2 matrices with unit determinant. If the quantisation axis is
given along the z-axis, we can parametrise the transformations by defining the Pauli
matrices first,

Sx =
1
2

(
0 1
1 0

)
, Sy =

1
2

(
0 −i
i 0

)
, Sz =

1
2

(
1 0
0 −1

)
. (2.3)

They fulfil the necessary commutation relations [Si, Sj] = iϵijkSk for i, j, k ∈ {x, y, z}
and ϵijk being the Levi-Civita symbol. Including 12x2 we have the complete set of
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S

FIGURE 2.1: Representation of a state |ψ⟩ on the Bloch sphere including the unitary
matrix U for the rotation. Figure adapted from [21].

operators which form the basis for all hermitian operators acting on the spin-1/2
Hilbert space C2.
The spin operators 2.3 are generators of the rotations on the Bloch-sphere. If we want
to consider the rotation by a finite angle φ, we can use these generators to define the
unitary transformation

U(n, φ) = e−iφnS, (2.4)

where n denotes the rotation axis. For rotations around the z-axis this can be simply
written as

Uz(φ) = e−iφSz , (2.5)

Applying the rotation matrix on the ket-vector |ψ⟩ allows us to calculate its rotation
on the sphere as

|ψ⟩R = Uz|ψ⟩. (2.6)

This process would be equivalent to the Schrödinger picture where a quantum state
is considered to evolve in time. But one could also just rotate the system and keep
the state "unchanged", in analogy to the Heisenberg picture. The rotation matrices
transform according to

eiφSj Sie−iφSj = Sicos(φ) + ϵijkSksin(φ), (2.7)

as been calculated in literature before [18] with h̄ = 1. From this result we can
conclude that the axis of our systems can be conveniently rotated and ultimately
mapped onto the other axes. It is worth to note that by applying eq. 2.6 we can
easily describe the dynamics of our state, while eq. 2.7 gives us a tool for the imple-
mentation of the necessary readout schemes discussed later in section 3.2.5.

2.2 Spin-1

In comparison to the spin-1/2 case, the spin-1 system of our experiment contains
three magnetic components mF ∈ {−1, 0,+1}. The quantum state in the single-
particle representation can be written as

|ψ⟩ = c1eiϕL/2|1⟩+ c0eiϕS |0⟩+ c−1e−iϕL/2| − 1⟩, (2.8)
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where the real coefficients satisfy again the normalisation ∑i |ci|2 = 1. The Larmor
phase denotes the phase difference between the side modes | ± 1⟩ as ϕL = ϕ+1 − ϕ−1
and the spinor phase the difference between |0⟩ and | ± 1⟩, ϕS = ϕ0 − (ϕ+1 + ϕ−1)/2.
The additional free parameters give rise to an extended set of rotation operators,
which are defined by the Lie group SU(3). We can define 8 operators (generators)
that once again serve as a basis for all hermitian operators necessary to act on the
spin-1 Hilbert space. Analogously to the spin-1/2 case discussed before, we can first
define the three spin operators

fx =
1√
2

0 1 0
1 0 1
0 1 0

 , fy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , fz =

1 0 0
0 0 0
0 0 −1

 , (2.9)

which fulfil the commutation relation [ fi, f j] = iϵijk fk. For later use (see sec. 2.3.2)
we introduce the vector of spin-1 matrices f = ( fx, fy, fz)T. To define a spin-1 state
unambiguously the three spin operators do not suffice but additional quadrupole
operators have to be defined to achieve a complete set of eight operators as a full
representation of SU(3), defining all possible rotations of the system. For this thesis
only the three spin operators will be considered, since for the analysis of solitons
only the SU(2)-subspace is relevant. The state can be represented on a sphere again.
In contrast to spin-1/2, the state does not just exist on the surface of the spin sphere
but can also be inside of it.

2.3 A brief theory of Bose Einstein condensates

This section introduces the basic ideas and concepts necessary to describe spin-1
Bose-Einstein condensates. At first the Hamiltonian will be presented, followed
by the Thomas-Fermi approximation and the mean-field picture of this system. In
depth derivations and further information are given in [22], [23], [14] and [24].

2.3.1 The Gross Pitaevskii equation - a mean field model

In order to describe a quantum many-body system, quantum fields Ψ(r, t) are usu-
ally chosen as the foundation. The appropriate Hamiltonian to describe an interact-
ing Bose gas in second quantisation is written as

H =
∫

drΨ†(r, t)(− h̄2

2m
∇2 + Vext(r, t))Ψ(r, t)

+
1
2

∫
drdr′Ψ†(r, t)Ψ†(r′, t)U(r, r′)Ψ(r′, t)Ψ(r, t),

(2.10)

where Vext denotes an external potential and U(r, r′) the interaction potential. From
the Heisenberg equation ih̄∂tΨ(r, t) = −[H, Ψ(r, t)] and using the bosonic commu-
tation relations [Ψ(r, t), Ψ†(r′, t)] = δ(r − r′) one can conclude the time evolution of
the quantum field operator.

In 1961, Lev P. Pitaevskii [25] and Eugene P. Gross [26] independently used the
ansatz to expand these quantum fields in terms of their expectation value and quan-
tum fluctuation term

Ψ(r, t) = ⟨Ψ(r, t)⟩+ δΨ(r, t). (2.11)

They were interested in the basic properties of Bose Einstein condensates, so as-
sumed that the system is at zero temperature. Doing so allows to neglect the then
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thermal fluctuations, δΨ(r, t) = 0. In that manner, the field operator can be replaced
by its expectation value, which itself is just a complex function, often referred to as
order parameter of the mean field phase, according to ⟨Ψ(r, t)⟩ = ψ(r, t).

The second necessary assumption concerns the interaction of the particles inside the
BEC. For systems at very low temperatures the relevant atomic interaction is the
s-wave scattering, which is characterised by the scattering length a through the in-
teraction constant g = 4πh̄2

m a, where m is the atomic mass. For that to hold, the
gas is assumed to be dilute, i.e. the condition n̄a3 ≪ 1 fulfilled, with n̄ being
the average density, meaning that the inter-particle distance is much larger than
the scattering length. Hence, the interaction is mediated by a delta-like potential
U(r, r′) = gδ(r − r′). The sign of the scattering length determines whether the inter-
action is attractive (a < 0) or repulsive (a > 0). For 87Rb the interaction is repulsive.

The concepts presented before correspond also to the limit of large populations,
hence high densities, and weak interactions, where quantum fluctuations become
negligible compared to classical statistical fluctuations. This picture is called mean-
field theory and can be applied to successfully describe an ultra-cold many-body
quantum system. Altogether the Gross-Pitaevskii equation is formulated as

ih̄∂tψ(r, t) = (− h̄2

2m
∇2 + Vext + g|ψ(r, t)|2)ψ(r, t). (2.12)

One should note that the fields ψ(r, t) introduced above determine the particle num-
ber density of the system |ψ(r, t)|2 = n(r, t) and fix the total particle number accord-
ing to

∫
drn(r, t) = N. For time-independent potentials the energy is conserved and

the wavefunction can be decomposed into ψ(r, t) = ψ(r)e−i µt
h̄ . This separates the

time-evolution and yields the stationary GPE. We further introduced the chemical
potential µ = ∂E/∂N, originating from the systems statistical nature of a grand-
canonical ensemble. However, eq. 2.12 has the form of a non-linear Schrödinger
equation and reduces in the absence of interactions (g = 0, mean-field term van-
ishes) to the classical Schrödinger equation.

2.3.2 Spin-1 BEC and atomic interactions

Having discussed the general model of a Bose-Einstein condensate and assumptions
appropriate to describe these systems, we can modify the model according to the
specific needs of our experiment. An extensive derivation from first principles of
the following concepts can be found in [24]. As will be seen in sec. 3.2.1, the ground-
state of our experimental system are the hyperfine levels F = 1 and F = 2 which
possess mF = 2F + 1 magnetic states |F, mF⟩. This magnetic hyperfine sublevels sep-
arate in an external magnetic field, in our case an offset field, and shift the energy of
each particle in the system but are also the cause of further interaction channels. The
complete mean-field Hamiltonian comprises both terms, the non-interacting term
and the interaction term according to H = H0 +Hint. The non-interaction Hamilto-
nian reads

H0 =
∫

d3xψ†(− h̄2

2m
∇2 + Vext + p fz + q f 2

z )ψ, (2.13)

with the mean-field order parameter ψ, which can be understood as the three com-
ponent bosonic spinor field ψ = (ψ+1, ψ0, ψ−1)

T. The linear (p) and quadratic term
(q) originate respectively from the linear and quadratic Zeeman effect. The linear
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FIGURE 2.2: Linear and quadratic Zeeman shift due to an external magnetic field.
Figure adapted from [16].

Zeeman effect shifts the magnetically sensitive state |1,±1⟩ in opposite directions
(see fig. 2.2) and results in a Larmor precession of these states around the mag-
netic field. Setting this value to zero corresponds to a transformation to the rotating
frame, which holds is also true when considering the atomic interactions discussed
below. The contribution of interest for the dynamic of our system lies mainly in the
second-order Zeeman shift. In contrast to p, the quadratic term results in a shift of
the |1,±1⟩ states in the same direction, relative to |1, 0⟩ (see fig. 2.2) . The interaction
part of our Hamiltonian comprises the atomic interaction mediated by the density of
the condensate, but due to the spin-degree of freedom also an spin-interaction term.
The interaction term can be formulated as

Hint =
∫

d3x(
c0

2
n2 +

c1

2
F2), (2.14)

where n = |ψ|2 = ψ†ψ denotes again the atom number density and F = ψ†fψ the
spin density vector defined by the spin-1 matrices introduced in 2.2. The coefficients
in 2.14 describe density-density interactions (c0) and spin-spin interactions (c1), de-
fined as

c0 =
g0 + 2g2

3
and c1 =

g2 − g0

3
, (2.15)

where we once again meet the interaction constant gF , just this time specifically de-
noting the two-body potential VF (x, y) = gF δ(x − y) of total spin-F channel. Using
the commutation relations for bosonic field operators in the second quantisation for-
malism one finds that only even total spins can contribute. As mentioned before
only repulsive density-density interactions (c0 > 0) are of interest in our experiment
and as for 87Rb-BECs the spin interactions are ferromagnetic (c1 < 0). The interac-
tions for which c1 > 0 holds thus exert anti-ferromagnetic behaviour. Furthermore,
for 87Rb, the density interactions surpass the spin interactions largely |c1| ≪ c0 and
the ratio between the constants is c1/c0 = 4.6 × 10−3.

However, the interplay between the quadratic Zeeman shift q and the spin inter-
action term F2 can induce spin dynamical processes, namely spin-changing colli-
sion (SCC) which, if chosen appropriately dominate the overall dynamics. For their
description it is usefull to consider quantum fields for a full quantum mechanical
description, i.e. ψ

(†)
j (x) = ∑k a(†)j,k ξ j,k(x), with the bosonic annihilation (creation) op-

erator a(†)j,k and the spatial mode ξ j,k(x). Expanding now the spin-interaction in terms
of these fields yields a term of the form ψ†

+1ψ†
−1ψ0ψ0 + h.c.. If the atoms are initially

prepared in mF = 0, this term symmetrically redistributes them into the side-modes
mF = ±1. This process is controlled by the quadratic Zeeman term which can be
used to bring the side-modes in resonance with mF = 0 by an off-resonant mi-
crowave dressing of the system [27]. Consequentially, choosing high values of q,
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FIGURE 2.3: By controlling the q parameter of the second order Zeeman shift, we can
bring the three hyperfine levels in resonance and induce spin-changing
collision. Spin interactions cause a symmetric redistribution of the
atoms from |1, 0⟩ to the side-modes and back. Tuning q far off-resonant
suppresses this spin interactions. Figure adapted from [16]

i.e. no dressing of the system, suppresses this internal spin dynamics and allows to
consider density-density interactions as the dominant process.

2.3.3 Thomas-Fermi approximation

In an experimental system with a sufficiently high atom number (104 − 106) the in-
teraction energy dominates the kinetic energy, which can therefore be neglected in
eq. 2.12. The density profile of the gas then takes the form

n(r) =
µ − Vext(r)

g
(2.16)

Many experimental setups provide approximately harmonic potentials. In the sim-
plistic 1D case they yield Vext = mω2x2

2 , with oscillator frequency ω and position
x. From that the Thomas-Fermi radius of the condensate, i.e. the radius at which
n(r = RTF) = 0, can be calculated to be

RTF =
1
ω

√
µ

2m
. (2.17)

Plugging in the chemical potential in terms of the Thomas-Fermi radius in eq. 2.16
yields the inverted parabolic form of the condensate density, with its peak at the
point where Vext = 0.
It is also instructive to consider a cylindrical symmetric harmonic potential, confin-
ing the atoms also in radial direction [28], resembling the situation our dipole lasers
provide in the last step of our BEC generation (see sec. 3.1.2). The potential can be
written as

V(x) =
mω2

⊥
2

(x2 + y2), (2.18)

with trapping frequency ω⊥ = ωx = ωy (trapping forces act along xy-plane). As-
suming that the energy corresponding to this frequency exceeds all relevant energy
scales of the atomic gas, i.e. the interactions as

nc0, nc1 ≪ h̄ω⊥, (2.19)

we can consider the transversal motion to be frozen and the system to be kinetically
quasi-1D. The characteristic length scale is the harmonic oscillator length

a⊥ =

√
h̄

mω⊥
(2.20)
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FIGURE 2.4: Mean-field phase diagram capturing the four different ground states of
a spin-1 system defined by the spin interaction parameter c1 and the
quadratic Zeeman shift q. Figure adapted from [16]

In this scenario, a 1D version of the GPE can be considered while an effective inter-
action constant contains the information about the scattering events of the atoms in
1 dimensions [29],

g1D =
g

2πa2
⊥

=
2h̄2

ma⊥
(2.21)

2.3.4 Mean-field phase diagram

In order to understand the dynamics of our spin-1 BEC we have to initially char-
acterise the groundstate of our system. The parameter of interest, controlling our
system, is the second order Zeeman shift q. Due to the spin degrees of freedom in
our system, it is possible to define different phases in the parameter space (q, c1).
Only the results and an intuitive picture are presented, in-depth derivations can
be found in [14] and [24]. As discussed in the previous section we can divide the
space spanned by q an c1 at first by the latter parameter defining the type of spin-
interactions inside the atomic species into an ferromagnetic (c1 < 0) and anti ferro-
magnetic (c1 > 0) phase. Further we notice that the energy functional we aim to
minimise includes the spin-interaction term of eq. 2.14 and the magnetic shifts in
eq. 2.13. Since we are interested in an expression of the form ⟨ψ|H|ψ⟩, we can re-
place the spin-operators by their expectation values. The expression for the energy
functional then yields

E = q⟨ fz⟩2 +
c1

2
⟨F⟩2, (2.22)

where the linear magnetic shift has been dropped by a transformation into the rotat-
ing frame of the system. The spin interaction term has a rotational symmetry which
is broken by the linear and quadratic Zeeman effect. For the anti-ferromagnetic case
c1 > 0 the system tries to minimise the spin per particle, thus the favourable spin ex-
pectation value is ⟨F⟩ = 0. For q > 0, the side-modes |1,±1⟩ get shifted "up", hence
the population of the |1, 0⟩-level becomes favourable for the system. This phase is
called polar state. For q < 0 the side-modes are shifted energetically below the |1, 0⟩-
level and hence define the favourable energetic state, with an equal distribution over



10 Chapter 2. Theoretical Background

both levels, called longitudinal-polar state. In the ferromagnetic case c1 < 0 the system
tries to maximise the spin per particle. Using the regime q < 0 we obtain two pos-
sible fully polarised spin states, the easy-axis ferromagnet. The side-modes are again
the favourable choice of the system, but now the spin must be maximised, hence
suppresses the simultaneous population of both levels. For q < q0 = −2n|c1| a
further magnetised state can be identified in the transverse plane, the easy-plane fer-
romagnet, where the spin-interaction term is competing with the quadratic Zeeman
shift. The groundstate is an elongated spin in the transverse plane of the spin-sphere.
Choosing q = −2n|c1| enables the production of spin-changing collisions discussed
in 2.3.2. Intuitively, coming from the polar phase two atoms need to have the energy
n|c1| to be symmetrically transferred to the side modes. A diagrammatic represen-
tation of the different phases can be found in fig. 2.4.

