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Many cold atom experiments rely on precise atom number detection, especially in the context
of quantum-enhanced metrology where effects at the single particle level are important. Here, we
investigate the limits of atom number counting via resonant fluorescence detection for mesoscopic
samples of trapped atoms. We characterize the precision of these fluorescence measurements be-
ginning from the single-atom level up to more than one thousand. By investigating the primary
noise sources, we obtain single-atom resolution for atom numbers as high as 1200. This capability
is an essential prerequisite for future experiments with highly entangled states of mesoscopic atomic
ensembles.

The Heisenberg uncertainty principle sets a fundamen-
tal limit, ∆φ = 1/N , on the precision at which one
can determine an interferometric phase φ using N par-
ticles [1]. A prerequisite for reaching the Heisenberg-
limited uncertainty in a real measurement is a parti-
cle detector with atom number variance σ2

N � 1, i.e.
exact particle counting at the interferometer output.
This capability is challenging to realize, particularly for
large particle numbers. For example, single-photon de-
tectors suffer from limited quantum efficiency (typically
< 95 %), which prohibits resolving photon numbers for
N � 10 [2]. On the other hand, single atoms can be
detected with near-unit efficiency by trapping them and
observing their fluorescence [3]. Here, we extend this
single-atom counting capability to mesoscopic atom num-
bers by high accuracy fluorescence measurements.

One example where single-atom resolution becomes
necessary is spectroscopy with maximally entangled
states. Here, it has been shown that Heisenberg-limited
precision requires measurement of the parity [4]. Another
example is interferometry with spin-squeezed atomic
states [5], where experimental results have shown a re-
duction of atom number variance approaching a level at
which single-atom resolution becomes relevant [6]. Sim-
ilarly, such high resolution atom detection would allow
the direct observation of twin atom pairs produced via
spin-changing collisions [7–9] and enable their use for in-
terferometry at the Heisenberg limit.

The most common detection method for neutral atoms
is absorption imaging, but the precision of such measure-
ments on mesoscopic ensembles has thus far been limited
to the level of a few atoms [10, 11]. Single-atom resolution
for small atom numbers (N ∼ 10) has been achieved by
fluorescence detection of neutral atoms in free space [12]
as well as in magneto-optical traps (MOTs) [13–15], opti-
cal dipole traps [16] and optical cavities [17–19]. A recent
experiment explored the detection of mesoscopic ensem-
bles of atoms [20] in an optical cavity, and stability at
the single-atom level was observed in repeated measure-
ments for effective atom numbers as high as N = 150.
In this case, however, accurate determination of the ab-
solute atom number was not possible due to inhomoge-

neous coupling to the standing-wave probe light. On the
other hand, spatially resolved fluorescence measurements
of atoms in optical lattices, can determine the number of
singly-occupied sites [21–23], but atom pairs are quickly
lost due to light-assisted collisions. In contrast, here,
we show exact counting of the total atom number in
mesoscopic ensembles by fluorescence measurements in
a MOT (Fig. 1).

To estimate the limits of this approach, consider a flu-
orescence measurement of N trapped atoms. Two com-
peting noise sources, fluorescence noise and noise from
atom loss, determine the maximum atom number Nmax

for which single-atom resolution is possible. Photon-shot-
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FIG. 1. (a) Histogram of collected fluorescence signal (de-
tection time t = 100 ms) and Gaussian fits to the resulting
distributions (red lines). (b) Example time traces for differ-
ent fluorescence levels. The upper and center insets show the
signal of a single atom and one hundred atoms, respectively.
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noise (PSN) contributes a variance of N/np in terms of
atom number when detecting np photons per atom in the
absence of background photons. The signal per atom can
be expressed by np = Rscηt, whereRsc is the photon scat-
tering rate, η is the overall photon detection efficiency,
and t is the detection time. The second noise source,
atom number fluctuations due to trap loss, contributes a
variance of Nt/2τ , where τ is the trap lifetime. We can
determine the optimal t by minimizing the total variance,
σ2
N = N/ηRsct+Nt/2τ . Here we find topt =

√
2τ/ηRsc,

which is independent of the atom number. Further-
more, by setting σN = 1 we calculate an upper bound
Nmax =

√
τηRsc/2. As a concrete example, consider

87Rb (Γ/2π = 6.1 MHz) trapped in a MOT. Each atom
fluoresces at a rate Rsc = Γ/2× s0/(1 + s0 + 4∆2/Γ2),
where s0 is the saturation parameter and ∆ is the de-
tuning of the laser from resonance. If we assume typical
experimental parameters (s0 = 1, ∆ = −Γ/2, η = 0.01
and τ = 100 s), we find topt = 56 ms and Nmax = 1800.
This number is at least two orders of magnitude higher
than the atom numbers counted in previous neutral-atom
experiments. In what follows we show measurements ap-
proaching this limit.

