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Abstract. The dynamics of quantum fluctuations of weakly coupled Bose–
Einstein condensates (BECs) can be described by an effective Bose–Josephson
Hamiltonian. By requiring that the mean-field approximation on this effective
Hamiltonian reproduces the low energy dynamics of the Gross–Pitaevskii
equation, we obtain parameters for the effective Hamiltonian. This approach
is particularly suitable when the BECs are in the Thomas–Fermi regime.
Considering the problem of the splitting of a trapped BEC into two BEC
fragments, our results for the dynamics of the depletion, collapses and revivals of
the phase coherence are in good agreement with a recent numerical microscopic
calculation from Streltsovet al(2007Phys. Rev. Lett.99030402). In addition, the
excitation energy of the lowest symmetric mode, which is the first relevant mode
for the symmetric splitting process, is reproduced with reasonable accuracy all
the way from the mean-field Josephson regime to the Fock regime.
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1. Introduction

The system of two or many atomic Bose–Einstein condensates (BECs) weakly linked together
has attracted considerable attention in the last decade. Different dynamical scenarios have
been predicted and measured: these include the mean field predicted regimes of Josephson
oscillations [2, 3], macroscopic quantum self trapping [4], the ac and dc Josephson analogous
effect [5, 6] and their corresponding experimental observations [7]–[10]; the prediction of
quantum regimes of collapses and revivals of the phase of two superfluids [11]–[14] and their
experimental observation in a multi-well system [15], the characterization of quantum and
thermal fluctuations [16] and the observation of thermal noise [17] and indications of number
squeezing [18].

Whereas the majority of theoretical investigations (see for example [19] and references
therein) have been made by assuming and studying an effective Bose–Hubbard or Bose–
Josephson type of Hamiltonian, considerably less attention has been devoted to the problem
of how to obtain accurate energy parameters for these effective Hamiltonians. Some analytical
expressions have been given by Zapataet al [3], and in the work of one of us [5]. In particular,
the validity of the Josephson Hamiltonian description for the mean field regimes has been
numerically confirmed in this last work [5, 6].

The purpose of this paper is to show that the second quantized form of the effective
Josephson Hamiltonian allows the quantitative understanding of the splitting dynamics recently
numerically solved using advanced many-orbital mean-field theory by Streltsovet al [1]. The
mapping between Josephson and exact many body Hamiltonians is well known in the tight
binding regime. Here, we demonstrate how to extend the effective two mode Josephson model
to describe the on-going physics, relaxing the tight binding condition, including the Thomas–
Fermi limit. This is confirmed by good agreement of depletion dynamics and excitation spectra
obtained by numerical methods in [1]. This shows that our approach is capable of capturing the
physics of quantum fluctuations that play an important role in the splitting process of a BEC
[14, 20] in typical experimental situations where the BEC is usually in the Thomas–Fermi
regime.
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2. Description of the model

In this paper, we focus on the problem of an initially trapped weakly interacting BEC with
negligible depletion which is slowly separated into two parts by a barrier potential growing in
the middle of the trapping potential [14, 20, 21]. As the barrier potential grows the degenerate
Bose gas evolves from a mean-field Josephson regime to the Fock regime, where the Bose gas
is fragmented into two BECs. In the Josephson regime the atoms are free to tunnel from the
left to the right wells. In contrast, in the Fock regime the tunneling energyEJ is lower than the
interaction energy cost of exchanging one atom, which we refer to as the charging energyEC in
analogy with the original Josephson effect in superconductors. As a consequence the tunneling
process loses the typical collective character of the Josephson oscillations. The ground state has
a strong overlap with the Fock state of half the atoms on the left and the other half of the atoms
occupying a state on the right (see figure3).

In addition to the above equilibrium considerations, the problem of the splitting of a BEC
is a dynamical one [20, 21]. Depending on how slow the barrier is raised the atomic cloud may
end up in the Fock ground state or in a superposition of excited states, which manifests itself in
a time dependence of the phase fluctuations (see figure2).

2.1. The effective Hamiltonian

In this paper, we are only interested in the dynamics and the fluctuations of macroscopic
observables such as the atom number and the phase difference associated with the split BECs.
To calculate these quantities a microscopic description is not needed and we assume an effective
Hamiltonian which has the following second quantized form

H = (EJ/N)
(
c†

acb + c†
bca

)
+ (EC/8)

(
c†

aca − c†
bcb

)2
, (1)

whereca andcb (c†
a, c†

b) are destruction (creation) operators of particles in the left and right
wells. The same form for the Hamiltonian can be obtained by a variational approach starting
from the full many body Hamiltonian [4]. In that case, the two modes associated withca and
cb are explicitly calculated and the parametersEC andEJ are then deduced as matrix elements
of the appropriate operators between these modes [4, 22]. Our approach does not assume any
particular expression for the modes.