2.4 Manakov Model of Solitons

This section discusses the basics on solitons in a BEC. Once again a general dis-
cussion will be followed by the results necessary to understand the structure and
properties of these objects. All calculations are done in a mean field theory, as this
is sufficient to understand the properties of vector solitons to a good approxima-
tion. An extensive theoretical description can be found in [15]. Further, [30] and [31]
provide additional insights on the underlying models and derivations of the results
presented below.

The idea to study solitons is not new, since they have been first observed and studied
in 1834 by John Scott Russel as non-dispersive waves travelling over long distances
in water [32]. At this time, Russel called these peculiar objects "wave of translation",
later named "solitary wave". The key properties of soltions is a constant velocity with
which they propagate and a stable shape or structure, hence being non-dispersive
wave packets. Later, theoretical calculations described a soliton as the solution of
non-linear differential equations, which allowed them to be interpreted as an emerg-
ing feature in a non-linear dispersive medium, where the non-linearity compensates
the dispersive effects. It appears hence clear that a great interest was found in non-
linear optics, where the systems provide the necessary frame to study solitons. Also
in communication [33], medicine [34] and biology [35] studies have been conducted
and applications found. But it was not only the wave character that arised attention.
The fact that solitons are not subject to superposition and collide elastically, main-
taining their shape and velocity, called for a particle-like description, resulting in the
now commonly used name soliton.

Moving to our system, in which we deal with a spinor BEC, we are particularly
interested in the description of vector solitons, consisting of three distinct compo-
nents. In order to find a proper description, we must include the kinetic as well as
the interaction properties of the atoms, while ensuring that our system provides the
necessary non-linearity. The appropriate Hamiltonian for this has been presented in
sec. 2.3.2. In absence of an external potential (Vext = 0) and the magnetic field shifts
(p = q = 0) and for c1 = 0 the system reduces to the so-called Manakov model [30].
The time-evolution is then equivalent to 2.12, without the potential term, resulting
in the non-linear Schrödinger equation (NLSE)

ih̄∂tψ(r, t) = (− h̄
2m

∇2 +
c0

2
|ψ(r, t)|2)ψ(r, t). (2.23)



2.4. Manakov Model of Solitons 11

The non-linearity is provided by the density-density interaction, mediated by the
interaction constant c0, and the wave-function is generally interpreted as the spinor
field introduced in 2.3.2 as ψ = (ψ+1, ψ0, ψ−1)

T in the mean-field sense. Experimen-
tally, this is achieved by choosing a large quadratic Zeeman shift q, to be deep in
the polar phase. This effectively suppresses any internal spin dynamics, i.e. spin
changing collision, by making this effect off-resonant. Then, we can neglect the spin
interactions, if we consider that c1 is much smaller than c0, as explained in sec 2.3.2.
In that fashion the only relevant interaction process are density interactions.

Vector soliton solutions were derived using e.g. inverse scattering theory (IST)
([36],[37]). The solitons we are interested in include so-called dark and bright soli-
tons, which can be found in systems with repulsive inter-atomic interaction c0 > 0.
Originating from optics the terminology can also be understood in the BEC frame-
work as local density depletions (dark) and density peaks (bright) in the condensate.
We will consider only the 1D case in which the condensate is transversely tightly
confined by a sufficiently high trapping frequency ω⊥ as discussed in sec. 2.3.3.
This ensures that only the lowest oscillator mode is occupied in transversal direc-
tion. The solutions for the vector soliton components presented here are adapted
from [16] and read

ψ±1(x) =
√

n0c±1η sin(α) sech[κ(x − x0)]eiφkin and (2.24)

ψ0(x) =
√

n0(i cos(α) + sin(α) tanh[κ(x − x0)])eiφs . (2.25)

The soliton components are distributed over the different magnetic substates mF of
the F = 1 manifold, where the bright components sit in the side modes |1,±1⟩ and
the dark component in |1, 0⟩. Together, they form a so-called bright-dark-bright soli-
ton (BDB). κ is the inverse soliton width and is also included, together with the ve-

locity v and chemical potential µ inside the parameter η =
√

1 − (h̄2κ2 + v2)/(mµ).
The chemical potential can be introduced by subtracting it from eq. 2.23, effectively
subtracting the phase evolution of the condensate caused by it. The position of the
soliton is characterised by x0. Furthermore, α is linked to tan(α) = h̄κ/mv and c±1
are complex amplitudes, satisfying |c1|2 + |c−1|2 = 1, carrying the information about
the distribution of the atoms among the bright components. It can be understood as
the spin polarisation of the soliton system which is represented by the spin polari-
sation vector c = (c1, c−1)

T. As before, φs denotes the relative phase between the 0
and ±1 component, equivalent to the spinor phase. The new phase appearing here,
φkin, is the kinetic phase of the bright components and is defined as

φkin =
mv
h̄
(x − x0)−

1
h̄
(

mv2

2
− h̄2κ2

2m
)t. (2.26)

From the wavefunctions, the atom number densities in the different levels as well as
the density of the entire system can be calculated by

n±1 = |ψ±1(x)|2 (2.27)

n0 = |ψ0(x)|2 (2.28)

n = ∑
m=0,±1

|ψm(x)|2 (2.29)

The condition ensuring the existence of these 3-component solitons, called non-
singularity condition, gives a bound to the velocity and width by the chemical po-
tential of the background density and is formulated as

h̄2κ2

m
+ mv2 ≤ µ. (2.30)
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This is equivalent to the parametrisation of a circle where the radius is given by the
chemical potential. Equality of this equation is equivalent to only a single compo-
nent dark soliton, inequality gives rise to the multi-component solutions. However,
eq. 2.30 poses a condition on the possible properties of a soliton. For a fixed chemical
potential, increasing the width of a soliton corresponds to a reduction of the velocity
and vice versa.

The soliton density width can be calculated via the FWHM of the sech-function
defining the bright component (eq. 2.24) to be

FWHM =
2ln(1 +

√
2)

κ
. (2.31)

In contrast to single component solitons, the additional spin degree of freedom three
component solitons inherit make them suitable to not just study their macroscopic
properties, but also use them as a platform for spin physics. As presented in [17],
preparing two solitons with a specific Larmor phase and letting them collide leads
to different polarisations, depending on the initial phase difference. Since their in-
depth study begun in recent years, it is a currently progressing field where the reve-
lation of new features can fuel future research.
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Chapter 3.

Experimental Setup

After laying the theoretical groundwork, we will now discuss the experimental ba-
sics of the spinor BEC experiment which is used as a platform for the generation of
vector solitons. The following chapter will describe the experimental cycle we em-
ploy to cool our Rubidium atoms starting at room temperature to achieve the quasi
one-dimensional spinor BEC and introduce some general tools necessary to manip-
ulate the condensate to our needs.

Experimental Cycle
A usual experimental cycle includes three steps. First the BEC is generated, then we
let the system evolve in time in order to allow for dynamical processes, followed by
the readout. Each experimental cycle is fixed at 37s.

The road to a BEC follows in the main stages the standard sequence, which has
been described in our system in various previous works (e.g. [21], [38]) and com-
bines different cooling and trapping techniques necessary to overcome the temper-
ature limits of the preceding steps in an ultra-high vacuum chamber. The atoms get
transversely confined in a 2d-magneto optical trap (2d-MOT) from where they are
loaded into a 3d-MOT after passing through a differential pumping stage connect-
ing the 2d-MOT chamber with the ultra-high vacuum chamber. The atoms undergo
then a sub-doppler cooling step in an optical molasses, followed by a magnetic trap
with a time-orbiting potential (TOP trap), which allows for evaporative cooling of
the atoms by lowering the strength of the TOP trap. In the final step the atoms are
loaded into an optical dipole trap formed by two red-detuned, crossed and focused
laser beams. The laser power is then reduced so that the atoms can further evaporate
until we are left with the BEC. Adjusting the timing of this ramp allows us to vary
the atom number. As the dipole laser we use the multimode Yb:YAG laser at 1030
nm , which is split to generate the so-called waveguide (WG), in which the atoms
spread in longitudinal direction and the XDT (crossed dipole trap). After condensa-
tion, the dipole lasers can be ramped up again (usually only the waveguide) to load
the BEC into the final configuration. For the quasi-1d confinement into the elon-
gated trap we use (ω∥, ω⊥) = (1.6, 160Hz) [16] for the longitudinal and transverse
trapping frequencies. A sketch of the final condensate is presented in fig. 3.1) and
usually contains ∼ 104 − 105 atoms in our BEC at a temperature of 20nK [38] .

3.1 Trapping and cooling

This section gives an insight into the working principles of two general concepts in
the process of atom cooling and trapping, namely magnetic traps and optical dipole
traps.
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4-9

FIGURE 3.1: The final trap geometry of the waveguide provides an elongated con-
densate, tightly confined in transversal direction. Figure adapted from
[39]

3.1.1 Trapping with magnetic fields

In our experiment we use magnetic fields in combination with lasers to generate
the magneto-optical traps at the early stages of the cooling process. Yet another
application is to combine magnetic fields with a time orbiting potential, generating
an effective harmonic potential used as the first evaporation stage. This technique
determines inherently the state in which we trap the atom. To arrive there one has
to note that the coupling between a magnetic moment m and magnetic field B leads
to the energy shift

∆E = −mB. (3.1)

The consequence is, that if the magnetic moment and the magnetic field are aligned
parallel, the energy shift will be ∆E < 0, so the atom will have its minimum energy in
a high field. These atoms are called high-field seeker. If on the other hand the magnetic
moment and field are aligned anti-parallel, the atom will have its minimum in a
low field, since ∆E > 0. This means that using harmonic potentials with a unique
minimum as a magnetic trap (i.e. the TOP-trap in our experiment) solely catches the
low-field seeking states. In our case we end with the atoms in the mF=1 = −1 state.

3.1.2 Dipolar forces

Optical dipole traps are important tools for cold atom experiments in general. Its
particular importance for our experiment stems from the fact that by trapping atoms
with them, the spin is kept as a degree of freedom, allowing us to do spin physics
with the resulting BEC. Otherwise, the generation of the vector soliton would not be
possible.

As mentioned before, we use them as a last stage of evaporative cooling as well as
to load the BEC into the final geometry. But we can also utilise them to form vertical
"barriers" and confine the BEC further in longitudinal direction. When describing
dipolar forces conceptually, the dispersive interaction between the gradient of the
light field and the dipolar moment d of the atom created by this light field is of
interest - hence the name. The light field can be described by its intensity in terms of
the electric field amplitude, I = 2ϵ0c|E|2. The dipolar force itself can be formulated
as the gradient of an interaction potential as

Fdip = −∇Udip(r), (3.2)



3.2. Applying control over the system 15

with the force acting towards the centre of the field for Udip < 0, so in this case push-
ing the atoms into the intensity maximum, resembling the trap. In the opposite case,
Udip > 0, the atoms get pushed out of the field, corresponding to the barrier. The
interaction potential comprises the coupling between the electric field and dipole
moment and yields

Udip = −1
2
⟨dE⟩, (3.3)

with the time average eliminating the rapidly oscillating terms. Following the calcu-
lations in e.g. [40] one arrives at an expression for the interaction potential in terms
of the light field detuning ∆ = ω − ω0 (ω0: resonance frequency),

Udip(r) =
3πc2

2ω3
0

Γ
∆

I(r). (3.4)

Γ describes the on-resonance damping rate and originates from radiative loss of the
system described by the Lorentz model. This treatment becomes important because
the interaction between the light-field and atoms can be described semi-classically
by the driving of a quantum mechanical two-level system. Hence, the previously ex-
cited atoms are able to re-emit photons, so to spontaneously decay into the ground
state. Since these implications are not of further importance for this thesis, an ex-
tensive discussion is omitted. Looking at eq. 3.4 it becomes clear that choosing
the detuning of our dipole laser appropriately, we can either create the trap by red-
detuning (∆ < 0) or the barrier by blue-detuning (∆ > 0) the laser. Additionally,
adjusting the intensity of the laser, we can deepen or flatten the potential, allowing
it to be used for the evaporation of atoms and set the trapping frequencies.

3.2 Applying control over the system

After cooling the Rubidium gas we can employ different techniques to manipulate
the internal states of the atoms. More precisely do we want to prepare different ini-
tial states, for example a polar state (see mean-field phase diagram fig. 2.4) or realise
solitons experimentally. First the internal level structure of 87Rb will be discussed,
before presenting the different processes necessary to control these states.

