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Abstract: In this thesis we experimentally observe the dynamics of dark solitons in
elongated Bose-Einstein condensates (BEC) in the crossover regime between 1D and
3D. Dark solitons are dynamically stable in this regime. This allows the observation
of the collisional and oscillational dynamics of two dark solitons in a harmonically
confined BEC over several oscillation periods. We can detect the repulsive inter-
solitonic interaction as an increase of the oscillation frequency of the two solitons
strongly depending on their mean distance. Thereby we give the first experimental
evidence of the theoretically predicted repulsive interaction between the solitons. We
compare our experimental findings to numerical simulations of the Gross-Pitaevskii
equation and effective 1D equations. Additionally we develop a model in which the
solitons are approximated by repulsively interacting classical particles. This model is
based on a soliton interaction potential suggested by [Kiv1995] and can describe the
essentials of the soliton dynamics. We observe well agreement between the soliton
oscillation frequencies measured in the experiment, the numerical simulations and
the results of the particle model. Besides we verify the theoretical prediction that
the oscillation frequency of dark solitons in a harmonically confined BEC should be
slower than the trap frequency.

Zusammenfassung: Im Rahmen dieser Arbeit wurde die Dynamik von dunklen
Solitonen in zigarrenförmigen Bose-Einstein Kondensaten (BEC) im Übergangsregime
zwischen 1D und 3D untersucht. In diesem Regime sind dunkle Solitonen stabil. Dies
ermöglicht es die Kollisions- und Oszillations-Dynamik zweier dunkler Solitonen im
harmonisch gefangenen BEC über mehrere Oszillationsperioden hinweg zu unter-
suchen. Dadurch kann die repulsive Wechselwirkung zwischen den Solitonen als ein
Anstieg der Oszillationsfrequenz der beiden Solitonen, welcher stark von ihrem mit-
tleren Abstand abhängt, detektiert werden. Dies ist der erste experimentelle Nach-
weis der seit langem theoretisch vorhergesagten repulsiven Wechselwirkung zwis-
chen dunklen Solitonen. Wir vergleichen unsere experimentellen Erkenntnisse mit
numerischen Simulationen der Gross-Pitaevskii Gleichung und effektiven 1D Gle-
ichungen. Zusätzlich entwickeln wir ein Modell im Rahmen dessen die Solitonen als
repulsiv wechselwirkende klassische Teilchen approximiert werden können. Dieses
Model basiert auf einem Wechselwirkungs-Potential für Solitonen wie in [Kiv1995]
vorgeschlagen. Es kann die Grundzüge der Solitonendynamik auf einfache Weise
beschreiben. Die experimentell ermittelten Oszillationsfrequenzen der Solitonen wer-
den in guter Übereinstimmung durch die numerischen Simulationen und die Ergeb-
nisse des Teilchenmodells bestätigt. Außerdem konnte die theoretische Vorhersage,
dass dunkle Solitonen in einem harmonisch gefangenen BEC langsamer oszillieren
sollten als mit der Fallenfrequenz, bestätigt werden.
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Chapter 1

Introduction: Solitons

Every wave packet in a linear dispersive medium suffers from spreading with time.
Due to the superposition principle such a system can be decomposed into a set of
linear Fourier modes which evolve independently in time with different phase veloc-
ities. Adding a nonlinear term to a linear equation couples the linear modes and
destroys the validity of the superposition principle. This makes it possible in a non-
linear system to compensate the effect of dispersion by a strong enough nonlinearity
and enables the creation of non-spreading structures. Such non-spreading structure
is called a soliton. Nonlinear modes like solitons can be obtained analytically from a
nonlinear equation by the method of inverse scattering transform [Zak1973, Kiv1993],
if the equation is exactly integrable [Kiv1998].
The very first discovery of solitons was the observation of non-spreading water
waves [Rus1844], which are described mathematically by the so-called Korteweg-
de Vries equation [Kor1895]. Also the well known Tsunami wave is a soliton.
Apart from hydrodynamics, solitons occur e.g. in solid state physics, mechanics,
biophysics, optics and Bose-Einstein condensates (BECs). Depending on the under-
lying nonlinear equation different kinds of solitons can appear. Solitons have been
observed as non-spreading wave packets [Rus1844, Mol1980, Gas1987, EieII2004] or
as non-spreading kinks in the background medium [Emp1987, Kro1988, Wei1988]
[Den1990, Den1992, Che1993] [Bur1999, Den2000] in a lot of different physical sys-
tems with nonlinear interaction. This nonlinearity can be realized by different effects
in different media. In the case of BECs the inter-atomic interaction serves as nonlin-
earity whereas in the case of optical solitons various effects can support a nonlinearity.
The most prominent one is the optical Kerr effect [Kiv1998] which occurs as an in-
tensity dependent refractive index n = n0 + n2I, with n2 the second-order nonlinear
refractive index and I the intensity. The dynamics of many of these nonlinear sys-
tems can be described by formally similar equations. Therefore results gained in one
system can be transferred to others.