The parametersEC andEJ are tuned to match the mean field solution of equation (1) to the
mean field predictions for the macroscopic observables of the many particle problem, i.e. the
Gross–Pitavskii equation (GPE). This phenomenological approach is in some sense very similar
to the description of Josephson junction systems in condensed matter where the microscopic
details are not known.

The above Hamiltonian (1) is not the most general form of a Josephson-type Hamiltonian.
The chosen form implies a sinusoidal current–phase relationship which is a good approximation
for the parameters considered here. The first term may contain different powers ofc†

acb which
would give rise to different current–phase relationships, e.g. in the regime of hydrodynamic flow
between the wells [23].

We do not discuss in this paper the possibility of having the chemical potential difference
between the wells larger than the first intra-well excitation energy, which is a typical situation
in condensed matter.
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2.2. The Josephson energy EJ

We estimate the Josephson energyEJ from solutions of the time-independent GPE. We calculate
the ground state and the first asymmetric solution with a node at the barrier. The Josephson
energyEJ is half the difference between the energies of the two states which follows from the
assumed sinusoidal current–phase relationship. This method is straightforward to implement in
the case of a symmetric double well potential. In the absence of such symmetry one can use
inequality (8) of [3] which becomes an equality for one-dimensional (1D) flow.

2.3. The charging energy EC

The charging energyEC is calculated asEC = 4∂µ/∂N whereµ is the total chemical potential
extracted from the GPE solution. When the two BECs have a negligible overlap this corresponds
to EC = 2∂µ1/∂N1 whereµ1 and N1 are the chemical potential and the equilibrium atom
number on the left well, respectively [3, 5].

In the Thomas–Fermi limit∂µ/∂N = g/VTF, whereVTF is the volume (area or segment in
2D and 1D, respectively) where the Thomas–Fermi wavefunction differs from zero. Note that
in a variational approach with static wavefunctions∂µ/∂N is approximated by its variational
counterpartEC = U = g

∫
|9|

4. This gives a systematic error as high as 43% in 3D, 33% in 2D
and 20% in 1D in the Thomas–Fermi limit.

3. Dynamical splitting of a BEC

3.1. Trap parameters

We consider the Hamiltonian of a 1D symmetric double well trap with an even number of
bosons as defined in [1]. A BEC of N = 20087Rb atoms is initially prepared in an elongated,
quasi-1D harmonic trap of longitudinalω‖ = 2π × 44.7 Hz and transverseω⊥ = 2π × 1.1 kHz
frequencies. We set the length unit asL = 1µm, and the time and energy scale consistently
as in [1]. With these units the 1D reduced atom–atom interaction isU (x − x′) = λ0δ(x − x′)

with λ0 = 0.1. At time t = 0 a barrier potentialVlaser= V0 exp(−x2/2σ 2) of Gaussian shape
with σ = 2.6 is ramped-up linearly in time, i.e.V0(t) = (t/Tramp)Vmax

0 to a height ofVmax
0 = 30

and with ramp-up time ofTramp. The total time-dependent 1D trap potential is thenV(x, t) =

(x2/2σ 2) + Vlaser. In the present 1D calculation the value of the Thomas–Fermi parameter per
well is η1D = a(N/2)l‖/ l 2

⊥
≈ 6.

3.2. Energy parameters of the effective Hamiltonian

Our Hamiltonian (1) is time-dependent. The time dependence originates from the dependence
of EC andEJ on the barrier height, which evolves in time. Figure1 shows the dependence of the
calculatedEC andEJ on the barrier height. Note that whereasEC is almost constantEJ goes to
zero very quickly as the barrier grows. When the barrier height is approximatively at 0.23 of the
final barrier heightEJ crossesEC and the ground state starts strongly overlapping the so called
fragmented condensate.
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Figure 1. N = 20087Rb atoms are trapped in a double well potential formed
by a barrier of heightV0 in the middle of an harmonic trap (see text for the
actual parameters and dimensionless units). (a) Overlap of the ground state with
the fragmented (Fock) state versus barrier height. As the barrier height exceeds
0.223 of its final maximum barrier height, the Josephson energyEJ crosses the
charging energyEC and the ground state starts strongly overlapping a Fock
state. (b) For each value of the barrier heightV0 we calculate the parametersEJ

(solid line) andEC (dashed line) as described in section2 entering the effective
Josephson Hamiltonian (1).