3.2.1 Level structure of 87Rb

The internal electronic groundstate can be either described in the fine structure pic-
ture, which results from the coupling of the electronic spin S and and its angular
momentum L as

J = L + S, (3.5)

or in terms of hyper-fine splitting which couples the electrons total angular momen-
tum to the angular momentum of the nucleus I as

F = J + I. (3.6)

Because of the low offset field in our experiment this is the appropriate coupling,
so this work considers solely the latter picture. For 87Rb the angular momenta are
J = 3/2 and I = 1/2, resulting in the electronic groundstate F = 1 and F = 2, de-
pending on whether they are oriented parallel or anti-parallel. Further it is worth to
notice that every electronic angular momentum allows its corresponding magnetic
moment to couple to an external static magnetic field, revealing the 2F + 1 magnetic
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FIGURE 3.2: The level structure of the hyperfine manifolds F = 1, 2 including the
respective energy spacings is shown. Due to the different signs of the
g-factors, the levels are split in opposite order.

sublevels. For small fields this is the hyperfine structure equivalent of the linear Zee-
man effect, which has been presented in eq. 2.13. Without external magnetic fields
these levels are degenerate. For small energy shifts compared to the hyperfine split-
ting the interaction Hamiltonian for magnetic fields applied in the z-direction can be
written as

HB = µBgFFzBz, (3.7)

with the Bohr magneton µB and the hyperfine Landé factor gF. For 87Rb the signs
of g1 and g2 differ, inverting the energetic order of the magnetic sublevels in these
two hyperfine manifolds as shown in fig. 3.2. The magnetic offset field used in our
experiment responsible for this splitting is B ≈ 0.894G, which is actively stabilised
to a very high degree. A magnetic sensor is implemented close to the chamber which
notices drifts of the magnetic field and feeds its signal into a PID loop. Temperature
drifts on the scale of roughly one hour lead to a drift of the setpoint. To that end,
a Ramsey spectroscopy is measured every hour, which uses the phase evolution
of the atoms to monitor possible drifts in the magnetic offset field and to adjust
the setpoint. The stabilisation process is crucial since the energy gap between the
hyperfine levels depends on the strength of the magnetic field and therefore has an
influence on the coupling between these states. All the states we are interested in
can be prepared using solely the F = 1 manifold. However we do need the F = 2
manifold to be able to extract the desired observables (see section 3.2.5). A depiction
of the level structure can be found in fig. 3.2.

3.2.2 Microwave fields

Microwave fields serve different purposes in our experiment. The relevant appli-
cation for this thesis is use them for the transfer of populations between the two
manifolds F = 1 and F = 2. This is particularly important for the implementa-
tion of the readout schemes described in 3.2.5. Both manifolds are separated by
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FIGURE 3.3: Sketch of the experimental setup including the glass cell with the
crossed dipole lasers (XDT and waveguide) providing the final trap-
ping geometry of the condensate, the mw-coil inducing transitions be-
tween the hyperfine manifolds F=1 and F=2 and the rf-coils, generating
spin rotations and coupling the hyperfine levels mF. Figure is adapted
from [21].

an energy gap of ∼ 6.8GHz as shown in fig 3.2. The MW radiation includes all
three polarisations necessary to couple the different Zeeman levels of both mani-
folds, |F = 1, mF=1⟩ ↔ |F = 2, mF=2⟩ and hence couples all possible transitions. By
tuning the frequency resonant to a desired transition we can drive solely this specific
transition because the linear Zeeman shift is large enough. The coupling of two lev-
els can be described using the two-level system and the spin-1/2 operators, where
we effectively drive Rabi oscillations between the two levels. Adjusting the pulse
duration allows us to precisely determine how much of the population we want to
transfer, up to a total population inversion. This can be done very reliably.

3.2.3 Radio-frequency fields

We utilise magnetic rf-fields and pulses to mediate the transfer of atoms between the
magnetic levels of a hyperfine manifold F. In that way we can induce spin rotations,
mandatory for the generation of solitons (see sec. 5.1) and again for the implementa-
tion of the readout schemes (see sec. 3.2.5). In order to generate the required rf-fields
a setup consisting of two magnetic coils is used (see fig. 3.3), where both separately
can produce the needed oscillating magnetic fields. A detailed discussion and pre-
sentation of the rf-setup can be found in [21] and only the key ideas are discussed
in the following. The oscillating fields are transversal to the offset field, hence the
Hamiltonian governing this dynamic includes the linear Zeeman shift and the trans-
verse rf-component, H = HB +Hrf, with

ĤB = h̄ωLŜz (3.8)

Ĥrf = 2h̄Ωrfcos(ωrft + ϕrf)Ŝy. (3.9)

The second Hamiltonian describes the effect of a linearly oscillating magnetic field
B = B cos(ωrft + ϕrf)ey on the system and the rotation direction can be chosen to be
around the Ŝx-axis as well. As mentioned in section 2.3.2 the linear Zeeman term re-
sults in a Larmor precession around the magnetic field in z-direction with frequency
ωL. Transforming into the rotating frame of this system [41] allows us to get rid of
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the time-dependence, i.e.

Ĥrot = e−iωrftŜzHeiωrftŜz

= h̄Ωrf[cos(ϕrf)Ŝy − sin(ϕrf)Ŝx]− h̄δŜz,
(3.10)

where the detuning δ = ωrf − ωL has been introduced. To arrive at eq. 3.10 the
quickly oscillating terms containing 2ωL are omitted in the rotating wave approxi-
mation. If we use a field resonant with the Larmor frequency , δ = 0, the spin is
solely rotated along a transverse axis, and the specific axis set by ϕrf. Equivalently,
an off-resonant rf-field also maintains a rotation around Ŝz.

3.2.4 Local Control

In addition to global spin rotation discussed before, we are also able to perform
local spin rotations. To generate these local spin rotations we utilise a phenomenon
generated by the interaction between the electric field of a laser and the atoms in our
cloud, called Stark effect. The Hamiltonian can be written, following [16] and the
derivation in [42] as

ĤStark = −1
4
(αs(E∗

1E2)1̂ − iαv

2F
(E∗

1 × E2)F̂) (3.11)

It comprises two terms, the scalar Stark shift and the vector-Stark shift and their
respective scalar and vector polarisabilites αs and αv. Further, the classical electric
field components Ej = EjEei(ωt+ϕ) and the spin operator F̂ (see eq. 3.6) have been
introduced. The scalar term can be used to derive a different picture of the dipolar
traps, but is not of importance for the further discussion. Our laser can be assumed
to be well aligned in the y-direction, hence the polarisation vector of the electric field
is defined in transversal direction. The contribution of the vector Stark shift in eq.
3.11 acts like a fictitious magnetic field ([42], [43]) of the form

Bfict =
iαv

8µBgFF
(E∗

1 × E2). (3.12)

and is not solely an effect of the light-field but emerges merely from its interaction
with the electric dipole of the atom. Although called fictitious magnetic field, it is
as real as any other magnetic field, just that it is created by a laser. The fictitious
field is parallel to the propagation of the light and adds vectorially to the magnetic
offset field, aligned in z-direction. Since this effect is sufficiently small, it can be
neglected here. By choosing equally circularly polarised light for co-propagating
field components, the amplitude of this fictitious field is maximised. By inserting
the expressions for the electric fields in eq. 3.12 we can rewrite it to

Bfict ∝ (E2
1 + E2

2 + 2E1E2cos(∆ω + ∆ϕ))ey, (3.13)

[16]. The phase difference ∆ϕ, as well as a the frequency difference ∆ω can be ac-
complished technically by an amplitude modulation of the local control laser, which
results in different frequency components for the electric field components. The fic-
titious field decomposes now into a static term Bfict

0 , originating from the first two
terms in eq. 3.13 and an oscillating term Bfict

rf . The oscillation frequency is deter-
mined by the frequency difference of the electric field components ∆ω and when
chosen at the Larmor frequency the resulting magnetic field can be utilised to in-
duce transitions similar to the rf-transitions discussed in sec. 3.2.3. The important
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difference here is though, that the rf-coupling of the mF-levels is spatially localised,
hence the name local spin rotation. Intuitively, one can think of this process also as
a Raman transition of the atom via an virtual state.

An illustration of the optical and laser setup essential for the local rotations can be
found in fig. 3.4. For the laser we use the DL pro from Toptica, which allows us to
set its wavelength to 790 nm, tuning out the scalar Stark-shift [44], and leaving solely
the vector Stark-shift in order to generate local spin rotations. In order to stabilise
the laser’s intensity a PID control loop is used which adjusts the RF signal of the
acousto-optic modulator (AOM). To do so the beam gets fed into the loop by par-
tially directing it to a photodiode and a sample-and-hold (S&H) circuit ensures that
the regulated power gets applied during the next cycle. The AOM can also serve
as a switch turning the beam on the atoms on and off and additionally modulates
the beam amplitude at the Larmor frequency ωL by generating side-modes in the
frequency spectrum at ±ωL/2. For the modulation we use different arbitrary wave
generators (AWGs). They allow us in general to use arbitrary functions and frequen-
cies in a range of applications and play a crucial role when it comes to driving the
AOM and crossed AODs in front of the experiment. The necessary electronic signal
path to drive the AOM to our needs can be seen in fig. 3.5. Afterwards the laser gets
coupled into a fiber and is polarisation cleaned by a partial beam splitter (PBS) be-
fore it is send to the AOD setup in front of the experiment, where the laser is steered
onto the atom cloud.

3.2.5 Accessing spin observables and imaging

For the experiments discussed in the later chapters the main interest lies in extracting
the spin information of our system. The Fz component is easily accessible, since the
alignment of the magnetic offset field is chosen in z-direction and hence naturally
inherits this information. Calculating it from the level populations in F = 1 yields

Fz =
N+1 − N−1

Ntot
. (3.14)

After we employed the necessary rotations in order to map the desired spin observ-
ables we turn off the trap, use a Stern-Gerlach magnetic field gradient with a 2 ms
time of flight to spatially separate the magnetic hyperfine states mF and apply high-
intensity absorption spectroscopy to image the atom cloud. Further details on the
method and calibration can be found in e.g. [45] and [46]. We first image the F = 2
manifold by applying a 15 µs pulse of resonant light via the D2-line. After a 1 ms
gap, the atoms in F = 1 get imagined utilising the same state as before. In that
manner the different levels are imaged consecutively onto a CCD. As a part of the
imaging process the photons get scattered or absorbed by the cloud, so the result is
basically the shadow viewed from the opposing side, where the density can be cal-
culated from the opacity of the cloud. Consequently, every imaging process destroys
our condensate, encapsulating quantum mechanics notion that we can not measure
and simultaneously preserve the system. From that we can extract the 1d densities
of the atoms in x-direction on one pixel in each hyperfine level and use them for the
calculation of the observable in e.g. eq. 3.14. The CCD contains 5 pictures, of which
two are the images containing atoms. For both hyperfine states a reference picture
with no atoms is taken. These are used later for the processing of the data to reduce
the imaging noise and remove fringes on the pictures (see appendix B).
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a)

b)

FIGURE 3.4: Optical Setup for the generation of local spin rotations with a) the AOM
buildup for the generation of a power stabilised beam and b) the align-
ment in front of the glass cell. Figure is adapted from [16].
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FIGURE 3.5: Signal path necessary for the AOM modulating the incoming beam
with the Larmor frequency ωL. The signal entering the control loop
is regulated by a PID to a setpoint of 6.5 V and fed into the sample-and-
hold (S&H). The AWG signal timing is chosen such that the signal is fed
for the next experimental cycle as the attenuation level into the voltage
controlled amplifier (VCA).
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Chapter 4.

Noise Reduction of local spin
rotations

At the heart of ultracold atom physics lies the ambition to reveal and probe quantum
mechanical processes. One such process is prominently represented by the presence
of quantum correlations which is a precursor for the stricter condition of entangle-
ment between quantum objects. The challenge of observing quantum correlations in
any experimental system lies in the fact that the scales on which they are expected
to occur are notoriously small and usually overshadowed by classical contributions,
such as thermal fluctuations or imaging noise. Aiming at the study of solitons, the
setup used for their generation, i.e. the local rotation setup, therefore has to guar-
antee a minimal contribution of such classical fluctuations and a reproducibility of
the generated state. This chapter will present an approach to effectively reduce the
fluctuation level close to the classical limit imposed by a coherent state in section
4.1. Afterwards, the stability of the rotation angle will be investigated shortly and
a model for the characterisation of the shot noise limit will be discussed in sec. 4.2.
Additionally, a post processing routine is implemented in sec. B to eliminate the
statistical noise originating from the imaging. Finally, the comparison of the experi-
mental data with the theoretical expectation is then presented in 4.2.4.

4.1 Technical realisation

4.1.1 How to broaden the effective laser beam on atoms

The question of how to reduce noise in the preparation of solitons is deeply linked to
the question of how to reduce the noise for local rotations in general. The necessity to
look at this step in our experiment became clear in [16], where the fluctuations in the
rotation amplitude, after rotating the initial state |1,−1⟩ with a π/2-pulse, was in-
vestigated. A π/2 pulse transfers the state into the transverse spin plane of the spin
sphere, where the average spin in z vanishes, ⟨Fz⟩ = 0, but their fluctuations reach
a maximum. If the rotation amplitude fluctuates, the final state fluctuates around
the ideal π/2 rotation state. In addition to this empiric approach, a more systematic
approach has been conducted to reveal the different noise sources, determine the
component with the highest impact and develop a scheme to reduce it in our system
[47]. The main focus was put on the comparison between intensity fluctuations of
the local rotation laser and positional fluctuations. It was found that the positional
fluctuations are the dominant source, which originate from the relative motion be-
tween the Gaussian beam of the laser and the condensate in vertical direction. This
can emerge due to thermal drifts or vibrations in the optical setup. The optical setup
is presented in fig. 3.4 and is in its construction identical to the ones used in the
before mentioned works. The two acousto-optic deflectors (AODs) at the end of the
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FIGURE 4.1: Rough illustration showing the sum of overlapping Gaussian functions.
The width corresponds to the RMS width of σ = w/2 = 3.5 µm of the
Gaussian beam used in the experiment. In the upper row, the distance
between the Gaussian functions is chosen to 8 µm, for which the com-
bined profile contains small "wiggles". By adjusting the distances to
∼ 5.8 µm a seemingly flat profile is obtained.

path are used to enable control over the horizontal and vertical position of the beam,
respectively. In AODs, an incoming laser beam gets deflected by a sound wave,
which is generated by a RF-driven piezo actuator into a crystal. The scattering angle
then depends on the frequency of the sound wave [48], which we can control exter-
nally (see sec 3.2.4). Hence, the laser can be steered by changing the piezo frequency.
With this in mind the approach has been to artificially broaden the beam by using a
frequency ramp with the vertical AOD. It was shown that this scheme reduced fluc-
tuations in Fz, whereas the comparison to the coherent state fluctuations revealed
still a high deviation (factor 10) from this quantum limit.