In our experiment, we image a MOT of 87Rb atoms
onto a low-noise CCD camera. We estimate the total
efficiency of the imaging system to be η = 0.01, which
includes the numerical aperture of the aspherical objec-
tive lens (NA = 0.23), the camera quantum efficiency,
and the transmission of all optical elements. The MOT
beam diameters typically have a waist of w = 1.5 mm
during atom counting and the peak intensity, summed
over all six beams, is 23 mW/cm2, corresponding to a
saturation parameter s0 ' 6.5. From this, we estimate
the scattering rate per atom as Rsc = 15× 106 s−1 at the
detuning of approximately −Γ/2.

The histograms in Fig. 1 are generated by binning re-
peated fluorescence measurements over an 8 hour time
period. The effective detection time for the measure-
ments is 100 ms, where each measurement integrates the
fluorescence from two adjacent 50 ms exposures. The
background count level, recalibrated every 15 minutes, is
typically less than the signal from 3 atoms. For atom
numbers as high as N ∼ 300, resolved peaks appear in
the fluorescence histograms corresponding to the signal
from an exact number of atoms. Over the same range of
atom numbers, steps can be observed in the time-resolved
fluorescence signal, coinciding with the loading or loss of
individual atoms. These features indicate atom number
resolution significantly below the single-atom level.

Based on the resolved histogram peaks, we can charac-
terize several properties of the detector. First, by fitting
the peaks to a sum of equally-spaced Gaussian distri-
butions, we calibrate the single-atom count rate to be
90310 counts/atom/s. A quadratic fit to the centroid of
all resolvable peaks as a function of N reveals no evidence
for nonlinear scaling of the count rate with atom num-
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FIG. 2. Atom number variance as a function of exposure time.
For atom numbers in the range N = 100 to 200, the measured
variance (circles) reaches a minimum near t = 100 ms. For
short integration times σ2

N is limited by photon shot noise and
additional fluorescence noise, which average in time (dash-dot
line). For long integration times, the finite lifetime is the dom-
inant noise contribution (dashed line), where the main loss
processes, depicted in the diagram, are collisions with back-
ground gas and light-assisted collisions. Higher atom numbers
(N = 1000 to 1100 in the inset) exhibit a higher overall vari-
ance, but the optimal detection time is found to be similar.
The error bars represent 1-σ statistical uncertainties and the
solid lines are fits based on the model described in the text.

ber. The uncertainty in the second-order fit coefficient
is one way to quantify the calibration accuracy, and we
constrain the deviation from linearity to below 0.02 %
at N = 250 (95 % confidence interval). The width of
the individual distributions are a measure of fluorescence
noise for a given atom number. For example, at N = 100
we find a standard deviation of σ = 0.14 atoms growing
to σ = 0.27 atoms at N = 230. These numbers are com-
parable to the expected photon shot noise of σpsn = 0.11
at N = 100 and σpsn = 0.16 at N = 230.

To characterize the detection noise σN in a general way
for higher atom numbers, we calculate the two-sample
atom variance (equivalent to the Allan variance in fre-
quency measurements)

σ2
N =

1

2

〈
(Sn+1 − Sn)2

〉
, (1)

where Sn and Sn+1 are the signals of consecutive mea-
surements, each integrating CCD counts for time t. This
measurement captures both fluorescence noise and num-
ber fluctuations due to atom loss, but, in contrast to the
histograms above, is not susceptible to long term drifts in
the signal. Fig. 2 shows the results of such an analysis for
atom numbers in the range N = 100 to 200. It indicates
that there is an optimal detection time, topt ∼ 100 ms,
after which atom loss begins to dominate the noise. The
same analysis for N = 1000 to 1100 (Fig. 2, inset) shows
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FIG. 3. Single-atom resolution for mesoscopic atom numbers.
For the near-optimal exposure time of 100 ms the variance σ2

N

reaches the limit of single-atom resolution at N = 1080. A fit
to the data based on a noise model incorporating fluorescence
noise and atom loss (upper green line) allow us to estimate the
relative contribution of these noise sources (shaded regions)
and compensate for the mean atom loss (red diamonds) as
described in the text. A logarithmic plot (inset) shows how
the scaling of the variance with respect to atom number tran-
sitions from linear to quadratic as the additional fluorescence
noise begins to dominate the shot noise.

that topt does not change significantly over the full range
of atom numbers, as expected.