In the fields of optics and BECs two families of solitons are distinguished: bright
and dark (kink) solitons [Kiv1998]. Non-spreading wave packets are called bright
solitons, whereas non-spreading kink states are called dark solitons. In optics the
later describe intensity dips in the background field and non-spreading density dips
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in a BEC respectively. The solitons in both fields are described, in their idealized
form, by the same kind of homogeneous nonlinear Schrödinger equation of the form:

i
∂u

∂x
= −1

2

∂2u

∂z2
+ σ|u|2u (1.1)

In the case of σ = −1 the nonlinearity is attractive (or focusing respectively) and sup-
ports bright solitons. The corresponding solution for the fundamental (stationary)
bright soliton takes the form [Kiv1993, Kiv1998] (see Fig. 1.1):

u(z, x) = a sech(az)eia
2x, (1.2)

with the amplitude a.
For σ = +1, dark solitons are supported and the fundamental dark soliton is de-
scribed by [Kiv1993, Kiv1998] (see Fig. 1.1):

u(z, x) = u0 tanh(u0z)eiu
2
0x, (1.3)

with the background density u0. The dark solitons in Bose-Einstein condensates re-
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Figure 1.1: left: fundamental bright soliton, a = 1. right: fundamental dark soliton,
u0 = 1.

garded in this thesis behave the same way as spatial dark solitons in nonlinear optical
Kerr-media. In contrast to the field of BEC, in optics one has to distinguish between
spatial and temporal solitons. Spatial optical solitons are solitons in the transverse
intensity profile of a laser beam and are described by Eqn. 1.2 and Eqn. 1.3 with
the spatial coordinates (z,x). Temporal optical solitons occur as non-dispersive laser
pulses or non-dispersive intensity dips in these pulses in the coordinate system (x,t).
Here x denotes the direction of beam propagation and t the time. A historic intro-
duction to solitons can be found in [Ron2008].

In this thesis we will focus on dark solitons in BECs. We will discuss experiments
creating dark solitons in a harmonic trap by means of matter wave interference. Our
observations will focus on the oscillation frequencies of the solitons and on their
mutual interaction. The thesis is divided into four main chapters. Chapter 2 will
provide the reader with the theoretical basics of dark soliton physics in BECs. In
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chapter 3 we present our experimental technique of creating the solitons. Chapter 4,
the main part of this work, will discuss our experimental findings of the oscillation
frequencies and interaction of dark solitons in BECs. Finally, we will describe our
experimental apparatus and methods in chapter 5.
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Chapter 2

Dark solitons in Bose-Einstein
condensates: Theoretical approach

In the field of Bose-Einstein condensates (BECs) dark solitons are non-spreading
dips in the atom density distribution of a BEC. If more than one of such structure
is created in a harmonically confined BEC interesting oscillation- and interaction-
dynamics will occur. These are the content of our experiments (see chapter 4).

In this chapter we will provide the reader with the theoretical basics of dark solitons
in BECs in view of the experiments performed in the context of this thesis (see
chapter 4). Starting from the ideal one-dimensional homogeneous case we will go
over to the experimental situation of dark solitons in harmonically trapped BECs
including the repulsive interaction between the solitons. Since analytic solutions
exist for the one-dimensional homogeneous case we will extract details of the general
collisional behavior of dark solitons from these. For the experimental case numerical
simulations will be performed showing the effects of dimensionality of the system
and the inter-soliton interaction. We will develop a model regarding the solitons as
particles in an effective potential which helps to distinguish these two effects.

2.1 The one-dimensional homogeneous regime

We start with the discussion of analytic descriptions that have been developed for the
case of one and two dark solitons in the homogeneous one-dimensional (1D) regime.
As we will see these descriptions also include soliton collisions.

2.1.1 The analytic single dark soliton solution

Mathematically a dark soliton is an analytic solution of the general homogeneous
nonlinear Schrödinger equation (NLSE, see Eqn. 1.1), first described by Zakharov
and Shabat [Zak1972]. This equation is formally equal to the homogeneous one-
dimensional Gross-Pitaevskii equation (1D GPE) describing the idealized case of a
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one-dimensional Bose-Einstein condensate (see also section 2.2.1):

i~
∂

∂t
Ψ(z, t) =

[
− ~2

2m

∂2

∂z2
+ g1D|Ψ(z, t)|2

]
Ψ(z, t). (2.1)

In the 1D case the one-dimensional constant of atomic interaction in Eqn. 2.1 is
given by g1D = gmω⊥/(2π~) = 2~ω⊥as with the s-wave scattering length as, the
transverse trapping frequency ω⊥ = 2πν⊥ and the three-dimensional interaction
constant g = 4π~2as/m. The NLSE and the homogeneous 1D GPE1 are connected
by the following transformation:

1D GPE ↔ NLSE
t ↔ ~

gn
t̃

z ↔ ~√
gnm

z̃

Ψ(z, t) ↔
√
n · u(t̃, z̃)

One excitation of Eqn. 2.1 is the so called kink state or also called dark soliton
[Fed1999, Bur2002]:

Ψd(z, t) =
√
n

[
iν +

√
1− ν2 tanh

[√
1− ν2

(z − νcst)
ξ

]]
eitc (2.2)

c = µ/~, (2.3)

ν = vd/cs (2.4)

with the homogeneous atomic background density n, the velocity of the soliton vd,
the Bogoliubov speed of sound cs =

√
ng/m, the chemical potential µ = ng and the

healing length ξ = ~/√mng. As can be seen from Eqn. 2.2 the dark soliton exhibits
a phase jump and a resulting density notch exhibiting a width on the order of the
healing length ξ (see Fig. 2.1).

According to its speed the depth of this density notch nd is described by nd/n = 1−v2

c2s
.