3.3. Evolution of the quantum fluctuations

We solve numerically the many-body Schrödinger equation corresponding to (1). We consider
the symmetriccg and antisymmetricce combination of the operatorsca and cb, that iscg =

(ca + cb)/
√

2 and ce = (ca − cb)/
√

2. We deduce the dynamic evolution of the expectation
values〈c†

gcg〉/N and〈c†
ece〉/N corresponding to the populations of a condensate wavefunction

with even symmetry and of a condensate wavefunction with odd symmetry. Figure2 shows
the time evolution of these two quantities. Before the barrier starts to rise, almost all the atoms
occupy the ground state with a very small depletion of order of〈c†

ece〉/N ∼ 2× 10−3. As the
barrier rises the depletion in the antisymmetric state grows.

We compare the depletion calculated from the dynamics with the one obtained using the
adiabatic approximation, i.e. from the ground state of (1) considered as time-independent. For
t < 200 the expectation values〈c†

gcg〉/N and〈c†
ece〉/N are very close to the adiabatic solution,

which is represented by the smooth dot-dashed line in figure2.
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Figure 2. An initially coherent BEC ofN = 20087Rb atoms evolves towards
a twofold fragmented state during the ramping-up of a barrier in the middle
of a trap. The figure shows the fractional populations of a symmetric (solid
line) and antisymmetric (dashed line) wavefunction versus time (the ramping-up
time isTramp= 1000). Fort < 200 the population evolutions follow the adiabatic
curves (thin solid and dashed lines). The further oscillations are characteristic
of collapses and revivals. The revival period is related to the charging energy
by 4π h̄/EC (see text). The results of this figure are in good agreement with the
corresponding exact numerical results of figure 1 in [1].

For t > 200, we observe oscillations of the populations of the symmetric and antisymmetric
states. The oscillatory behavior denotes the collapses and revivals of the phase coherence as
explained in [11]–[14]. The amplitude and the period of the oscillations are in good agreement
with the microscopic calculation reported in figure 1 of [1]. The revival time is governed by
the charging energyEC. In most of the experimentally accessible situations for atomic BEC the
timescale is of order of one second. Note that the corresponding revival times are about 10µs
for a typical superconductor and as much as 1016 s for superfluid helium [12].

3.4. First excited state

We also compare the barrier heightV0 dependence of the excitation energy of the second
excited state calculated from (1) with that reported in figure 1(b) of [1]. This excitation energy
corresponds to the first excited state that can be partially populated by a nonadiabatic rise of the
barrier. The result of the comparison is shown in figure3 and represents the main result of this
paper. The agreement is better than 12% for barrier heightV0/Vmax

0 > 0.18. ForV0/Vmax
0 < 0.2,

i.e. the Josephson regime, the energy of the considered excited state is in good agreement with
the energy of two Josephson excitations 2

√
EJEC. ForV0/Vmax

0 > 0.24, i.e. the Fock regime, the
considered excitation energy tends towardsEC/2. ForV0 = Vmax

0 the revival time 327.9 obtained
from the simulation in figure2 corresponds to an energy of 0.01916, in perfect agreement with
the value of excitation energyEC/2 = 0.01917. These are also in reasonable agreement with the
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Figure 3. Energy of the second excited state versus barrier heightV0. This
energy corresponds to the first excited state that can be partially populated
by a nonperfectly adiabatic rise of the barrier. The solid line is obtained
from the numerical diagonalization of the Hamiltonian (1). Crosses are the
numerical results of [1]. The agreement is satisfactory forV0/Vmax

0 > 0.18. For
V0/Vmax

0 < 0.2, the energy of the considered excited state is in good agreement
with the energy of two Josephson excitations 2

√
EJEC (green dashed line). For

V0/Vmax
0 > 0.24, the spectrum is dominated by the charging termEC/2 (magenta

dashed line).

simulation of [1] for which the corresponding values are 0.0197 from the dynamics and 0.0188
from the calculated spectrum.

4. Conclusions

We have shown that an effective Josephson Hamiltonian approach is a reasonable description
also in situations where the role of excited states is considered to be relevant (Thomas–Fermi
regime), see the discussions in [1, 20]. The method discussed in this paper can be naturally
extended to the case of a Bose gas loaded in an optical lattice. Since the atomic confinement
in a typical optical potential can be quite high, the Thomas–Fermi parameterη3D = aNi / l
(with Ni being the atom number per site) can be of order of unity or even bigger, especially
in 1D optical lattices. Therefore the corrections mentioned in this paper apply to the Bose–
Hubbard Hamiltonian description [24]. Neglecting finite size effects due to finite number of
atoms per well, the replacement of the variational energy integralU = g

∫
|9|

4 with 9 a
Wannier wavefunction, by∂µi /∂Ni whereµi is the chemical potential should give a better
approximation for calculating the depletion of a BEC in an optical lattice.
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