Taking the 100 ms detection time, we determine the
variance as a function of atom number up to N = 1200
(Fig. 3). Here, it can be seen that the single-atom res-
olution threshold, σN = 1, is reached near N = 1080.
Viewing the same data on a logarithmic plot (Fig. 3, in-
set) shows how the variance initially scales with N at low
atom numbers then changes to scaling with N2 at higher
atom numbers.

To better understand the limiting noise sources we fit
an equation of the following form to the data,

σ2
N = a(N)t−1 + b(N)t+ c(N)t2, (2)

where the first term represents fluorescence noise and
PSN, while the last two terms come from atom loss –
both the atom shot noise due to discrete loss events,
quantified by b(N), and the decay of the mean num-
ber of atoms, quantified by c(N). In particular, we
use a(N) = N

ηRsc
+ (αN)2, where the first term repre-

sents photon shot noise and the second term is an ad-
ditional noise source that is assumed to be uncorrelated
in time but common to all atoms in the MOT. This de-
scribes, for example, fast frequency or intensity noise on
the MOT laser beams. To determine b(N) and c(N)
we use a master equation approach based on the rate
equation dN/dt = −N/τ − βN2, where both one-body

loss, parameterized by τ , and two-body loss, parameter-
ized by β, are considered (see supplementary informa-
tion [24]). The resulting noise coefficiencts are given by
b(N) = N/2τ + βN2, which is the dominant effect of loss

in our measurements, and c(N) =
(
N/τ + βN2

)2
/2.

A fit of the noise model to the data, for which we vary
α, τ and β, is performed individually for each atom num-
ber. Two examples of such fits are shown in Fig. 2. We
take the means of the independent fit parameters as in-
puts to the noise model to produce the curve in Fig. 3.
We extract a value for the fluorescence noise parame-
ter of α = 1.9(1)× 10−4 s1/2 (uncertainties represent 1-σ
statistical uncertainty). A likely source of this additional
noise in our experiment is frequency noise on the MOT
lasers, which would correspond to about 10 kHz devia-
tions in detuning when averaged over the detection time.
We also extract the loss parameters τ = 246(44) s and
β = 3(3) × 10−7 s−1, indicating that light-assisted col-
lisions contribute only a small amount to the detection
errors at these atom numbers. Since the atom loss is well
known for all atom numbers based on the calibrated pa-
rameters, we can improve the measurement accuracy by
compensating for the loss that occurs during detection. If
the raw measurement yields the result N , then one com-
putes a loss-compensated result N ′ = N + Nt/2τ , ne-
glecting β. Assuming proper measurement calibration,
the limiting noise is then given by Var(Sn+1 − Sn)/2.
Computing this variance for the same data set yields a
threshold for single atom resolution of N = 1200, coin-
ciding with the sum of remaining noise terms, as shown
in Fig. 3. To illustrate the meaning of these variances in
terms of atom counting, consider the fidelity, here defined
as the probability of exactly identifying the initial atom
number. We evaluate this based on a Monte-Carlo sim-
ulation assuming the measured count rate, fluorescence
noise and loss parameters and find a fidelity of 99.8 %
at N = 10, 98.5 % at N = 100, and 44 % at N = 1200
(details in supplementary information [24]).