We define the darkness of the soliton as B =
√

1− v2

c2s
=
√
nd/n. A really black,

stationary soliton, has a sharp phase jump of π whereas a grey, moving soliton, has
a less sharp and smaller phase jump. Regardless of the darkness of the soliton we
will use the general term dark soliton in the following. The speed of the soliton is
always smaller than the speed of sound vd < cs. For vd → cs, the wavefunction
of the soliton Ψd becomes identical to the ground state of the condensate, in the
considered case a homogeneous density distribution. As the stationary dark soliton
is an excited state it has a higher energy than the ground state. Therefore, one can
regard the moving soliton exhibiting a negative kinetic energy. This kink-related
kinetic energy can be calculated to be −1

2
Ψd

d2Ψd
dz2

. For the black soliton, this yields
− tanh2(z/ξ)/(cosh2(z/ξ)) [Mur1999].

1Note: In this section we give all soliton equations in the form of the homogeneous 1D Gross-
Pitaevskii equation (hom. 1D GPE, see Eqn. 2.1) relevant for BECs. If the constants ~, m (atomic
mass), n (atomic density), c = ng/~, ξ (healing length), g (constant of inter-atomic interaction), ν⊥
(transverse trap frequency) and cs (Bogoliubov speed of sound) are substituted in the following way
the equations transform into the form resulting from the general nonlinear Schrödinger equation
(NLSE, see Eqn. 1.1): ~→ 1, m→ 1, n→ 1, c→ 1, ξ → 1, g → 1, ν⊥ → 1 and cs → 1.
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Figure 2.1: A dark soliton is connected to a gradient of the phase of the wavefunction
and a resulting density notch depending on its velocity. The width of this density
dip is on the order of the healing length. Top left: Density profile for vd = 0.
Top right: Density profile for vd = 0.5cs. Bottom left: Phase profile for vd = 0.
Bottom right: Phase profile for vd = 0.5cs.

2.1.2 Two-dark-soliton solutions

Based on the work of Zakharov and Shabat [Zak1972], Blow and Doran [Blo1985]
have derived an equation which allows to calculate the full propagation of two dark
solitons in a homogeneous medium including their collision. For the case of a homo-
geneous 1D Bose gas the solution takes the following form:

Ψ2d(z, t) = [1− 2i

Γ
[

2

B1 +B2

(
1

iB1 + ν1

+
1

iB2 + ν2

)
+ (iB1 − ν1)

(
1

B1

+
e2 z

ξ
B1

µ1

)
+ (iB2 − ν2)

(
1

B2

+
e2 z

ξ
B2

µ2

)
]]e−2itµ/~, (2.5)

with

Γ =(ν1 − iB1)(ν2 − iB2)

(
e2 z

ξ
B1

µ1

+
1

B1

)(
e2 z

ξ
B2

µ2

+
1

B2

)
−

1

(B1 +B2)2

(
1

ν1 + iB1

+
1

ν2 + iB2

)2

, (2.6)

µj =e2Bj(z
0
j /ξ+2νjtc),

Bj =
√

1− ν2
j ,

νj =vjd/cs, with j = 1, 2,
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vjd the velocities of the solitons and cs the Bogoliubov speed of sound. The constants
z0
j set the initial positions of the solitons. Using this equation we can calculate

the time evolution of two solitons with arbitrary velocities in a homogeneous one-
dimensional BEC. This is exemplified in Fig. 2.2.

t [ ħ / μ ]

|Ψ
|2

z [ξ]

Figure 2.2: Collision of two dark solitons calculated by Eqn. 2.5, with ν1 = 0.5,
ν2 = 0.1. a) 3D plot. b) Color scale plot showing the trajectories of the density
minima as the white lines.

For the case of two solitons moving with equal opposite velocities Eqn. 2.5 can be
simplified as derived by Akhmediev and Ankiewicz [Akh1993]:

Ψ2d(z, t) =
(1− 2ν2) cosh(2tνBc)−

√
ν2 cosh(2Bz/ξ) + 2iνB sinh(2tνBc)

cosh(2tνBc) +
√
ν2 cosh(2Bz/ξ)

eitc, (2.7)

with c = ng/~. Eqn. 2.7 is symmetric in time with the point of closest approach of
the two solitons at t = 0.

2.1.3 Investigating the inter-soliton interaction during soli-
ton collisions

As the two-soliton solutions cover cases where two solitons approach each other dur-
ing their propagation, the question how the solitons behave in such collision arises.
In section 2.1.4 we will discuss the collisional behavior of dark solitons and use ana-
lytic solutions to calculate the effect of a collision on their propagation trajectories.
E.g. Fig. 2.3a reveals that two dark solitons interact repulsively when they get close
to each other. In section 2.1.6 we will extract an inter-soliton interaction potential
from Eqn. 2.7 which confirms the repulsive character of the inter-soliton interaction.
This will also reveal that the interaction is of a short range nature with a length
scale on the order of the healing length of the condensate.
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2.1.4 Symmetric collisions of dark solitons observed in the
analytic solutions

In order to take a closer look on the collisions of dark solitons, we will start with
the symmetric case of v1 = −v2, where v1,2 denotes the velocity of each of the two
colliding solitons. We will use the analytic soliton solutions to investigate the behav-
ior of the solitons on the collision point in detail. In view of the soliton interaction
potential of section 2.1.6 one key point will be the estimation of the critical velocity
below which the solitons always stay separated during a collision.