The problems in the original setup might occur due to the different rotation am-
plitudes induced by spatial profile of the laser, originating from the flanks of the
Gaussian function. The implemented frequency sweep in vertical direction has been
found to result just in a broadened Gaussian profile, originating from a smoothly
peaked Gaussian beam. Hence modulating the beam in that manner still maintains
its flank structure. Sweeping the AOD frequency can further result in interference
between two beams which originate from a simultaneous deflection of the incom-
ing beam at different angles. The approach chosen in this thesis here is to modulate
the vertical AOD with pulsed frequencies, rather than sweeping it. The advantage
here lies in the fact that we overlap several Gaussian beams at different positions,
theoretically resulting in a profile resembling approximately a plateau or rectangular
function over an extended spatial area, rather than a Gaussian (see fig. 4.1). On the
edges we still obtain Gaussian flanks, but we can suppress their effect by setting the
plateau wide enough. To do so, a frequency interval [ fc − ∆ f , fc + ∆ f ], symmetric
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Timetpulse = trot / 6

Time
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fAOD-V = f2 fAOD-V = f3fAOD-V = f1

toff toff
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Acoustic Wave
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FIGURE 4.2: Upper row: The pulse timings to generate consecutive laser pulses in
vertical directions are shown. The modulation width ∆ f and number of
pulses Npulse define the frequency spacing through δ = 2∆ f /(Npulse −
1). The right figure sketches the overlap of the laser passing through
the AOD and two sound waves of different frequencies, if the pulses
are applied without a buffer time.
Lower row: The pulse timings as discussed in sec. 4.1.3 are shown. An
additional AOD buffertime is used to prevent the simultaneous overlap
between two sound waves and the incoming beam. A sketch is shown
on the right.

around the vertical frequency of the "best" overlap fc, is divided into 6 equidistant
steps with a frequency spacing of δ f = 2∆ f /5. The quantity ∆ f will be referred to
as modulation width in the following. The specific frequencies used for the vertical
deflection are then calculated by

fm = fc − ∆ f + mδ f , (4.1)

with m = [0, .., 5]. To keep the total rotation time fixed to a desired value trot, we di-
vide it into 6 equal steps as well, so tpulse = trot/6. The sketch of the pulse sequence
is shown in fig. 4.2 in the upper row.
This process is comparable to modulating the AOD’s signal directly, in order to get
a rectangular function by choosing an appropriate RF signal. To find this function
the convolution between the incoming Gaussian beam b and the AOD signal s must
be considered. The rectangular function is then calculated by the time Fourier trans-
form of this convolution, rect = F (s ∗ b). The rectangular function is then obtained
by applying a sinc-function driving the AOD. Only the sinc-modulation of the AOD
would eliminate the Gaussian flanks and result in a rectangular function. Yet an-
other approach would involve the application of e.g. cylindrical lenses.
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4.1.2 Calibrating the vertical AOD’s frequency modulation

Implementing the previously introduced pulse sequence requires a calibration of the
spatial pulse separation, to ensure a plateau-like structure is achieved, while the dips
in between the peaks are minimised "sufficiently". This is done using the frequency
modulation in horizontal direction, since only in this case we are provided with a
spatial profile of the different pulses on the atoms. Assuming that the AOD fluctua-
tions can be treated equally in vertical and horizontal directions allows us to transfer
the frequency calibration to the final vertical modulation. The approach is to mea-
sure the 6-pulse scheme in different configurations of ∆ f , to allow for an estimation
of the spatial shift of the Gaussian peaks. We want to determine a relation between
the frequency difference δ f = fi − f j and the distance between two local rotation
peaks, to be able to later tune in a desired distance by adjusting the frequency spac-
ing in the AOD signal. As a measure we therefore use the change in the distance
between two neighbouring peaks,

dij(δ f ) = |x( fi)− x( f j)|, (4.2)

where fi = { f1, ..., f6} (i ̸= j) are the different frequencies used in the AOD to shift
the beam along the cloud and generate the 6 pulses. The absorption images are
shown in fig. 4.3. Using the average distance for each ∆ f , we show also in fig. 4.3
that a linear dependence emerges between the distance and frequency spacing. The
slope defines the rate at which the distance changes with δ f and provides a tool to
adjust the distance freely. The rate we obtain from a linear fit is

δd = 94.1
px

MHz
= 39.5

µm
MHz

, (4.3)

where a 1px = 0.42 µm was used, to obtain the latter expression. This size corre-
sponds to the pixel size at the position of the atoms. Aiming at reducing the wiggles
on the profile to 1% we must choose a frequency spacing resulting in a peak-to-peak
distance of dpp = 5.8 µm1. This gives us finally a frequency spacing of

δ f̄ =
dpp

δd
= 0.147 MHz. (4.4)

Using this frequency spacing gives us the modulation width ∆ f = 0.368 MHz. Ap-
plying it in horizontal direction results in a profile, which still consists of small wig-
gles but otherwise resembles the desired flat profile over an extension of ∼ 20 µm,
which exceeds the vertical extension of the cloud by factor of 2 (see horizontal ap-
plication in fig. 4.4) and is thus applied for the vertical frequency modulation in the
next step. The beam width extracted indirectly through the rotation profile is larger
compared to the actual beam width of the laser. This originates most likely from an
expansion induced by the repulsively interacting atoms during a short time of flight
phase between the pulse and imaging ([16], [49]). It can also be seen that we can not
reach the maximum transfer fraction of the local spin rotation, i.e. Fz,max < 1. This
can be explained by the presence of the static offset field due to the laser, effectively
tilting the axis on which the observable is projected. A comparison with [16] shows a
good agreement with the calculated transfer fraction of ∼ 0.9. There, the signal was
modulated with a square wave function though, whereas in our case we used a sine-
modulation. Further, the horizontal profile must be taken with caution and is just a
visualisation of the indeed flattened and broadened profile, since we do not have any

1This value was estimated varying the peak distances in the model shown in fig. 4.1
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a)

b)

FIGURE 4.3: a) The absorption images of the 6 pulses in horizontal direction with
increasing modulation width ∆ f are shown. The peak positions for
each setting have been extracted.
b) The distances between the peaks for different frequency spacings ∆ f
were used for a linear fit to estimate the step size δ f = 2∆ f /5 needed
to set a certain spatial separation of the different beam pulses. To this
end the slope m = 94.1 px

MHz was used .
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FIGURE 4.4: a) Comparison between a single beam centered (dashed black line) on
the condensate and the 6 beams (blue line) applied in horizontal direc-
tion with an trot = 80 µs. Pulsing the beam results in a profile which ex-
tends its maximum to a plateau ranging over ∼ 20 µm, whereas the sin-
gle beam shows a narrow maximum with prominent Gaussian flanks.
b) The spin rotation amplitudes for the new scheme applied in verti-
cal direction and for increasing rotation time show the emergence of a
broader flattened profile in the case of 6 consecutive beams. Due to the
increased strength the rotation back to the initial state starts at earlier
rotation times.
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FIGURE 4.5: Left: The rotation amplitudes in the Fz profile for different center fre-
quencies fAOD−V,0 for 6 beams and one beam are compared. Although
the new rotation scheme broadens the profile, an amplitude modula-
tion, i.e. spike structure, can be seen. This originates from interference
between two consecutive AOD frequencies and the laser. The wiggles
lead to fluctuations on the scale of 30% around the anticipated value
Fz = 0.
Right: The fluctuations, given as the standard deviation, can be re-
duced to a consistent level over an extended area compared to the
level of a well-aligned single beam and even slightly below at the
point of best overlap with the condensate ( fAOD−V ≈ 99.9 MHz). For
fAOD−V < 99.75 MHz, the fluctuations caused by the single beam re-
duce strongly, because it does not overlap with the condensate any-
more.

control of the vertical positional fluctuations in this scenario. It must also be noted
that the results were obtained from a manual estimation of the peak positions at that
time. A more precise analysis would involve the fitting of Gaussian functions to the
density profiles, in order to extract the peak positions more accurately.

In the next step we compared the local rotation profiles between the newly im-
plemented rotation scheme and a single centred beam. For this measurement we
performed the local spin rotations on the atoms sitting in |1,−1⟩, so starting with an
aligned spin Fz = −1. Applying a π/2- pulse rotates the spin into the transverse
plane where Fz vanishes and consequently a π-pulse results to Fz = 1. To show the
effectiveness of this scheme, we measure the spin rotation amplitudes for different
frequencies of the vertical AOD fAOD−V. This means we use a different vertical po-
sition of the single beam with a frequency fc and apply then for each fc also the 6
beams modulation. Its extended profile should now compensate the poorly aligned
position of the single beam, where it just partially overlaps with the condensate, still
providing us with a high amplitude. In fig 4.4 we measured the rotation amplitude
for different rotation times.2 An increasingly flatter profile is indeed observed as an-
ticipated, where a high rotation amplitude can be seen over an extended frequency
space. At fAOD−V = 99.9 MHz also the single beam reaches a maximum rotation

2The power of the vertical AOD is set to PAOD = 0.38 V for the single beam and PAOD = 0.8 V for
the 6 beams as amplitudes of the signal coming from the function generator, to obtain a similar rotation
angle in the region of best overlap between the single beam and condensate. The signal then passes a
switch and is amplified before entering the AOD.
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amplitude due to its good overlap with the condensate. For τ > 110 µs the ampli-
tude obtained from the 6 separate rotations declines and falls below the case of just
one beam. The higher rotation power results in an earlier rotation back to the initial
state, corresponding to a rotation angle α > π. In fig. 4.5 a rotation time of τ = 46 µs
is chosen, which resembles approximately the π/2-rotation. Although the effective
vertical region of spin rotations increases, we observe a spike structure around the
intended amplitude Fz = 0. The amplitude Fz spans a range of ∆Fz ≈ 0.6. A detailed
discussion and solution is presented in sec. 4.1.3. The effect on the fluctuation of the
local rotation is visualised in fig. 4.5. As anticipated, we can reduce the fluctuations
in case of the 6 beams slightly below the value originating from a single well-aligned
beam over a larger frequency range.

4.1.3 Preventing interference between AOD pulses

So far, the signals for the AOD, steering the beam vertically, have been set without
considering any relaxation times for the crystal. A problem originating from this is
the simultaneous overlap between the laser light, passing through the AOD, with
the already passing wave, as well as the newly incoming wave. As a consequence
the laser would get deflected partially in two different but similar angles, result-
ing in an unwanted simultaneous spin rotation of the atoms at different positions
with hardly controllable amplitude. Further, the deflected beams can overlap and
interfere destructively, which could inflict a modulation of the rotation spectrum. To
avoid this effect, we therefore want to ensure that the preceding sound wave fully
traversed the beam (see sketch in fig. 4.2 on the right). As an initial rough estimation
of the needed AOD buffer time we use the propagation speed of the acoustic wave
and the size of our laser beam. Since it fills out the aperture of the AOD built into
our setup [49] we can use its aperture size for this calculation. We use the 2-axis
shear mode AOD DTSXY-400-780 from AA Opto-Electronic, which provides us a
shear mode velocity of 650 m/s. The beam-width of the laser after the fibre coupler
is bw = 3.88 mm. To ensure that a wavepacket fully traversed the beam, the aperture
size, s = 4.2 mm is used. Hence the needed time calculates to

toff =
s

vshear
= 6.5 µs. (4.5)

This value can be compared to the results obtained from experimentally testing dif-
ferent buffer times. For the implementation of the buffer-time into our pulse scheme,
the time interval for each local rotation pulse was extended by toff, to ensure that the
total effective spin rotation time remains preserved (see lower row in fig. 4.2). The
total rotation time is now

ttot = 6(trot + toff). (4.6)

In fig. 4.6 the Fz amplitude for a π/2 rotation and different buffer times is shown.
We see that the modulation of the profile gets seemingly reduced for an increasing
buffertime. Following these result we set the buffertime according to the calculated
value of 6.5 µs for the following measurements. For frequencies fAOD−V > 100 MHz
the overlap between the extended profile and the condensate reduces , resulting in
a reduced amplitude. Nevertheless, the obtained values for the amplitude extend
over a range of 0.15 in the analysed frequency interval, or 7.5% of the entire range.
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FIGURE 4.6: Introducing a buffer time for the vertical AOD to allow the sound wave
to fully traverse the incoming laser reduces the modulation of the Fz
profile and flattens it over an extended frequency range. Further, the
amplitude is reduced from s span of ∼ 0.5 in the case of no buffertime
to span ∼ 0.1 in the case of toff = 6.5 µs.
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4.2 Characterising the noise of local rotations

The following sections aim towards characterising the noise exerted by the new local
rotation setup and to reveal how strong the measured fluctuations deviate from the
ideal case of a coherent spin state. To do so, the stability of the rotation angle will be
discussed briefly, since strong fluctuations in the rotation amplitude would translate
into an insufficient reproducibility of the anticipated state. More emphasis will be
put further on analysing the fluctuations of the Fz spin observable. To do so the
quantum limit of the coherent spin state will be considered as a baseline to which
the experimental data, obtained with the new pulse scheme, will be compared. For
the results discussed below, an optimal reference picture analysis was performed
(see appendix B) to further reduce noise caused by the imaging and fringes.

4.2.1 Coherent Spin States

To develop a model of the measurement statistics and thus the expected shot noise
limit we consider the case of an initial coherent state, in which each atom is prepared
in the same quantum state and fluctuates independently. We will use these states
throughout the next chapters as a reference to compare the measured fluctuations
to.