We now investigate state-selective detection of the two
hyperfine levels, |F = 1〉 and |F = 2〉, in the 2S1/2 man-
ifold (Fig. 4). The technique is based on release and re-
capture of the atoms, where, during the release, atoms in
|F = 2〉 are pushed out of the capture volume by resonant
radiation pressure. As a starting point, we measure the
efficiency of the release and recapture, as a function of the
release time, without radiation pressure. By counting the
atoms before and after the release, we find a recapture
fidelity above 99.92 % for release times up to 2 ms. To
distinguish the populations we apply a laser pulse reso-
nant with the |F = 2〉 → |2P3/2,F = 3〉 transition during
the release time (between two exposures in a single CCD
frame), which imparts momentum to the |F = 2〉 atoms,
while ideally leaving the |F = 1〉 atoms unaffected. We
measure the overall error probability for the two cases
when the atoms are prepared in either |F = 2〉 or |F = 1〉
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FIG. 4. Efficiency of state-selectivite detection via radiation
pressure. (a) Level scheme of the 87Rb D2 transition. The
push beam accelerates atoms in |F = 2〉 out of the capture vol-
ume while the MOT beams and repumper are off. The atoms
can be prepared in |F = 1〉 via optical pumping. (b) Three
example measurements of the |F = 2〉 push efficiency, detect-
ing the atom number before and after the push pulse (dashed
line). (c) The measured error rate without push pulse (dia-
monds), is consistent with isotropic thermal expansion (green
line). The errors for |F = 2〉 atoms (squares) can be qualita-
tively understood based on an analysis of the rate of depump-
ing from |F = 2〉 to |F = 1〉 including the effects of imper-
fect push beam polarization, and imperfect state preparation
(blue line). The error rate for atoms prepared in |F = 1〉
(circles) includes both the effects of thermal expansion and
off-resonant optical pumping (red line). All error bars repre-
sent 1-σ statistical uncertainties.

via optical pumping. The release time with equal error
probability for both states is found to be 2.2 ms, where
we measure an average fidelity of 99.6(1) %, sufficient for
detecting the state of 250 atoms with single-atom reso-
lution.

In summary, we have shown single-atom resolution for
fluorescence measurements of up to 1200 atoms. Our
results show that a MOT, with high trap depths, low
atom density and high photon scattering rate, is a near
ideal trap for precise fluorescence measurements. Since
the basic experimental techniques used here are common
to many cold-atom experiments, an atom detector with
this level of performance could be implemented in many
contexts. In addition, our noise analysis is relevant for
fluorescence measurements in other atom traps such as

optical dipole traps, where we expect both atom loss
from light-assisted collisions and photon shot noise to be
more severe constraints. In the present work, we demon-
strated state-selective detection using radiation pressure
to separate two hyperfine states, counting the atoms of
one state that remain in the trap volume. However, for
many experiments it would be advantageous to simul-
taneously detect the atom number in two or more sub-
ensembles. For this, we envision a system where atoms in
the relevant quantum states are separated spatially then
individually trapped and detected via fluorescence mea-
surements. We are currently developing this capability
in our experiment. When combined, for example, with
Stern-Gerlach separation, this will enable measurements
of spin-entangled BECs at the Heisenberg limit.
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133603 (2012).

[21] K. D. Nelson, X. Li, and D. S. Weiss, Nat. Phys. 3, 556
(2007).

[22] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J. I.
Gillen, S. Foelling, L. Pollet, and M. Greiner, Science
329, 547 (2010).

[23] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau,
I. Bloch, and S. Kuhr, Nature 467, 68 (2010).

[24] See Supplemental Material at [] for further details about
the experiment, noise model and fidelity estimates.



S0

SUPPLEMENTARY MATERIAL

Additional Experimental Details

Our experiment requires maintaining a stable MOT
with a long lifetime, low loading rate from background
gas, and low levels of stray light from the MOT and re-
pumper beam. We have taken several steps to ensure
these conditions. First, the size of the MOT beams is
adjusted by a motorized iris between a waist of 17 mm
and 1 mm. During detection the MOT beam waist is typ-
ically 1.5 mm and we achieve a background count rate be-
low 225 kcts/s, or roughly equivalent to the signal from
2.5 atoms. Similarly, we use a single repumping beam
centered on the MOT with a waist below 1 mm to min-
imize the total incident power and resulting stray light.
This makes the contribution of background photons to
our detection noise negligible for almost all atom num-
bers considered. The reduced beam size also limits the
loading rate of atoms from background gas to levels of
4× 10−3 1/s and below, so that, for most atom numbers
the loading rate is insignificant compared to the loss. In-
terference fringes on the MOT beams, particularly due
to diffraction through the iris, can lead to inhomogenous
intensity imbalances across the MOT, and result in flu-
orescence noise and heating [S1 ]. For this reason, after
the motorized iris, we implement a spatial filter that is
optimized for the small beam sizes, where these effects
are most important.