Collisions observed in two-soliton solutions

For the case of head on collisions with equal absolute values of the velocities it is
possible to derive an equation from Eqn. 2.7 which determines the distance 2z0

between the solitons on the point of closest proximity [The, Kev]:

z0 =
1

2
√
n− nmin

cosh−1

(√
n

nmin
− 2

√
nmin
n

)
ξ, (2.8)

with nmin/n = 1− (nd/n) = v2
d/c

2
s denoting the minimal density nmin at the density

notch of each soliton for t → −∞ and the background density n. The existence
of such minimal distance during a collision implies that the solitons slow down to
zero and change the sign of their velocity. This also means, that nmin/n = 0 on the
turning point as a soliton with vd = 0 is really black. Increasing the initial velocities

b)

Figure 2.3: Symmetric collision (ν1 = −ν2) of two dark solitons for different velocities
calculated by Eqn. 2.7. Trajectories of the density minima are marked by the white
lines. a) ν = |ν1| = |ν2| = 0.2, the two density minima are always well separated. b)
ν = 0.5, the density minima overlap on one point. c) ν = 0.8, the minima overlap,
stick together for a certain time and separate again. In b) and c) it is impossible to
assign the two density dips to one or to the other trajectory after the collision.

of the solitons leads to a critical point at vcd = 0.5cs, where each soliton exhibits
an initial density minimum of nmin/n = v2

d/c
2
s = 0.25. From Eqn. 2.8 we learn that

for this critical value of vcd = 0.5cs the distance between the centers of the solitons
becomes 2z0 = 0 at the collision point, meaning that they completely overlap. For
velocities vd > 0.5cs the two density minima even stick together for a certain time
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during their collision before they separate again. In this case the density on the
collision point becomes ncpmin > 0 as can be seen in Figs. 2.3, 2.4 and 2.7.

Eqn. 2.8 points out that two different regimes can occur during the collision depend-
ing on the speed of the solitons. Both are exemplified in Fig. 2.3a and c. In the
first regime (Fig 2.3a), the two solitons approach each other with opposite sign but
otherwise equal velocities and vd < 0.5cs. Here the solitons very much behave like
repulsively interacting classical particles. In the case vd � 0.5cs, even at the point of
closest approach, the density between the two solitons hardly differs from the back-
ground density. In the second regime (Fig 2.3c) the starting conditions are similar,
but the solitons approach with vd > 0.5cs. Here, the two density minima form a
single density dip during the collision and the total density at the collision point is
always different from 0: ncpmin > 0. Fig. 2.3b shows the limit between the two regimes
where vd = 0.5cs and the solitons overlap completely only in one point during their
time evolution. We illustrate this in Fig. 2.4. Therefore, one might suppose that for
vd ≥ 0.5cs the two solitons pass through each other. If in contrast, the solitons were
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Figure 2.4: Left: Density profiles at the collision time, t = 0, calculated from
Eqn. 2.7 for different initial velocities ν = vd/cs of the solitons. Right: Density
profiles at t = 0 for two different initial velocities of the solitons. For vd = 0.4cs
the two density minima stay always seperated, exhibiting zero density on the point
of closest approach. For vd = 0.8cs the two minima completely overlap during the
collision and the density at the collision point is higher than zero.

regarded as being reflected they would undergo a discontinuity of their velocities.
Their velocities would have to change their signs instantaneously during the collision
without decelerating to 0. Remember that the absolute value of the velocity of a
soliton is directly connected to the darkness of the soliton. But regardless of wether
solitons were reflected or transmitted, the trajectories of their density minima be-
have in a way at the collision point that suggests that the two solitons are firstly
accelerated, then come to rest instantaneously, re-accelerate instantaneously again
and finally decelerate after the collision as shown in Fig. 2.3c. In a classical particle
picture this would not only be a contradiction to a repulsive collision but also an
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unphysical behavior. This points out that dark solitons cannot be regarded as par-
ticles in the regime vd ≥ 0.5cs. As the solitons completely overlap in this regime like
shown in Fig. 2.3c they are additionally no longer distinguishable after the collision
and cannot be assigned to one or the other trajectory. The question if solitons cross
through each other or get reflected for vd ≥ 0.5cs always leads to contradictions and
cannot be answered. On this point we can only make a definition as we will do in
section 2.1.5.

Scattering of two separated single soliton solutions

Zakharov and Shabat have investigated the collision of two solitons using the inverse
scattering method [Zak1973]. They demonstrate that dark solitons interact with
each other with a repulsive short range interaction. In their approach the two-soliton
solution is regarded as breaking up into two individual solitons for asymptotic times
t→ ±∞

Ψ(z, t)→ Ψd(z − ν1cst, ν1, z
+
1 ) + Ψd(z − ν2cst, ν2, z

+
2 ), t→ +∞ (2.9)

Ψ(z, t)→ Ψd(z − ν1cst, ν1, z
−
1 ) + Ψd(z − ν2cst, ν2, z

−
2 ), t→ −∞ (2.10)

where z±1,2 denotes the position of each soliton. It is stated, that the solitons preserve
their velocities after collisions. Under this assumption the only effect each soliton
experiences is a shift of its phase, resulting in a spatial shift of its trajectory like
exemplified in Fig. 2.5. This shift can be calculated as

δz1 = z+
1 − z−1 , δz2 = z+

2 − z−2 (2.11)

and results in

δz1 =
1

2B1

ln
(ν1 − ν2)2 + (B1 +B2)2

(ν1 − ν2)2 + (B1 −B2)2
ξ (2.12)

δz2 = − 1

2B2

ln
(ν1 − ν2)2 + (B1 +B2)2

(ν1 − ν2)2 + (B1 −B2)2
ξ. (2.13)

If the absolute values of the solitons’ velocities are equal, ν1 = −ν2, the shift is the
same for both solitons and Eqn. 2.13 simplifies to:

δz = − ln[|ν1|]
B1

ξ. (2.14)

As the spatial shift of the trajectories is always in direction of the velocity of each
individual soliton the interaction is of repulsive nature [Zak1973] (see Fig. 2.6).