Coherent states contain the important feature of representing a minimum uncer-
tainty state, i.e. they fulfil the minimum uncertainty relation ∆2A∆2B = 1

4 |⟨[A, B]⟩|2,
here written in terms of two general conjugate observables A and B, hence makes
them a well-suited measure for the standard quantum limit. Assuming that after a
local rotation the character of a coherent state is satisfied, i.e. each atom is rotated
individually, we aim to calculate how far the measured fluctuations diverge from
the expected fluctuations.

To gain a better picture, we can determine the coherent states on the spin sphere,
i.e. its extension due to the natural uncertainty of its spin observables. The only
relevant spin observable in this thesis is Fz, hence the further process will focus on
deriving fluctuations of the combined variable N− = N+1 − N−1. Based on the
derivation for general combined variables of this type given in the appendix A.1,
the fluctuation is given by the variance,

∆2N− = N, (4.7)

and after a normalisation with the total atom number, yields

∆2N−

N
= 1. (4.8)

The equivalent result is obtained for the conjugate spin variables Fx or Fy. Moving
to the normalised standard deviation we obtain

√
∆2N−

N
=

1√
N

. (4.9)

The coherent state and its uncertainty are hence represented on the spin sphere as
a disk with radius 1/

√
N. Consequentially, the size of this state shrinks with an

increasing atom number.
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4.2.2 Rotation Amplitude

The stability of the local rotation setup can be first characterised by answering the
question of how reproducible the prepared state is. An important quantity to analyse
is the rotation angle α. Intuitively, the rotation angle can be thought of as the angle
at which an initial state is rotated on the spin sphere. We can describe a general
rotation of a state |ψ⟩ by considering the time evolution operator Û = e−iΩ(x)Fyt,
with a spatially varying Rabi frequency Ω(x). The rotation is performed around the
Fy axis but could have been chosen as well around any arbitrary axis in the FxFy
plane, due to the rotational symmetry of the spin sphere. The expectation value of
the Fz spin for a state prepared in |1,−1⟩ is in every case the same and calculated via

⟨Fz⟩ = ⟨ψ|Û†FzÛ|ψ⟩. (4.10)

Evaluating this expression, presuming a Gaussian Rabi frequency profile, i.e. Ω(x) =
Ω0e−x2/2σ2

unfolds the Fz projection to be intrinsically linked to the rotation angle
α = Ω0t as

⟨Fz⟩ = − cos(αe−
x2

2σ2 ), (4.11)

with a RMS beam width σ = w/2 = 3.5 µm (here chosen in 1D). Focussing on the
maximum amplitude, the Gaussian function takes on the value of 1. In this case, we
determine the fluctuations in the rotation amplitude and hence rotation angle via

∆2α = ∆2(arccos(Fmax
z )). (4.12)

In fig. 4.6 the fluctuations of the rotation amplitudes, hence angles, are given as
the standard deviation on each averaged data point,

√
∆2α. Experimentally, we pre-

pared roughly π/2 rotations with τ = 46 µs. In the case of the buffertime toff = 6.5 µs
and over the range of different fAOD−V (∼ 0.3 MHz) we obtained fluctuations of the
rotation angle in a range of 4.6 − 6.9◦, and on average at

√
∆2α = (5.62 ± 0.84)◦.

For this measurement we analysed though only ∼ 30 realisations for each vertical
AOD frequency showed in fig. 4.6. Measuring more realisations for one AOD set-
ting could further improve the precision of this result.
To get an idea whether the fluctuating rotation amplitude impacts the prepared state
on relevant scales, we can compare it to the size of the coherent state. Its exten-
sion, when normalised to the total atom number, is given by the standard deviation
σ = 1/

√
N as the disk radius. (see sec. 4.2.1). So to calculate the opening angle, we

take advantage of the normalised radius of the spin sphere and obtain for the entire
extension tan(γ/2) = σ/1. For this case, we use the average total atom number at
the point of the amplitude, N ≈ 339, and estimate an average total extension over
all shots of ∼ 6.2◦. Considering only the absolute value of the rotation amplitude
fluctuation, it falls below the extension of the coherent state. So it can be said that
the state is prepared inside the disk of a perfect π/2 rotation. However, the error
on

√
∆2α exceeds the disk slightly. Including the extension of the coherent state in-

creases the size of the expected state by a factor ∼ 2 in the Fz direction.

4.2.3 Estimating the quantum limit for Fz

As introduced in 2.2 a single particle quantum state can be formulated using the
magnetic hyperfine states as

|ψ⟩ = a|+ 1⟩+ b|0⟩+ c| − 1⟩. (4.13)
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The coefficients carry the information about the probability of an atom populat-
ing the respective state, p+1 = |a|2, p0 = |b|2, p−1 = |c|2. Extending this to the
many-body case and describe coherent states, we can use product states of the form
|ψges⟩ = |ψ⟩⊗N . If we want to calculate the probability of a certain configuration of
the atoms over the three magnetic levels has we can use the trinomial distribution
with probability mass function [50]

P(N+1, N0, N−1) =
N!

N+1!N0!N−1!
pN+1
+1 pN0

0 pN−1
−1 . (4.14)

The fluctuations are determined by the variances

∆2Ni = Npi(1 − pi). (4.15)

Experimentally, the probabilities pi are accessed using the populations of the differ-
ent levels relative to the total atom number N = N+1 + N0 + N−1 as

pi =
Ni

N
. (4.16)

Since we want to use the local rotations to generate solitons and aim to analyse the
spin observables, it is meaningful to consider in the following the unnormalised Fz-
spin projection

Fz = N+1 − N−1, (4.17)

as introduced in sec. 3.2.5, instead of the atom number fluctuations themselves.
Here the normalisation with the total atom number averaged over all realisations N̄
is used to ensure the single shot fluctuations are eliminated and to achieve a value
comparable to the coherent state. The variance of this quantity is then formulated as

∆2Fz =
1
N̄
[∆2N+1 + ∆2N−1 + 2Np1 p−1]

=
1
N̄

4Np1 p−1.
(4.18)

The explicit derivation is given in the appendix A.2. This model finally determines
the quantum limit set by an N-particle coherent state. Again, we can calculate the
fluctuations by inserting the probabilities 4.16 into our model in eq. 4.18 and com-
pare the results to the variance of the observable Fz obtained over all realisations.
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FIGURE 4.7: Starting from the polar state we perform the global spin rotations by
applying rf-fields (left) and local rotations using the laser (right). The
fluctuations, i.e. variances of the local rotation, are compared to the
global cases, which we can prepare very reliably. The local rotation is
not performed at π/2 but in the maxmimum at an angle of α ≈ 50◦.

4.2.4 Experimental Data

Preparing the states

The experimental procedure contains three steps. At first we prepare the atoms in
a coherent polar state, i.e. transfer all atoms over an auxiliary state to |1,−1⟩ π−→
|2,−1⟩ π−→ |1, 0⟩. This state represents the polar state in the mean-field phase 2.4 and
its fluctuations serve as the technical noise for the next steps to verify that we fun-
damentally start to a good approximation from the state we expect to prepare. From
here we want to apply a global spin rotation, a local rotation at an angle of π/2 (see
fig. 4.7) and calculate for the cases of a global, local or no rotation the fluctuations
defined in 4.18. Nevertheless, the local rotation is not performed exactly at π/2 as
anticipated. In fig. A.1, the shot used to calibrate the rotation time for the later used
rotations at 60ms is shown. There almost the entire population inside the rotation
region is transferred to the side-modes. Towards the actual experiment we lowered
the imaging power, resulting in a less saturated absorption spectrum. Further, we
did not perform the experiment right after this calibration, which could have led to
drifts in the rotation power. However, this does not have a qualitative impact on
the here discussed results, since the only aim was to compare the fluctuations of one
rotation type calculated through the trinomial distribution to its experimentally ex-
tracted deviation over all realisations. When starting from |1,−1⟩, the expected Fz
value for a local rotation can be described by Rabi cycles of the spin vector rotating
around either Fx or Fy periodically in time and is described by − cos(x)-type func-
tion. In contrast to this, rotating from |1, 0⟩ transfers the atoms symmetrically to the
side-modes, hence does not permit to observe the oscillation in the Fz component,
but merely in the observable (N+1 + N−1)/Ntot = N+/Ntot. A π/2 rotation requires
the atoms to be fully transferred to the side-modes, so N+1 = N−1 = N/2 , with the
ratio to be N+/Ntot = 1. Experimentally, we extract the average of the maximum
as (N+/Ntot)exp

≈ 0.76 at the peak of the local rotation. From this we can calculate
the rotation angle, noticing that the expectation value now possesses a sinusoidal



36 Chapter 4. Noise Reduction of local spin rotations

longitudinal
polarpolar

FIGURE 4.8: Polar state (left) and longitudinal polar (right) visualised on the spin
sphere together with their respective fluctuations. Both states sit at the
centre of the sphere but exert their fluctuations in orthogonal directions.
The blue disk spanned in Sx and Sy direction indicates the fluctuations
of the polar state. In case of a longitudinal polar state, the red disk
representing the fluctuations can be rotated by an angle around the Sz
axis. Figures adapted from [21].

functionality (instead of the previously discussed cosine) and can be described at
the peak by

⟨ N+

Ntot
⟩ = sin(α). (4.19)

So the maximal rotation angle we obtain at the peak is α ≈ 50◦. Because of the Gaus-
sian shape of the local rotation in x-direction, we obtain at any other point lower
rotation angles. The further implications will be discussed in the context of the re-
sults below.

The preparation in |1, 0⟩ plays a crucial role. If one would just use the initial level
of the condensate, |1,−1⟩, the resulting variance for no spin rotation would be pro-
portional to the total number fluctuations ∆2Fz ∝ ∆2N, since Fz = −N−1

N̄ = −N
N̄ . As

a consequence the fluctuations of the initial coherent state could already exceed the
cases in which atoms are actually repopulated between the states, which was found
to indeed be the case, with the fluctuation of the first being an order of magnitude
larger than the latter.

Further, we transfer the atoms to |1, 0⟩ via the auxiliary state |2,−1⟩. If the mi-
crowave coupling does not transfer all atoms, residual atoms will remain in |1,−1⟩
and |2,−1⟩. We can then use a Stern-Gerlach pulse to clean the atoms out of the
magnetically sensitive modes, resulting in a purified condensate.

At this point it is important to notice that adding up the technical (polar state) noise
σ2

tech = ∆2Fpol
z and the "theoretical" fluctuation of a state as an estimation for the

limit, i.e.
∆2Fz,limit = σ2

tech + ∆2Fi,tri
z , (4.20)

with i representing the global/local rotation, is only valid if the mean total atom
numbers we use for the normalisation in 4.18 are equal. Since the total atom number
fluctuates for the global rotation on the level of ∼ 200 atoms (∼ 180 atoms for the
local rotation), the presented comparison above between the values is formally not
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correct. Instead, we use directly the fluctuations of the total atom number in the
polar state, ∆2Npol

tot . Since we compare fluctuations of the quantity N− = N+1 −
N−1, the polar fluctuations do not depend on the total atom number but merely
describe - as mentioned before - the imaging noise. In order to get rid of the noise
contribution for local and global rotations, it can be subtracted from the respective
number fluctuations before normalising with the total atom number. In that manner,
expressions of the form

∆2Fj
z =

∆2N−
j − ∆2N−

pol

N̄tot
(4.21)

are obtained, with j representing the local or global spin rotation.

Choosing the evaluation regions

The evaluation regions used in the global cases are set equal to the local rotation
region for better comparability and the boundaries are estimated manually and cap-
ture the points where the local spin rotation seemingly "vanishes". The evaluation ra-
dius, i.e. the distance between the averaged centre of the spin rotation to the bound-
ary on one side of the flank is chosen to 15 µm (see fig. 4.9). The atom numbers in a
level |1, mF⟩ are determined by summing all atoms inside the "spin-rotation region"
of the respective level.

A comparison between the fluctuations for different evaluation radii for the global
rotation is also shown in fig. 4.9. We see that correlations start to build up for smaller
evaluation regions with fluctuations even falling below the classical limit, confirm-
ing the choice of a 15 µm evaluation radius as a proper choice. The correlations
emerge from the absorption imaging of the atoms. The finite width of the point
spread function causes the absorption signal to be imaged onto multiple pixels, giv-
ing rise to correlations between neighbouring pixels. These correlations are most
prominent at the edges of the region and are usually dominated for an increasing
evaluation region by the information in between. Further, we observe that the fluc-
tuations increase steadily with larger evaluation regions, hinting towards technical
fluctuations. A model to characterise this behaviour can be derived by noting that
the imbalance N− = N+1 − N−1 possesses information about how far the state is
tilted out of the transverse spin plane SxSy (fig. 4.9), i.e. the rotation angle. From
this we obtain the relation

tan(θ) =
N−

s
≈ θ, (4.22)

where the narrow angle approximation is used. The unnormalised spin length in the
plane is s = N. Calculating the variance of the left quantity leads to

∆2(
N−

s
) =

1
s2 ∆2N− = ∆2θ. (4.23)

Rearranging the last equality and transitioning to quantities normalised with the
total atom number yields

∆2N−

N
=

s2∆2θ + N
N

= N∆2θ + 1,
(4.24)

where the manually added term on the right side carries the notion of the shot noise
of a coherent state. The first term, linear in N, describes the technical fluctuations
because the expression has been normalised to the total atom number and when
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FIGURE 4.9: a) The evaluation region is set according to the local rotation region and
is determined by the evaluation radius chosen as the distance between
the centre line and one of the dashed lines to 15 µm. There the spin ro-
tation amplitude seems to vanish.
b) The variance of the Fz observable for different evaluation radii is
shown. For smaller regions the correlations increase since an atom is
imaged on multiple pixels. This effect becomes less dominant the larger
the evaluated area is.
c) In contrast to b) the Fz fluctuations are now plotted as a function of
the average atom number inside a region of a specific evaluation ra-
dius. A linear fit is calculated for radii > 15 µm from which the tech-
nical fluctuations

√
(∆2θ)fit = 0.34◦ are obtained as the square root of

the slope. The datapoints were sampled from 3 − 21 µm in 3 µm steps,
from 30 − 70 µm in 10 µm steps and additional two points are at 0.5 µm
and 1 µm.

vanishing, i.e. the rotation angle does not fluctuate (∆2θ = 0), leads to the expected
shot noise limit of 1. We can now fit a linear function to the data points and compare
the so obtained slope (∆2θ)fit and an offset c to the expected values in eq. 4.24. For
every setting of a evaluation region a mean total atom number is obtained, which
are used as x-values for the fit. Only the values for evaluation regions larger than
15µm, resembling the linear dependency, were used for the fit. In fig. 4.9 it can be
seen that the data points indeed lie on a linear function with fit parameters√

(∆2θ)fit = 6 × 10−3rad = 0.34◦, c = 0.76.
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From this we can conclude, that the fluctuations - here now given as the 1 standard
deviation - of the global rotation are small, implying that the preparation of the state
is highly reproducible. The slope characterises the technical noise above a width of
15 µm, while the behaviour at very small widths, i.e. 1 − 5 µm is in good agreement
with the model discussed in [21].