The image of the MOT is masked spatially in an inter-
mediate image plane, so that it illuminates only a narrow
stripe of the CCD. This has also been found to reduce
stray light, by providing some level of spatial filtering.
Using a subframe transfer mode of the camera, we make
a series of measurements in rapid succession before a me-
chanical shutter is closed and the frame is read out (3.5 s
readout time), so that the timing between adjacent expo-
sures is controlled at the sub-millisecond level. The CCD
read noise (4 e−/pixel) is negligible for all measurements.

Noise Model and Master Equation

In order to understand the limiting noise contributions
for atom number detection and find the optimal expo-
sure time, we evaluate the atom variance σ2

N for different
atom numbers and integration times. At short integra-

tion times, we expect the major noise contribution to
arise from fluorescence noise, consisting of photon shot
noise and scattering rate noise, due to frequency or in-
tensity fluctuations of the excitation light. For longer in-
tegrations times, the primary noise source is the lifetime
of atoms in the trap, due to one- and two-body decay.
The general model is

σ2
N = σ2

psn + σ2
srn + σ2

loss. (S1)
Photon shot noise is given by σ2

psn = ηRscNt
−1, where

(ηRsc)
−1 is the count rate per atom. Scattering rate

noise is described by σ2
srn = (αN)2t−1, which arises from

correlated fluctuations in the scattering rate for each of
the N atoms.

The two primary processes that lead to atom loss in a
magneto-optical trap are one-body decay due to collisions
with the background gas, parameterized by the lifetime
τ , and light-assisted collisions, where two atoms are lost
simultaneously, parameterized by β. Because of the low
density in a MOT, three-body losses can be neglected.
The rate equation for atom loss is given by,

dN

dt
= −N

τ
− βN2. (S2)

We are interested in the effects of loss over the detection
time t, which is short compared to τ and βN for all N
considered, so that the relevant part of the loss curve is
just the initial linear component,

N(t) = N0 −
(
N0

τ
+ βN2

0

)
t. (S3)

The noise σ2
loss due to atom loss depends on the nature

of the loss process, i.e. one-body and two-body processes
will contribute differently. These contributions can be
derived from a master equation [S2 ].

We consider the probability P (N, t) of having N atoms
in the trap at a given time. The time evolution of this
probability is given by the master equation

∂

∂t
P (N, t) =

∑
N ′

WN ′,NP (N ′, t)−WN,N ′P (N, t). (S4)

The first term describes an increase of the probability
P (N, t) when the atom number changes from any N ′ to
N with a weight WN ′,N . The second term accounts for
a change in atom number from N to any N ′, weighted
with WN,N ′ , which reduces the probability. The master
equation for one- and two-body decay reads

∂

∂t
P (N, t) =

1

τ
[(N + 1)P (N + 1, t)−NP (N, t)] +

β

2
[(N + 2)(N + 1)P (N + 2, t)−N(N − 1)P (N, t)] , (S5)

where β has to be halved, since by definition it accounts for the loss of only one atom, while in the actual process
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two atoms are lost from the trap. The time evolution of
the k-th moment of P (N, t) is given by

∂

∂t

〈
Nk(t)

〉
=

∂

∂t

∑
N

NkP (N, t)

=
∑
N

Nk ∂

∂t
P (N, t). (S6)

Eq. S5 can be substituted in Eq. S6 to generate a
set of coupled differential equations for all moments of
P (N, t). We are interested in the evolution of the vari-

ance Var (N) =
〈
N2
〉
− 〈N〉2. To evaluate the differen-

tial equations we apply two conditions that are easily
satisfied in our experiments. First, Var (N)� 〈N〉, as
required for a precise atom number measurement. Sec-
ond, 〈N〉2 � 〈N〉, which is true for the mesoscopic atom
numbers of interest. With these, we obtain

∂

∂t
Var(N) =

〈N〉
τ

+ 2β 〈N〉2 . (S7)

For td � τ and td � βN0 as in our experiments,

Var (N) =
N0t

τ
+ 2βN2

0 t. (S8)

Experimentally, we measure the two-sample variance
σ2
N = 1

2

〈
(Sn+1 − Sn)2

〉
, where Sn+1 and Sn are the con-

secutive detected atom numbers. Considering only loss,
this can be written,

σ2
loss =

1

2

〈
(N(t)−N0)2

〉
=

1

2
Var(N(t)) +

1

2
〈N(t)−N0〉2 . (S9)

Using Eq. S3 and Eq.S8, we have

σ2
loss =

N0

2τ
t+ βN2

0 t+
1

2

(
N0

τ
+ βN2

0

)2

t2, (S10)

which is the last term in the full noise model Eq. S1.