We emphasize that this approach cannot be used to describe the dynamics at the
collision point of the solitons. As shown in Fig. 2.6 the definition that each soliton
preserves its velocity including its propagation direction for t→∞ leads to problems
there. For instance this definition assumes the density notch of each soliton to



12 CHAPTER 2. Dark solitons in BECs: Theoretical approach

z [ξ]

t [
 ħ

 / 
μ]

δz = 1.641

DS1

DS1

z [ξ]

t [
 ħ

 / 
μ]

DS1

DS1

δz = 0.371

Figure 2.5: Spatial shift of the soliton trajectory of soliton 1 (DS1) as predicted by
Eqn. 2.14 and evolution of the full density profile calculated by Eqn. 2.7. a) ν = 0.2.
b) ν = 0.8.

undergo a jump in position at the collision point, for the case of ν < 0.5. In a classical
particle picture this would be an unphysical discontinuity of the trajectories.
One has to remember that Zakharov and Shabat confined their calculation on the
asymptotic behavior t → ±∞ [Zak1973]. They have used separated wavefunctions
for the two solitons which is valid as they show for t→ ±∞ and breaks down for small
distances between the solitons. Therefore it is not surprising that this approach fails
to describe the detailed dynamics of the density minima at the collision point. Its
strength is the ability to describe the asymptotic behavior of the soliton trajectories
correctly for t→ ±∞ for all regimes.

2.1.5 The different collisional regimes

We have seen that dark solitons interact repulsively in collisions. The dependence
of the minimal distance 2z0 between two solitons during a symmetric collision on
ν = vd/cs is shown in Fig. 2.7, as calculated from Eqn. 2.8. Additionally the depen-
dence of the spatial shift of their trajectories calculated by Eqn. 2.14 is plotted. We
conclude that for vd < 0.5cs dark solitons are reflected similar to classical particles.
As mentioned above for the regime vd ≥ 0.5cs the question if two dark solitons get
reflected during a symmetric collision or pass through each other cannot be answered
and is a matter of definition. If willing to make such definition one has to regard the
two approaches describing soliton collisions which are summarized as follows:

a)Two separated single soliton wavefunctions for t = ±∞. This approach has
been used by Zakharov and Shabat applying the method of inverse scattering
transform [Zak1973]. It describes the trajectories of the solitons correctly for
t → ±∞. Only close to the collision point contradictions occur. The solitons
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Figure 2.6: Schematic dark soliton trajectory shifts as predicted by [Zak1973].
green: trajectories of the density minima, blue: asymptotic trajectories calculated by
Eqn. 2.14. The shift for soliton1 (DS1) is always positive δz1 > 0 and the one for
DS2 is always negative δz1 < 0. This allows to conclude a repulsive interaction for
dark solitons. Per definition the solitons have to jump to the opposite trajectory at
t = 0. This points out, that the calculation by [Zak1973] can only give the correct
trajectories for t→ ±∞.

are defined as always being transmitted through each other. This results in
a contradiction as in the case of slow solitons with vd < 0.5cs, each soliton is
shifted in space instantaneously.

b)An analytic two-soliton wavefunction. This approach has been used by Blow
and Doran [Blo1985] as well as by Akhmediev and Ankiewicz [Akh1993]. It
allows the calculation of the full time evolution of two solitons in the homo-
geneous one-dimensional case. From Eqn. 2.7 one can derive a formula (Eqn.
2.8) which determines the distance of the density minima of the two solitons
at their closest approach during the collision. In head on collisions and for
vd < 0.5cs the approach results in trajectories of the soliton minima similar
to the behavior of repulsively interacting classical particles. For vd > 0.5cs it
suggests on first sight that the solitons pass through each other, because of
the not vanishing density at the collision point. But looking in detail on the
behavior of the density minima close to the collision point, it becomes obvious
that for vd ≥ 0.5cs they stick together for a certain time, so that it becomes
impossible to distinguish the two solitons afterwards.

As we see none of the two descriptions can describe the collisional behavior of dark
solitons contradiction-free in all regimes.
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Figure 2.7: Minimal distance 2z0 between the solitons for different velocities ν as
calculated from Eqn. 2.8 and shift of the soliton trajectories as calculated from Eqn.
2.14. The case of symmetric collisions ν = |ν1| = | − ν2| is regarded.

In our perception throughout this work we make the following definition. We regard
two dark solitons in symmetric head on collisions with vd < 0.5cs as being reflected
similarly to repulsively interacting classical particles. In the case of vd ≥ 0.5cs we
regard them as density dips passing through each other and undergoing a spatial
shift during their collision, keeping in mind that regarding them as particles would
never be free of contradiction in this regime.

2.1.6 The interaction potential approach for soliton colli-
sions

Symmetric collisions of two solitons

Since the analytic two-soliton solutions and as well the phase shifts stemming from
the inverse scattering method are only valid in the one-dimensional homogeneous
case it would be useful to extract a soliton interaction potential from these analytic
solutions. This might enable one to directly apply the soliton interaction in any
regime, maybe even in a realistic experimental situation. This opens the possibility
of not being dependent on numerical simulations to predict the soliton trajectories
after a collision. An approach of Kivshar and Krolikowski [Kiv1995] describes the
repulsive interaction between two dark solitons by regarding them as particles ex-
hibiting a velocity dependent interaction potential. We will see in section 2.5.1 that
it is possible to include this interaction potential together with the influences of a
harmonic confinement in an effective potential, which then indeed can describe the
soliton trajectories in a good approximation.