Results

The results shown in tab. 4.1 are presented in three steps. In the first row the pure
results are given. In the second row a reference picture analysis is included, which
is used to remove fringe structures and statistical fluctuations do to the imaging.
Detailed information are given in the appendix B. For the third row also the noise
removal according to 4.21 is taken into account. The errors on the variances are
the statistical estimation of 1 standard deviation (SD) calculated through a jackknife
resampling of the data [51]. We used 382 realisations for the case of the polar prepa-
ration, 415 realisations for the case of global spin rotation and 434 realisations for the
local spin rotations and had on average ∼ 7.5 × 103 atoms in our evaluation region.
For the extraction of the atom numbers, we bin 3 pixels together, because our opti-
cal resolution is on the scale of ∼ 1.26 µm, meaning that it is not possible for us to
clearly resolve structures below this limit.

Preparing the condensate in |1, 0⟩ corresponds in the spin-sphere picture to a
state which sits in the centre of the sphere and represents the polar state in the
mean-field phase diagram 2.4. Its expectation values for the three spin operators
vanish, ⟨Fx⟩ = ⟨Fy⟩ = ⟨Fz⟩ = 0, with fluctuations only being existent in transverse
plane spanned by Fx and Fy as a disk, orthogonal to Fz (see fig. 4.8). The expected
fluctuations in z-direction are therefore ∆2Fpol,tri

z ≈ 0. The results obtained for the
Fz-fluctuations including the reference picture analysis, ∆2Fpol

z = 0.13, exceed the ex-
pected value slightly. The fluctuation level of this polar state represents as discussed
before the baseline noise our system contains as technical noise from the preparation
and readout procedure. However, we did not consider the photon shot noise. When
imaging the atoms, the number of photons used during this process fluctuates for
many realisations and transfers an error onto the measured atom numbers. For the
extraction of this fluctuation term we can use a noise image and apply a Gaussian
error propagation of the measured photon numbers. In previous works conducted
on our machine this noise was found to be ∼ 0.14 [21], corresponding well to the
deviation of the measured fluctuations a polar state entails to the theoretical predic-
tion.
The global spin rotation produces the longitudinal polar state, which sits again in the
centre of the spin-sphere but has its fluctuations now along the Fz direction as a disk,
with the orientation determined by the Larmor phase (see fig. 4.8). The expected
fluctuations of ∆2Fl.pol,tri

z = 1 are exceeded by the experimental value on the same
scale as before the polar state, ∆2Fl.pol

z = 1.13. This validates the necessity to consider
the polar state as a fundamental noise level of our system. For the local rotation we
obtain a value of ∆2Flocal

z = 0.34, which at this point is roughly twice as large as the
shot noise limit determined for this state, ∆2Flocal,tri

z = 0.16. The reason as to why
the fluctuations of the local rotations are so far below 1 can be explained considering
the horizontal rotation profile. Its Gaussian shape and hence flank structure leads to
spatially varying rotation angles α(x). The anticipated π/2 rotation is only achieved
at the centre of the rotation region, so only there the state vector is actually rotated
into the transverse plane. For this state, the fluctuations in the spin observable Fz
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no rot global rot local rot
∆2Fz,exp 0.26 ± 0.02 1.23 ± 0.09 0.45 ± 0.03
∆2Fz,tri 0.002 0.997 0.16
∆2Fz,exp 0.13 ± 0.01 1.13 ± 0.08 0.34 ± 0.02
∆2Fz,tri -0.004 1 0.16
∆2Fz,exp - 1.0 ± 0.08 0.21 ± 0.02
∆2Fs

z,tri -0.004 1 0.16

TABLE 4.1: The first block does not contain any correction, the second block includes
the reference picture analysis, and the third block includes the reference
picture analysis and noise removal from the polar state. The average
atom number is ∼ 7.5 × 103 inside an evaluation region of 30 µm. The
maximum local rotation angle is α ≈ 50◦. For the trinomial values of the
polar state slight deviations from 0 are obtained in both directions. This
occurs most likely due to noise from our optical system, such as thermal
fluctuations and vibrations, which might contribute negative numbers
to the empty levels mF=±1 and hence to the probabilities p±1

are maximal. Moving away from the centre, the rotated states do not experience the
full π/2 rotation. The resulting state, if represented in fig. 4.8, would be tilted be-
tween the polar and longitudinal polar state. Here, additional fluctuations arise in
the transverse components simultaneous to a reduction of the projected fluctuations
on Fz below 1. A summation of all atoms inside an evaluation region leads then to
an average rotation angle, therefore yielding an overall fluctuation level of ∆2Fz < 1.

Removing the imaging noise by using eq. 4.21 with ∆2N−
pol ∼ 960 reduces the

experimental fluctuations of the longitudinal polar state, i.e. the global rotation to
the expected value ∆2Fl.pol

z = 1.00± 0.08. For the local rotation we obtain 0.21± 0.02,
which still deviates ∼ 15% from the classical limit. This hints towards further con-
tributions to the preparation noise. Comparing this to the results obtained in [47]
shows that we managed to reduce the fluctuations by an order of magnitude. The
results are presented in tab. 4.1, where the results without the previously discussed
noise removal are presented together with the results after the optimal reference pic-
ture analysis and additionally after subtracting the imaging noise.

One last remark concerns the fluctuations for the polar state calculated with the tri-
nomial distribution in eq. 4.18. For the calculation, the particle numbers in the empty
side modes are needed for the probabilities p±1 = N±1/N. Here, fluctuations of the
imaging system, such as the laser, thermal noise on the camera, vibrations of the
imaging optics can contribute also "negative" atom numbers, leading to negative
probabilities and ultimately negative fluctuations.
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Chapter 5.

Soliton Formation Analysis

Recent works conducted on three-component vector solitons in BECs were primarily
concerned with the description of the macroscopic properties, such as their velocity,
width, darkness and spatial structure of the phase. However, the dynamics of the
internal spin states were analysed so far by observation of the collision between two
pairs of solitons [17]. Both cases require that the solitons are already generated in
the condensate. But using the local spin rotations our experiment provides, we first
generate local perturbations, partially transferring atoms from |1, 0⟩ to |1,±1⟩, out
of which after a certain time evolution period the solitons emerge. In this chapter we
experimentally investigate the internal dynamics of the solitons during their forma-
tion process. To motivate this further, one could think e.g. of the |1,±1⟩-levels after
the initial density perturbation as a potential in which the atoms sit, allowing them
to interact. While the separation proceeds, a double well potential starts to form
with a dynamically increasing barrier. During this time, the atoms are assumed to
still be able to interact and to jump between the two potentials, a process known as
tunnelling. After the separation is completed, the two bright components of sepa-
rate three-component vector solitons emerge. In that state the barrier between the
two potentials reaches its maximum, i.e. the interaction between the separate objects
ideally ceases to exist and the individual internal states are fixed. Consequently, the
spin observables of initially interacting quantum systems and their evolution during
the soliton formation are an promising frame for the search of e.g. EPR-correlations
similar to [52] or squeezing properties. The latter is a process in which the fluctu-
ations of one variable reduces below the level postulated by the Heisenberg limit,
at the cost of an increasing fluctuation of the conjugate variable. So in order to in-
vestigate this types of correlations in scenarios like colliding solitons, it is crucial to
guarantee a preparation and control of the solitons on coherent state level.

5.1 Generating solitons

An extensive discussion of the experimental realisation of solitons and imprint of
the necessary phase as well as the extraction of the density profiles in our system
can be found in [16]. This section discusses briefly some prominent features in the
density profiles during the separation.

The Rabi frequency profile along the condensate (x-direction) for each beam is de-
scribed by a Gaussian Ω(x) = Ω0exp(−x2/(2σ2)). The beam width determines the
radius σ = w/2 = 3.5 µm. Conceptionally, for the entire amplitude exerted by the
successive beams, we first have to extend this picture to 2 dimensions and calculate
then the time integral

∫
Ω(x, y)dt. Every time step is linked to a discrete y-value

{y1, .., y6} for each pulse in y-direction, where the overlap of the beams must be
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FIGURE 5.1: a) Time evolution of the density profiles in the side-modes after an ini-
tial local rotation with the total rotation time τ = 95 µs resulting in
two solitons propagating in opposite directions. The static term of the
fictitious magnetic field pointing along the laser direction resembles a
potential for the atoms which acts attractive for |1,+1⟩ and repulsive
for |1,−1⟩ hence leading to a clumping or rather separation of the den-
sity structures at early times. A background motion of the condensate
additionally shifts the centres of the separating regions to the right.
b) The drift velocities are determined considering the centre between
two peaks in an averaged profile for a certain time and their distance to
the initial rotation position. Starting with motion to the left (negative
velocities) the condensate sloshes to the right side (positive velocities).
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considered. In addition, the transfer of the atoms also depends on the pulse dura-
tion τ, altogether allowing us to express the transfer fraction as (n+1 + n−1)/n0 =
sin(Ω(x)τ). However, the choice of the appropriate pulse duration is not entirely
clear-cut, since we obtain solitons in a range of ∼ 20 µs . There is just a small frame
though in which the resulting objects do not show any blurry features around the
bright components, which indicate a shedding of atoms. From this observation, we
used a Rabi pulse of τ = 95 µs, separated over the 6 pulses in our previously dis-
cussed rotation scheme. The soliton formation is finished at ∼ 60 ms. In fig. 5.1
the density profiles n+1 and n−1 during the separation are shown. As discussed in
[16], the time-scales on which we would observe the excitations to be dispersive is
on the scale of the separation process. So by seeing the non-dispersive behaviour,
i.e. formation of two stable peaks, and ensuring that the blurry features are reduced,
we conclude, that we indeed prepared solitons. The density profiles show a distinct
difference. For early times after the local spin rotations, the atoms in mF = −1 are
already getting separated in contrast to mF = 1. This feature occurs due to the static
term of the fictitious magnetic field Bfict

0 exerted by the local control laser, as intro-
duced in sec. 3.2.4. Since this field is oriented parallel to the laser it adds vectorially
to the magnetic offset field, resulting in a slight tilt of the quantisation axis. Another
consequence is that this magnetic field acts as a potential to the mF = ±1 compo-
nents. Since the magnetic field is oriented in transversal direction, a gradient acts in
longitudinal direction along the condensate. The resulting potential is repulsive for
mF = −1 and attractive for mF = +1 [16].

Another feature is that while the initial density perturbation is separating, there
is an additional motion to the right. This can be linked to a relative motion of the
background condensate to the local perturbation. Loading the condensate into the
WG can cause it to slosh back and forth, something that can be avoided by a slower
ramp of the XDT and WG lasers. The velocity of this sloshing adds then vectorially
to the solitons motion. This background motion can be estimated using the centre-
of-mass and to do so, we effectively calculate vc(t) = (xc(t)− xc(0))/t, where xc(t)
is the centre between the separating peaks at a time t and xc(0) the initial position of
the local spin rotation. For the estimation of the centre we use the profiles averaged
over all realisations for one time and fit a double gaussian function to extract the
positions of the two amplitudes. Using this procedure, we obtain the velocities pre-
sented in fig. 5.1. Here, we see that an initial motion to the left at 2 ms is followed by
an acceleration in the opposite direction. The results should be taken with caution
though. Estimating the background velocity in this way is a rough estimation and
depends strongly on the extracted centres, hence on the positional information of
the peaks. Prevalent asymmetries in the separation or background condensate are
not taken into account.

As mentioned in 2.4, we do not apply microwave dressing of the system, which
essentially sets the quadratic Zeemen shift q at a high value. In doing so, the spin-
changing collisions are expected to be far off-resonant and to not affect our system.

5.2 Soliton Splitting dynamics

This section presents the time evolution of the atom numbers and spin observables
of the different modes before the solitons have emerged. As introduced earlier, the
exchange of atoms between the continuously separating peaks is assumed to be high
shortly after the local rotation was performed and to decrease in time, resulting in a
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FIGURE 5.2: Three randomly picked realisations for each time are shown including
the individual evaluation regions used for the extraction of the atoms
on the left and right side. To ensure the signal can be evaluated prop-
erly, we used the combined density profile N+1 + N−1 to determine the
centre and the outer boundaries at a distance of 16 µm relative to it.

fixed configuration once the solitons emerged. In our experiment we measured the
evolution of the soliton in 2 ms steps up to a total time of 60 ms, where the soliton
formation was finished.

Further we also investigate the evolution of the Fz observable by taking the dif-
ference Fl

z − Fr
z (see sec. 5.2.2).

5.2.1 Setting the evaluation regions

To access the populations and consequentially spin observables, we first have to
define spatial regions of interest. This includes the boundaries at the sides of the
rotation region, where the rotation amplitude seemingly vanishes, and a point char-
acterising the separation between the two peaks. We use the sum of both side modes
N+1 + N−1 to obtain a better signal-to-noise ratio. The sum of both levels also resem-
bles the spatial structure of the |1,−1⟩ mode, allowing for a more precise extraction
of each density peak and ultimately the evaluation regions. The centre between the
two peaks is determined individually for each realisation, because of horizontal po-
sitional fluctuations of our local rotation setup. As a consequence, atoms might be
added to the wrong side in the evaluation, affecting the atom number dependent
observables. The horizontal fluctuations occur on the scale ∼ 8 µm, on which the
Thomas-Fermi density profile of the condensate does not vary considerably. The left
and right boundary are then set to a fixed range of 16 µm from the centre. The cho-
sen evaluation regions for each time are shown in fig. 5.2. The atom numbers on the
left side are extracted similar to 4.2.4 by summing the atoms from the left boundary
to the centre and accordingly from the centre to the right boundary, giving us arrays
of numbers for every side and magnetic state

Nl
+1, Nr

+1, Nl
−1, Nr

−1. (5.1)

Additionally, we calculate the sum of each side as

Nl,r = Nl,r
+1 + Nl,r

−1. (5.2)
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FIGURE 5.3: The variances of different types of differences between atoms on the left
(l), right (r) and in mF = +1 or mF = −1 are shown in the lower figure
as a function of the evolution time. The upper figure shows schemat-
ically the "blops" we use to calculate the respective difference and is
colour-coded accordingly. We see that the variance lowers with in-
creasing time and approaches for evolution times > 25 ms the classical
limit set by a coherent state. However, the fluctuations always remain
above the limit and reach the lowest fluctuations, σ2 = 1.40 ± 0.22, for
Nl − Nr.