Monte Carlo Simulation for Fidelity Estimates

The variance of our fluorescence measurements as a
function of atom number as shown in Fig. 3 (main text)
specifies the range over which we achieve single-atom res-
olution (σN < 1). In the context of measuring a discrete
quantity such as the atom number an intuitive figure of
merit is the fidelity F , which we define as the probability
that the measurement outcome corresponds to the ex-
act number of atoms in the ensemble at the beginning
of the measurement. Given the initial atom number, the
effects of atom loss lead to a non-Gaussian distribution of
measurement outcomes, such that the fidelity cannot be
directly calculated from the measurement variance alone.
For this reason, to estimate this fidelity, we take the noise

parameters, τ , β, and α, extracted from the experimen-
tal measurements and perform a Monte-Carlo simulation
of the measurement process with a known initial atom
number, N0. This allows us to estimate the fidelity F , or
equivalently the error probability 1− F (Fig. S1).

Beginning from N0, the simulation determines the
atom number Nk, and the number of CCD counts on
a time interval δt, which is chosen to be much less than
the total exposure time t = 100 ms. At each time step,
the number of atoms lost is randomly chosen from a con-
volution of distributions that quantify one-body and two-
body loss. These are the same probabilities entering the
master equation, Eq. S5, above. The dominant contri-
bution for most atom numbers is the probability of los-
ing a single atom due to collisions with background gas,
P1 ' Nkδt/τ . For all atom numbers we consider, this
probability is less than 1 % over the simulation time
interval δt. We also take into account two-body loss
events resulting in the loss of both atoms, with proba-
bility P2 ' βN2

kδt/2.

Given the Nk trapped atoms during δt we randomly
generate a number of CCD counts ck based on a
Gaussian distribution with mean c̄k = NkηRscδt and
variance σ2

c =
(
σ2
psn + σ2

srn

)
η2R2

sc, taken from the noise
model described above and evaluated at δt. The total
counts C =

∑
k ck summed over all k within the ex-

posure time is used to determine the measurement re-
sult Nmeas = C/t. Here we ignore counts from stray
light, which contributes negligibly to the noise for all
atom numbers. We calculate a loss-compensated result
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FIG. S1. Error probability for determining the exact atom
number. Results from a Monte-Carlo simulation (circles)
show how the error probability 1−F increases with atom num-
ber. At low atom numbers the loss probability Ploss ' N0t/2τ
(solid line) dominates the errors. At higher atom numbers,
fluorescence noise (dash-dotted line) is the primary source of
error.
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N ′meas = Nmeas(1 + t/τ + βNmeast), and the final detec-
tion outcome comes from rounding N ′meas to the nearest
whole number.

When we compare these outcomes to N0, we find the
error probabilities plotted in Fig. S1. For atom num-
bers up to N0 = 200 the probability of a one-body loss
event, Ploss ' N0t/2τ, dominates these errors. Note
that, in the absence of fluorescence noise, only loss
events during the first half of the detection time will
result in an error leading the the factor of 2 in Ploss.
Above N0 = 200 fluorescence noise becomes more sig-
nificant. This noise is described by a normal distribu-
tion f(N) = e−(N−N0)

2/2σf/
√

2σf , where σ2
f = σ2

psn+σ2
srn

from Eq. S1 depends on N0. The probability that a mea-
surement lies outside the thresholds at N0− 1

2 and N0+ 1
2

is,

Pf = 1 + erf

(
− 1√

8σf

)
. (S11)

Both Pf (dash-dotted line) and Ploss (solid line) are plot-
ted along with the simulation data in Fig. S1, and show
excellent agreement with the simulation in the appropri-
ate atom number ranges.

∗ atomcounting@matterwave.de
[S1] T. Chanelière, J.-L. Meunier, R. Kaiser, C. Miniatura,

and D. Wilkowski, J. Opt. Soc. Am. B 22, 1819 (2005).
[S2] N. Van Kampen, Stochastic Processes in Physics and

Chemistry (North Holland, 2007).