This soliton interaction potential is derived in [Kiv1995] based on the analytic two-
soliton solution Eqn. 2.7 stemming from [Akh1993] and under the assumption, that
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the solitons are always well separated. It is valid for two dark solitons with ż =
ν1cs = −ν2cs in the one-dimensional homogeneous case and reads as follows 2:

V (z, ż) =
µB2

2m sinh2(2Bz/ξ)
, B =

√
1− (ż/ξ)2

c2
s

, (2.15)

with z = −z1 = z2 the position of the solitons. According to this model the solitons
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Figure 2.8: Simplified plot of the interaction potential assuming that always B = 1.

are regarded as classical particles moving in a potential given by Eqn. 2.15. We
learn from Eqn. 2.15, that the interaction is of repulsive nature and has a short range
character with a length scale on the order of the healing length ξ. Additionally we see
that the interaction is velocity dependent. The slower the solitons the stronger the
interaction. Furthermore the chemical potential of the condensate µ influences the
potential strength. From Eqn. 2.15 an equation of motion for dark solitons moving
in this interaction potential can be derived using the Lagrange equation:

d

dt

(
∂L

∂ż

)
=
∂L

∂z

L = T − V =
ż2

2
− V (z, ż)

(2.16)

⇒ z̈

(
1− ∂2V

∂ż2

)
− ∂2V

∂z∂ż

∂z

∂t
+
∂V

∂z
= 0 (2.17)

As the potential is symmetric z = −z1 = z2 also the equation of motion for each of
the two solitons can be determined like: z̈ = −z̈1 = z̈2. The interaction potential has

2Note that the potential shown here differs from the one shown in [Kiv1995] and used in [Wel2008]
as it contains a sinh instead of a cosh. [Kev] found out while reconstructing the derivation of Eqn.
2.15, that the sinh is the formally correct function here. This was confirmed by W. Krolikowski,
one of the authors of [Kiv1995]. But as the derivation of Eqn. 2.15 explicitly assumes that the
potential is valid when the two solitons do not overlap, only the asymptotic behavior of the function
is important which is the same for sinh and cosh. In this validity regime of Eqn. 2.15 no significant
deviation occurs if cosh is changed to sinh.
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been derived in [Kiv1995] under the assumption, that the two solitons are well sep-
arated. From Eqn. 2.8 we have calculated, that this is only the case for vd < 0.5cs.
The green lines in Fig. 2.9 represent trajectories obtained from the equation of mo-
tion Eqn. 2.17 for three different velocities. Additionally we plot the analytic result
obtained from Eqn. 2.7. We mark the trajectories of the density minima of the an-
alytic result as the white lines. We see that for vd = 0.2cs the green and white
trajectories completely overlap. This shows that the picture of classical particles
exhibiting an interaction potential is an excellent description for slowly moving soli-
tons. For vd ≥ 0.5cs the behavior of the trajectories of the density minima obtained
from the analytic result at the collision point is very different from the trajectories
obtained with the interaction potential description. This emphasizes the breakdown
of the particle model for vd ≥ 0.5cs. Additionally we perform a comparison of the

Figure 2.9: Symmetric collision of two dark solitons obtained from the analytic
Eqn. 2.7, ν = ν1 = −ν2. White lines: Density minima of the analytic result. Green
lines: Trajectories obtained from the interaction potential approach. a) ν = 0.2, the
white and green lines completely overlapp. b) ν = 0.5. c) ν = 0.8. In b and c the
green trajectories deviate from the white ones showing that the interaction approach
is not a good description in this regime.

analytically obtained spatial shift of the soliton trajectories obtained from Eqn. 2.14
and the shift obtained from the result of the equation of motion 2.17. We come
to the same conclusion as before. As shown in Fig. 2.10 the shifts predicted by the
interaction potential differs from the analytic result for vd ≥ 0.5cs. Yet for vd < 0.5cs
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the agreement is very good pointing out the particle-like behavior of the solitons in
this regime.
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Figure 2.10: left: Analytically calculated spatial shifts and comparison with the
shifts of the soliton trajectories obtained from the interaction potential approach.
Symmetric case: ν = ν1 = −ν2. The velocity ν = 0.5 is marked by the dashed
line. We see that for ν < 0.5 both approaches agree very well. In the regime
ν ≥ 0.5 the interaction potential cannot be applied. right: Illustration of the
difference between the shift obtained from analytic calculation δzanalytic and from
the interaction potential δzODE.

Asymmetric collisions of two solitons and multiple soliton collisions

As we have seen it is possible to derive an interaction potential for the case of a
symmetric collision of two dark solitons directly from the analytic two-soliton solu-
tion Eqn. 2.7. Of course Eqn. 2.7 is a very special case and more general two-soliton
solutions like Eqn. 2.5 are much more complex. Therefore it has not been achieved
to derive a simple interaction potential like Eqn. 2.15 from these, which would allow
the calculation of the collisional trajectories of two solitons with arbitrary velocities.
Based on an idea of [Kev] we establish such general potential from Eqn. 2.15 by as-
suming an average darkness Bij = (Bi + Bj)/2 of the solitons and by replacing z in
the symmetric case by relative coordinates z → (zi − zj)/2. The resulting potential
Eqn. 2.18 describes asymmetric collisions and even multiple soliton collisions. Of
course our approach is not a formally correct derivation, but we will compare it to
analytic results and numerical simulations. This will show that it gives reasonable re-
sults and has the same validity regime as Eqn. 2.15. Following our idea the potential
for the i − th soliton in a set of solitons reads as follows (see also [Ron2008]):

Vi =
∑
j 6=i

µB2
ij

2m sinh2(Bij(zi − zj))
, Bij =

Bi +Bj

2
. (2.18)

In the case of ν1 = −ν2, z1 = −z2 for i, j = 1, 2 Eqn. 2.18 reduces to Eqn. 2.15.
Similarly to Eqn. 2.17 we can now derive equations of motion for an arbitrary number
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of solitons with arbitrary velocities. We get the Lagrangian L and the following set
of coupled Lagrangian equations for n solitons.