5.2.2 Combined variables of different modes

For the evaluation we consider different combined variables, similar to the notion
of EPR variables, as sketched in fig. 5.3 in the upper row. There, the different
coloured areas denote the components of our pre-soliton that are subtracted, such
as e.g. Nl

+1 − Nr
+1 in the simple case or crossed combinations like Nl

−1 − Nr
+1. In

that manner we analyse all different combinations between the left and right side.
The subscript denotes the magnetic level mF and the superscript if we consider the
left (l) or right (r) peak. To motivate this approach further as why to consider in par-
ticular the difference of the atom numbers, we can think of it in the following way.
The total atom number is fixed for one realisation. During the separation we assume
the difference to fluctuate due to tunnelling processes. If the process of distributing
atoms over the two sides is repeated M times, then a high fluctuation level would
correspond to a random distribution of the atoms, i.e. they are not distributed in a
preferred way. With ongoing separation the interaction is then expected to resemble
more and more the situation of two independent objects.
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Nl
+1 − Nr

+1 Nl − Nr Nl
−1 − Nr

−1 Nl
+1 − Nr

−1 Nr
+1 − Nl

−1
σ2 1.54 ± 0.22 1.40 ± 0.22 1.58 ± 0.23 1.47 ± 0.21 1.68 ± 0.27

TABLE 5.1: The fluctuation of all types of atom number differences after full sepa-
ration of the solitons at 60 ms exceed the coherent state level σ2

coh = 1.
Even after considering the errors an excess fluctuation of ∼ 20 − 30%
is present. This hints towards additional fluctuations, which can not
only occur during the preparation but also during the separation pro-
cess. One can note that the particle number difference of the separated
solitons should resemble the situation of a coherent state, i.e. the soli-
tons are independent objects. Here no separation has been inserted yet
to account for classical correlations. But up to a separation of 10.08 µm
the fluctuations remain in good agreement.

The fundamental fluctuation level is once again set by the coherent state. If the
separation of the initial density peak is at all times described by a coherent state, we
can assume the total fluctuations of the system to be comprised by two independent
coherent states. In contrast to eq. 4.18, where we determined the fluctuations of the
combined variable comprising the atom number difference between the side-modes
N+1 − N−1, we now consider the number difference between the left and right side,
e.g.

N− = Nl − Nr. (5.3)

Inserting this into the results obtained in A.1 we obtain as the coherent state level,
normalised to the total atom number,

∆2N− = 1. (5.4)

For the experimental data we use the Fz readout, providing us with the spatial
separation of the initial local rotation over time. The fluctuation of each time is
normalised by the corresponding average total atom number ⟨N⟩ of the evaluated
modes calculated from samples of ∼ 105 realisations. Since we manually post pro-
cess the data to filter out unusable shots, the number of realisations varies for the dif-
ferent times slightly. A jackknife resampling of the data was used again to calculate
the errors on the variances as 1 standard deviation. The results are then compared to
the limit set by 5.4 and shown in fig. 5.3. It can be seen that initially the fluctuations
are very high. But with ongoing separation the variance in the atom number dif-
ference and their respective errors decrease for all different combinations. The most
prominent reduction, can be found in the difference Nl

+1 − Nr
+1 (blue line), which has

the most significant drop of the fluctuation over time and ends up at σ2 = 1.54± 0.22
after 60 ms. The lowest value is obtained for the difference Nl − Nr, which reaches
σ2 = 1.40± 0.22 after the separation completed. At high times the fluctuations of the
various types of differences reach similar results within their respective errors (see
tab. 5.1). However, all fluctuations remain above the classical limit and deviate by
roughly 20 − 30% from this coherent state level. This hints towards additional fluc-
tuations influencing our state preparation. Another contribution to the fluctuations
can be due to the sloshing of the condensate. This essentially leads to a soliton prop-
agating in the same direction as the condensate and one propagating in the opposite
direction. The width and atom numbers of a soliton are restricted together with the
velocity by the chemical potential as given in eq. 2.30. The accelerating background
clearly effects the velocity of the solitons asymmetrically and it is not clear how this
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a)

b)

FIGURE 5.4: a) The evaluation regions shown as grey ares confined by the bound-
aries for the left (right) side coloured blue (red) are separated by a dis-
tance of 10.08 µm, here shown for three stages of the separation, af-
ter the local rotation, after 30 ms and after 60 ms. For the analysis, the
atoms contained inside the grey areas are summed for each side. For
early times, the entire extension of the density perturbation is ∼ 18 µm.
So, separating the evaluation regions ejects the majority of the atoms
in the sides. With ongoing propagation a sufficient separation while
maintaining the atom number information can be achieved.
b) The fluctuation of the combined observable N− = Nl

+1 − Nr
+1 is

shown for distances separating the two sides. As explained in a) we
only consider the later times, for which we observe a good agreement
of the fluctuations up to a separation of 12.6 µm. At this separation,
even after 60 ms and full separation of the initial perturbation the inner
boundaries start to cut into the peaks, hence leading to an ejection of
the atoms.

translates into the populations inside the peaks. Studying the macroscopic proper-
ties could give more insight into this process. Preferably the sloshing and other trap
dynamics are eliminated to reduce possible effects and allow for a symmetric prepa-
ration. It must be also noted that an optimal reference picture analysis was applied
again to reduce the fluctuations and remove possible fringes on the images. Never-
theless, it can be concluded that after the separation completed, the two solitons act
indeed as independent objects and exert their interaction only during the separation
phase. In this period the observed high fluctuations are linked to the exchange of
particles between the sides.
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In [53] it was found that when evaluating correlations between two adjacent eval-
uation regions a separation must be introduced to account for e.g. the atoms si-
multaneously imaged on both sides, thus creating classical correlations. However,
choosing reasonable separation distances for our measurements proves to be hard
for the early times, since we reduce an already narrow gap in which we count atoms
further, adding an increasingly higher contribution of the area containing noise (see
fig. 5.4). Another problem occurring at early times is that we define the two evalua-
tion regions according to the centre between the two peaks. An imprecise estimation
of the individual positions of the peaks, hence the centre between them can cause the
evaluation regions to be cut in an unfavourable way, where one side includes more
atoms of the peak than the other. This problem reduces though with ongoing prop-
agation time due to the progressing separation. But since the fluctuations are far
above the coherent state level at early times anyway, it allows us to focus the analy-
sis on the later times t > 30 ms. It must be also noted that the boundaries have been
determined using the combined atom numbers N−1 + N+1 and the separation then
introduced on top of these results. But due to the local rotation laser, the side-modes
underlie a different systematic, where the atoms in mF = +1 experience an attrac-
tive potential, so bunch up, while the atoms in mF = −1 a repulsive potential and
already show a separation of the peak. This has not been taken into account here,
but can add a systematic error to the results, because at early times more atoms can
be discarded out of the mF = −1 level, due to the already prevalent separation. At
late times the peaks are separated in both modes and this effect should not impact
the results strongly. In fig. 5.4 the fluctuations of the previously discussed observ-
able Nl

+1 − Nr
+1 is shown for the different separation distances. It can be seen that

with an increasing separation until d = 10.08 µm the fluctuations reduce to a similar
level within the error bars at later times. Moving towards bigger separations, i.e.
d > 10.08 µm adds noise to our data where the fluctuations for the latest times begin
to exceed the coherent state level strongly. It is this separation limit after which the
inner boundaries of both evaluation regions start to cut prominently into the density
peaks even at 60 ms, resulting in the same problems as before at early times.

A few words must be added to the chosen separation distances displayed in
fig. 5.4. We obtain the measured densities in the form of matrices, of which the rows
denote the respective shot and the columns the density information per binned pixel.
As mentioned earlier, we bin three pixels together to analyse the information on a
scale corresponding to the resolution of our system of ∼ 1.26 µm. As a consequence,
the positional information is discrete, making it particularly hard to set a specific
spacing. Rather than setting a fixed distance in µm, the distance is determined in
units of bins, i.e. 1-5 bins symmetrically in both directions around the centre. So
for a shift of the boundaries of 4 bins to the left and right, the total distance is fixed
at 8 bins and taking into account the size of each bin sbin ≈ 1.26 µm, this results to
d = 10.08 µm.
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5.2.3 Evaluation of Fz

The atom numbers extracted for each excitation on both sides can be used to cal-
culate the Fz spin of each side respectively using equations 3.14. The variances are
calculated considering all realisations for a respective spin observable and its error
is once again determined as the 1 standard deviation via a jackknife resampling.
The results for the Fz-measurement is shown in fig. 5.5. Here we considered the
combined variable

F±
z = Fl

z ± Fr
z , (5.5)

between the left and right side. Similar to sec. 5.2.2, this represents again EPR-
type variables. We use the same procedure as introduced in sec. 4.2.3 to estimate
a fluctuation limit. So calculating the limit for the difference in the Fz spin between
two sides would demand an expression like

∆2F±
z = ⟨(F±

z )2⟩ − ⟨F±
z ⟩2

= ...

= ∆2Fl
z + ∆2Fr

z − 2(⟨Fl
zFr

z ⟩ − ⟨Fl
z⟩⟨Fr

z ⟩).
(5.6)

Evaluating the covariance between the two observables, i.e. the third term is in so
far complicated that we need knowledge about the specific state we are investigat-
ing. The required eigenstate |ψ⟩ for the expectation value ⟨Fl

zFr
z ⟩ is now defined on

an extended Hilbert space H = Hl ⊗ Hr and is generally not separable. Further,
the last two terms can be understood as a measure of correlations inside our system.
For highly correlated states, ⟨Fl

zFr
z ⟩ is dominating, hence reducing the overall fluc-

tuations, while for an uncorrelated state this term is separable. So, considering the
preparation of two separate non-interacting objects, i.e. coherent states that fluctuate
independently, the expectation value of two observables decomposes to a product
of expectation values like

⟨Fl
zFr

z ⟩ = ⟨Fl
z⟩⟨Fr

z ⟩. (5.7)

Inserting this back into eq. 5.6 reduces the expression for the variance to the sum of
the individual fluctuations,

∆2F±
z = ∆2Fl

z + ∆2Fr
z , (5.8)

where the fluctuation of each Fz is determined by the probabilities of populating
the respective levels. The individual fluctuations are calculated for each side via
A.9. For the normalisation, the average atom number of the analysed system was
chosen. To be in accordance with the theoretical approach, we considered values of
the form

F±
z,exp =

(Nl
+1 − Nl

−1)± (Nr
+1 − Nr

−1)

N̄
(5.9)

The comparison of the experimental data to this limit set by two non-interacting
coherent states is presented in fig. 5.5, where the ratio between the experimental
and trinomial values are given for each time. In addition to the combined observ-
ables, the results for the individual sides are also shown. It can be seen that for the
combined observables Fl

z ± Fr
z even when the evaluation regions are separated by

10.08µm the fluctuations reduce to the expected coherent state level within the er-
rorbars. The results for 60 ms are given in tab. 5.2. There it is shown that for smaller
separations the experimentally obtained values together with their errors lie below
the "theoretical" values.
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FIGURE 5.5: a) The time evolution of the Fz variance for the separate sides and com-
bined variables F±

z are shown. On the left both evaluation regions are
not separated, while on the right side the maximum still applicable sep-
aration as discussed in sec. 5.2.2 is used. The fluctuations of the com-
bined variables drop in both cases to the classical limit at late times.
b) The variance of the combined variables is shown for different sepa-
ration distances. For F−

z , the evolution is very similar for the different
separations. The analysis of F+

z reveals a sharp rise and decrease for 10-
28 ms. This plateau increases with larger separation and is explained in
the main text.

As discussed previously, introducing a separation of the regions at earlier times
neglects a significant fraction of the atoms inside the peaks, leading to a loss of infor-
mation. However, it can be seen, that an increasing separation has different effects
on the sum and difference between the Fz components. While it does not strongly
effect the fluctuations of the difference ∆2F−

z , a sharp rise and decrease between 10
and 28 ms can be observed for the sum and individual components, i.e. ∆2F+

z and
∆2Fl,r

z . A possible explanation is that the evaluation regions cut out large parts of the
actual peak at early times. With progressing separation, the majority of the peaks
get shifted into the evaluation regions and the expected signal emerges as higher
fluctuations. These lower then with ongoing time to the coherent state level of two
independent objects.

Overall, this shows the reliable production of solitons with fluctuations in the
combined observables on coherent state level. This result enables us to consider
the combined observables F±

z as proper candidates for the investigation of e.g. spin
squeezing in processes like soliton collisions. Generally, it is most promising to look
for proper conjugate variables in combined observables of the transverse spin com-
ponents Fx,y. As discussed in 5.1, in deriving the Manakov model for vector solitons
the quadratic Zeeman shift is neglected by setting q = 0. Experimentally, this is
achieved by not applying microwave dressing, essentially giving us a high value
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2.52 µm 5.04 µm 7.56 µm 10.08 µm
r+ 0.81 ± 0.11 0.82 ± 0.11 0.89 ± 0.13 1.02 ± 0.15
r− 0.88 ± 0.13 0.86 ± 0.13 0.87 ± 0.14 0.88 ± 0.13

TABLE 5.2: The relative variance r+,− = ∆2Fexp,(+,−)
z /∆2Ftri

z for different separation
distances after full separation at 60 ms. Without separation of the adja-
cent evaluation regions, classical correlations occur at the boundary due
to the simultaneous imaging of an atom in both regions. For separations
below 10.08 µm the fluctuations of F+

z are found to be slightly smaller
than the corresponding value calculated with the trinomial distribution
5.8. Even when considering the errorbars they still fall below the theoret-
ical value. At a separation of 10.08 µm the fluctuations correspond to the
classical limit. The fluctuations of F−

z correspond within the errorbars to
this classical limit.

of q. As a consequence, the possible rotations are restricted to the spin-sphere, be-
cause it is the quadratic shift which, by changing the spinor phase, allows to rotate
the state on the so-called spin nematic sphere onto a quadrupole. By preventing
this rotation we justify the previously made assumption to focus the analysis to a
SU(2)-subspace containing solely the generators {Fx, Fy, Fz}. To pursue this question
further, a scheme is needed which provides a readout of not only the Fz spin but
simultaneously the transverse components Fx,y.
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Chapter 6.