L = T − V =
n∑
i=1

Ti −
n∑
i=1

Vi =
n∑
i=1

ż2
i

2
−

n∑
i,j=1,i 6=j

µB2
ij

2m sinh2(Bij(zi − zj)/ξ)

d

dt

(
δL

δżi

)
=
δL

δzi
, i = 1, ..., n

⇒ z̈i −

(
n∑
j=1

∂2V

∂ż2
z̈ +

n∑
j=1

∂2V

∂z∂ż

∂z

∂t
żj

)
+
∂V

∂z
= 0, i = 1, ..., n (2.19)

By numerical integration of this set of equations of motion we can now in principle
calculate the trajectories zi(t) of n interacting solitons.

Figure 2.11: Asymmetric collision of two dark solitons obtained from the analytic
Eqn. 2.5, ν1 = 0 ν2 < 0. White lines: Density minima of the analytic result. Green
lines: Trajectories obtained from the interaction potential approach. a) ν2 = −0.2,
the white and green lines completely overlap. b) ν2 = 0.5. c) ν2 = 0.8. In b and c the
green trajectories deviate from the white ones showing that the interaction approach
is not a good description in this regime. In c our fitting routine can naturally not find
the weaker minimum of the faster soliton in the analytic result after the collision.
Therefore we only show one white trajectory in this case.
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We start with the case of an asymmetric collision ν1 6= −ν2 of two solitons. Also this
example we use to probe the validity regime of our approach. We exemplary regard
the collision of a moving soliton ν2 < 0 with a stationary soliton ν1 = 0 for three
different velocities as shown in Fig. 2.11. As one of the solitons is stationary, this
case is maximally different from the symmetric case.

We plot the results obtained by the general analytic two-soliton solution Eqn. 2.5
and the trajectories calculated from Eqns. 2.19 in one figure. For the example of
a slowly moving soliton ν2 = −0.2 we see that the trajectories of the interaction
potential result (green lines) and the density minima of the analytic result (white
lines) completely overlap. In the examples of ν2 = −0.5 and ν2 = −0.8 the two
approaches deviate after the collision and especially at the collision point.

For a more systematic check we compare the analytically obtained shift of the
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Figure 2.12: Analytically calculated spatial shifts and comparison with the shifts of
the soliton trajectories obtained from the interaction potential approach. Asymmetric
collision: ν1 = 0, ν2 < 0. The velocity −ν2 = 0.5 is marked by the dashed line. We
see that for −ν2 < 0.5 both approaches agree quite well. In the regime −ν2 ≥ 0.5
the interaction potential cannot be applied. Note one deviation: From the analytic
calculations [Zak1973] it follows that the shifts of the two trajectories are not equal:
|δz1| 6= |δz2|. This effect is not captured by our generalized interaction potential
which results in equal shifts: |δz1| = |δz2|.

trajectory of soliton #1, δz1, and soliton #2, −δz2, to their equivalent observed in
the interaction potential approach for different velocities. From [Zak1973] we know
that an analytic calculation reveals that the two shifts should not be equal for an
asymmetric collision: |δz1| 6= |δz2|. This effect cannot be captured by our potential
of Eqns. 2.18 which is, because of the assumption of an average darkness of the two
solitons, symmetric in the spatial coordinate z = (zi − zj)/2. Therefore we observe
for the shifts predicted by the interaction potential approach: |δz1| = |δz2|. Despite
we see in Fig. 2.12 that the agreement for −ν2 < 0.5 is still good. Additionally we
learn that the prediction of the interaction potential always seems to fit better to the
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analytic prediction for the faster soliton. The agreement is even better than in the
symmetric case (see Fig. 2.10). For −ν2 ≥ 0.5 again larger deviations occur like in
the symmetric case. It seems that the more general interaction potential of Eqn. 2.18
has approximately the same validity regime for asymmetric collisions of two solitons
as the potential of Eqn. 2.15 for symmetric collisions: νi < 0.5 for i = 1, 2.

In another example we observe the case of two solitons propagating with ν1 = −ν3

that collide with a standing soliton ν2 = 0 in the center between them. This case
will be relevant for the experiment in section 4.3.1. Due to the lack of an analytic
three-soliton solution we compare the trajectories obtained from the interaction po-
tential approach with numerical simulations of the homogeneous 1D GPE equation in
Fig. 2.13. We observe the three cases ν1 = −ν3 = 0.2, 0.45, 0.55. For ν1 = −ν3 < 0.5
we find a good agreement, whereas for ν1 = −ν3 = 0.55 the trajectories obtained
from Eqns. 2.19 do not get close enough at the collision point to fit the density
minima of the simulation. Also in this situation of a symmetric collision of three
solitons our ad hoc approach works well for ν < 0.5.
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Figure 2.13: Symmetric collision of three dark solitons: ν1 = −ν3, ν2 = 0. Compar-
ison of the evolution of the density profile obtained by the one-dimensional homoge-
neous GPE equation (density minima marked by the white lines) with the trajectories
from the interaction potential approach (green lines). top left: ν1 = −ν2 = 0.2.
top right: ν1 = −ν2 = 0.45. bottom: ν1 = −ν2 = 0.55. For −ν2 > 0.55 our
fitting routine cannot fit the outer two density minima on the collision point properly,
because the two density maxima between the three solitons vanish.
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2.2 The harmonically confined crossover regime