Conclusion and Outlook

This work presented the implementation of a local rotation pulse scheme, which
aimed to compensate the relative motion of the condensate and laser in order to re-
duce the vertical positional fluctuations, thereby increasing the stability of the local
rotation setup. By solving this, we wanted to ensure a local spin rotation with a sta-
ble rotation amplitude and reduced fluctuations of the spin observables on the order
of the coherent state limit. To do so, the AOD responsible for the vertical deflection of
the laser was pulsed to generate 6 partially overlapping Gaussian beams, resembling
a plateau-like intensity profile, where the Gaussian flanks do not coincide with the
condensate. The measure we used to trace the success of this implementation was
the Fz observable, since it is easily accessible.

We showed that we can not only broaden the effective beam on the atom cloud
but also reach a flat rotation profile. This ensures that the rotation amplitude exerted
on the atoms is "constant" over an extended spatial region. We were also able to
eliminate the spike structure in the rotation spectrum by implementing a buffer time
of toff = 6.5 µs. During the overlap between the laser entering the AOD and two
different frequencies in the AOD crystal, the beam can get deflected simultaneously
in two directions and interfere. The buffer time ensures, that the laser gets only
deflected by one acoustic wave at a time.

We then determined the stability of the rotation amplitude when performing π/2
local spin rotations out of the |1,−1⟩ level. Here different central frequencies were
used to shift the 6 pulses over the condensate. The rotation angle fluctuations over
this extended frequency range of ∼ 0.3 MHz are

√
∆2α = (5.62 ± 0.84)◦. Compared

to the extension of the coherent state of ∼ 6.2◦ this leads to an increase of the ex-
pected state on the spin sphere to almost twice the size in the Fz direction.

In the next step we focused on π/2 rotations starting with the |1, 0⟩ level. The
rotation scheme was tested by comparing the Fz-results to the quantum limit set by a
coherent state. To this end, three states were prepared, namely the polar state (no ro-
tation), the longitudinal polar state (global rotation) and the local rotation and com-
pared their fluctuations of Fz with the values determined from a statistical model. It
was shown, that the local rotation was performed in the maximum at α = 50◦ due
to an experimental error, but had otherwise no influence on the results, since the
Fz-fluctuation can still be compared to the statistical value. To reduce further sta-
tistical noise from the imaging process and remove fringe structures on our images
a reference picture analysis was implemented. While the results for the polar and
longitudinal polar states are consistent with the expected values, it is shown that the
fluctuations of the local rotations deviates by ∼ 15% from its model. This points
towards additional fluctuation sources which were not considered in this thesis but
will be discussed briefly below.

In the last step we used the local rotation scheme to generate solitons and mea-
sured the formation process up to the time were the solitons fully emerged at 60 ms.
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We analysed the evolution of the atom number distribution over the different "sides"
and considered combined variables of the atom numbers Nl,r

±1 and Fl,r
z , of which we

analysed again the fluctuations. We found that with progressing time the fluctua-
tions of F±

z = Fl
z ± Fr

z reduce from an initially high level to the level expected for
a coherent state and falls at the point of full separation even slightly below. The
lowest values as ratios of the experimental result and theoretical expectation r± are
r+ = 0.81 ± 0.11 and r− = 0.86 ± 0.13. However, the fluctuations of the combined
variables comprised of the atom numbers had its strongest reduction for the observ-
able Nl − Nr. The obtained value after full separation is σ2 = 1.40 ± 0.22. Consider-
ing the errors, deviations from the classical limit σ2

coh = 1 in the range of ∼ 20− 40%
were obtained. An explanation for this may be found in the asymmetry of the prepa-
ration, resulting from a sloshing and therefore accelerating background. While one
soliton moves with the background, the other walks against the background motion,
impacting the velocities and hence possibly influencing the atom numbers inside the
solitons, leading to increased fluctuations. The conjecture is so far, that the difference
Fz ∝ N+1 − N−1 reduces this effect, which is why it does not affect the results in the
spin degree of freedom as strongly. Nevertheless, an optimised preparation in the
WG without sloshing has to be anticipated in future experiments to obtain cleaner
results. Of course also further technical fluctuations can impact the result here.
Additionally, an in-depth study of the atom distributions and the macroscopic prop-
erties could shed light onto the behaviour of a vector soliton moving on an acceler-
ating background.
However, a separation of the previously adjacent evaluation regions was introduced
to account for classical correlations prevalent at the boundary. Nevertheless, the re-
sults remained in good agreement with the initially obtained ones and started to
deviate after separations d > 10.08 µm. This is related to a prominent cutting into
the peak structures, which discards increasingly more atoms also at late times.

Throughout this thesis the only fluctuation source of interest concerned the posi-
tional stability in vertical direction of our local rotation. Further technical noise
sources can be investigated and attempted to be stabilised, such as polarisation drifts
due to a thermal sensitivity of the pellicle or intensity and wavelength fluctuations
of the local rotation laser.

Building on the results obtained in this thesis, various next steps can be taken. Start-
ing in the soltion separation phase, extracting all three spin observables Fx,y,z simul-
taneously would enable to analyse possible correlations between the spin variables
or even spin squeezing. Revealing squeezing properties demands that the fluctua-
tion reduction of one variable below the classical limit is at the cost of an increasing
fluctuation in the conjugate variable. Further, the evolution of the internal spin state
after the collision of two solitons can be studied, where correlations between spin
observables were predicted in [16]. The preparation requires an additional control
over the phase between the colliding solitons to ensure reproducible experiments,
but also to allow to choose specific alignments, which have shown to impact the re-
sults before. Hence, a calibration of the magnetic field gradient is essential in order
to prevent a deviating evolution of the phases. Aside from that, also more exotic
configurations can be anticipated, like transferring components into the F = 2 man-
ifold and analysing their propagation and collision with a soliton in F = 1. Such
measurements could also help the development of a theoretical framework regard-
ing this scenario, which to date is not clear yet.
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Appendix A.

Fluctuations of a coherent state

A.1 Fluctuations of N−

We consider the fluctuations of observables taking on the form

N− = Na − Nb, (A.1)

where the subscript a and b are variables denoting two distinct modes we want to
compare. They can represent the side-modes ±1 as required in sec. 4.2.1 or different
sides, e.g. left or right in sec. 5.2.2. Depending on the specific modes, we use that
the total atom number is fixed by the sum of the respective atom numbers, so in
this case N = Na + Nb. This allows us to calculate the fluctuations in the difference
A.1 for one case and conclude this result for all differences presented in fig. 5.3.
So far no further assumptions are needed and the separation chosen to be arbitrary
at this point. We can use the explicit representation of the variance in terms of the
expectation values, i.e.

∆2N− = ⟨(N−)2⟩ − ⟨N−⟩2

= ⟨(Na − Nb)
2⟩ − ⟨Na − Nb⟩2

= ...

= ∆2Na + ∆2Nb − 2(⟨NaNb⟩ − ⟨Na⟩⟨Nb⟩).

(A.2)

We arrive at the last line by exploiting the linearity of the expectation value and re-
arranging the terms. The statistical nature is specified by the binomial distribution,
where each atom is found with equal probability pa = pb = 0.5 either in a or b. This
assumption is also justified by the idea that none of the two sides should be pre-
ferred by the atom if they are considered to be independent. The last term describes
the covariance between the atom numbers on both sides and can be understood by
noticing that each atom found on the left side, is missing on the right side. In that
sense, the covariance term embodies the dependency between Nl and Nr and is de-
fined for binomial distributed objects as

COV(Na, Nb) = ⟨NaNb⟩ − ⟨Na⟩⟨Nb⟩
= −Npa pb.

(A.3)

Additionally using that the variance of binomial distributed random variables is
determined by

∆2Na,b = Npa,b(1 − pa,b), (A.4)

we can reformulate A.2 to

∆2N− = Npa pb + Npa pb + 2Npa pb

= N.
(A.5)
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After normalising the variance with the total atom number we achieve for equally
distributed particles the limit

∆2Ñ− = 1 (A.6)

A.2 Fluctuations of Fz based on the populations

Calculating the fluctuations of the Fz spin necessitates to consider a = +1 and
b = −1 in eq. A.1. We further normalise this quantity with the average total atom
number N̄ and obtain

Fz =
N+1 − N−1

N̄
. (A.7)

The variance of this quantity depends now on the variance of the imbalance between
the side-modes

∆2Fz =
∆2N−

N̄2 , (A.8)

where the constant factor is pulled out squared. Since we aim to compare the fluc-
tuation of any observable to the limit set by a coherent state, it is more meaningful
to use the unnormalised Fz = N− and utilised solely N̄ for normalisation as

∆2Fz =
∆2N−

N̄
. (A.9)

In contrast to the difference between two sides, where we just sum up the atoms
inside an evaluation region, we now have to consider now that the local rotations
exerts spatially varying profiles according to the Rabi frequency Ω(x). To capture
this we can use eq. A.5 to write

∆2N− = Np+1 p−1 + Np+1 p−1 + 2Np+1 p−1

= 4Np+1 p−1,
(A.10)

and calculate the probabilities inside this certain evaluation region relative to the
total number N = N+1 + N0 + N−1.

p±1 =
N±1

N
(A.11)
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A.3 Calibrating a π/2 rotation from |1, 0⟩

0 40 50 6010 20 30

FIGURE A.1: The shot used for the calibration of a π/2 local spin rotation from |1, 0⟩.
At 60 µs almost the entire population in the rotation region has been
symmetrically transferred to the side-modes, as anticipated.
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Appendix B.

Calculating the optimal reference
pictures

As mentioned earlier, in order to be able to detect quantum effects, such as correla-
tions or even entanglement, the necessity of sufficiently low noise, or more precisely
fluctuations on coherent state level in the resulting data, is of major importance.

Before starting to analyse the measured data, we therefore process the raw data fur-
ther to reduce the noise generated during the imaging process and remove fringe
structures from the images. In the atom picture shown in fig. B.1, these fringes ap-
pear as diagonal stripes over the image. The general idea of this algorithm has been
discussed before in [54].
When imaging the experiment, the CCD is written from top to bottom. We first im-
age the atoms in the F = 2 manifold with its reference picture and repeat then the
same for F = 1. The reference picture is just an empty picture of the specific mani-
fold, without any atoms but with imaging light, to get an estimation of the imaging
noise produced in this shot and identify fringes. The idea is now to use the reference
pictures of the individual hyperfine-manifolds and calculate an optimal reference
picture for each atom image in the respective manifold. This is done by an linear
optimisation algorithm which effectively takes on the form

A · X = B, (B.1)

where A is the matrix containing the information about all reference pictures, B
the vector containing the information about one specific picture where we imaged
atoms and X the vector containing the weights that translate between these to ma-
trices. For A and B, we slice the same part out of the reference picture, where we do
not have any atoms imaged, and atom picture (see fig. B.1). These regions are called
masks and determine the size of the matrices, since they contain the 1D projection
of the pixel information. The other value necessary to determine the matrix A is the
library size l, so the amount of reference pictures we actually use for the optimisa-
tion. The entire process of solving eq. B.1 is done for every single shot, allowing us
to determine different sets of weights fulfilling the equation

ropt,n = ∑
i

xi,nri (B.2)

with the individual weight xi and the respective reference picture ri. In that manner
we determine a new optimal reference picture ropt,n for the n-th image. Ultimately,
we extract the data from each shot, considering its new optimal reference picture.
For large data sets, the time performance of solving B.1 depends on the provided
processing power of the used computer, since the matrix A gets increasingly larger
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FIGURE B.1: Image taken of the F = 1 manifold for the readout of Fz with atoms
and without atoms (reference picture). The information inside the red
boxes (masks) is used for the optimal reference picture analysis. The
regions are set equal for all images in F = 1, 2. The scale of both axis
denote pixels.

with the number of shots taken in the experiment. A way to account for this, but
at the same time ensure that the optimisation works sufficiently precise is to con-
sider only a sub-set of reference pictures closest in time to the respective realisation.
In that fashion, for the i-th shot, only the c reference pictures before and after are
considered, the size of the reference picture library therefore reduced to l = 2c + 1
for all realisations instead of the entire n pictures. This step can be justified by the
assumption that the experimental conditions undergo slight drifts over time result-
ing in a possibly not ideal comparability of two largely time-separated experimental
realisations. The concept of a reduced reference library and the necessity to update
it, to ensure the pictures closest in time are included, is presented in fig. B.2. The
choice of the parameter c must assure a sufficiently large reference picture library,
while at the same time keeping the calculation time reasonable. Since we do not
have even earlier images at the beginning of the analysis, we have to consider only
future images at this point. The idea is here to not fix the number of images before
and after the current analysed shot c, but to fix the size of the reference library l. The
further the number of analysed images proceeds, more previous reference pictures,
relative to the currently analysed shot, are used. Additionally, after the number of
analysed pictures surpasses l/2, the reference library gets updated for every further
shot. The oldest reference picture is ejected while the next reference picture in time
is included, until the library has been iterated to the end of all reference pictures.
From this point on the library remains constant until the end of the analysis.

Throughout the analyses in this thesis we consider reference libraries containing
500-1100 pictures, depending on the measurement. Since we measure roughly 60
realisations per hour, we therefore consider the reference pictures in a time interval
of ∼ 9 − 20 hours.
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FIGURE B.2: Sketch of the refilling of the reference picture library, if the libsize is not
including all reference pictures, i.e. libsize l = 6 < Nimages = 8 in the
example shown here. The i-th reference picture is taken together with
the i-th image and carries its timestamp. For every image an optimal
reference picture is calculated using the reference library. If the condi-
tion Nanalyzed > l/2 is fulfilled, the reference library gets updated by
including the next reference picture in time, while keeping the libsize
constant. In the case here, the first update occurs for the analysis of
the fourth image. For the update all entries in the reference library are
shifted to the left, ejecting the first entry and including the new pic-
ture in the last slot. The reference library is now updated for every
further image, until it is shifted to the end of accessible reference pic-
tures, where it remains unchanged until the end of the image library is
reached.
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