between 1D and 3D

Experiments cannot be performed in the idealized homogeneous 1D regime discussed
before. But we will see in section 4.5 that stable dark solitons can be experimentally
created in a regime which is referred to as the crossover regime between 1D and 3D
and which is characterized by the so-called dimensionality parameter NΩas/a⊥ ≈ 1
[Men2002]. As this regime always includes a confinement, in our case a harmonic
trap, an interesting point is the investigation of the oscillation frequency of the
solitons in this trap. The frequency of a dark soliton is an observable quantity which
is directly accessible to the experiment and which can be influenced by various effects.
In this section we will show the emergence of these effects whereas we will discuss
their experimental investigation and interpretation in more detail in section 4.2.

2.2.1 Equations describing dark solitons in a non-homogeneous
and non-1D regime

We have seen that a dark soliton from the theoretical point of view and strictly
speaking is a solution of a homogeneous 1D nonlinear Schrödinger equation, e.g.
the homogeneous 1D GPE. We will now see that also in a more 3D-like regime
stable dark-soliton-like structures exist. We will not differentiate at this point and
also call these structures dark solitons. Even though there is no analytic solution
for dark solitons in a 3D regime they exist as stable non-dispersive density dips of
a BEC in the crossover regime between 1D and 3D (see section 4.5). Regarding
now a harmonically confined BEC in three dimensions the system can be in general
described only by the full 3D GPE [Gro1961, Pit1961] (see appendix B):

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + V (r) + g|Ψ(r, t)|2

]
Ψ(r, t), (2.20)

with the wavefunction of the condensate Ψ, the external potential V and the con-
stant of atomic interaction g = 4π~2as/m. For special cases, e.g. highly elongated
BECs which are not transversally excited, the description is also possible by effec-
tive 1D equations. In these cases the transverse motion (∼ ω−1

⊥ ) is fast compared
to the time scale of the axial motion (∼ ω−1

z ) meaning that the transverse degrees
of freedom adjust instantaneously to the lowest energy configuration (adiabatic ap-
proximation) [Mat2008]. This implies that the axial and transverse motion can be
treated independently so that the wavefunction can be factorized as:

Ψ(r, t) = ϕ(r⊥, nz(z, t))Φ(z, t), (2.21)

with the axial density nz(z, t) = |Φ(z, t)|2. In the derivation of the effective 1D
equations axial and time variations of ϕ induced by the axial density nz(z, t) are
neglected. Neglecting (∂/∂t)ϕ requires the above discussed adiabatic approxima-
tion and neglecting (∂2/∂z2)ϕ requires the axial density to vary sufficiently slowly
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[Mat2008]. An example for such equation is the nonpolynomial Schrödinger equation
(NPSE) derived by Salasnich et al. [Sal2002]:

i~
∂

∂t
Φ =

[
− ~2

2m

∂2

∂z2
+ Vz(z) +

gN

2πa2
⊥

|Φ|2√
1 + 2asN |Φ|2

+

~ω⊥
2

(
1√

1 + 2asN |Φ|2
+
√

1 + 2asN |Φ|2
)]

,Φ (2.22)

with ω⊥ = 2πν⊥ the transverse trap frequency. It has been shown by [The2007] that
this equation is a very good approximation for the description of dark solitons in
the crossover regime between 1D and 3D. The disadvantage of this equation is that
properties of the condensate like the healing length ξ and the chemical potential µ
cannot be calculated correctly from it. The results always vary significantly from the
3D GPE result.

A new approach of Muñoz Mateo and Delgado results in an equally accurate but
simpler effective 1D equation [Mat2008]:

i~
∂Φ

∂t
= − ~2

2m

∂2Φ

∂z2
+ Vz(z)Φ + ~ω⊥

√
1 + 4asN |Φ|2Φ. (2.23)

Analytic equations can be obtained from the Muñoz Mateo-Delgado equation (MDE)
which allow the direct calculation of µ and ξ and the density n(z) [Mat2009]. For
the parameters of our experiment in section 4.2 the results differ only by 1% from
the ones obtained by numerical integration of the 3D GPE.

If asnz � 1 the effective 1D equations reduce to the 1D GPE [Mat2008]:

i~
∂Φ

∂t
= − ~2

2m

∂2Φ

∂z2
+ Vz(z)Φ + g1DN |Φ|2Φ, (2.24)

with g1D = 2as~ω⊥ the constant of one dimensional atomic interaction. If even
Vz(z) = 0 the effective 1D equations transform into the homogeneous 1D GPE.

2.2.2 Numerical simulations

To investigate the dynamics of dark solitons in a harmonic trap it is necessary to
perform numerical simulations as no analytic solutions exist.

We perform two kind of simulations which differ in the creation process of the solitons:

a) Initialized-soliton (IS) simulations. 3 These simulations are based on two
steps. At first the solitons are obtained in the following way. We calculate

3We will use the term NPSE-IS simulations for initialized-soliton simulations using the NPSE.
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the ground state of the BEC and the first excited state in the requested har-
monic trap using the split step fourier transform method [Fei1982, Vri1986] in
imaginary-time propagation. As a standing dark soliton is the first fundamen-
tal excitation of a harmonically trapped BEC (its analog in a linear regime
would be the first excited state of the harmonic oscillator) we extract the pure
soliton by dividing the first excited state by the ground state. In the second
step we initialize one or more dark solitons at desired positions in the BEC
and let them numerically evolve using the same method as before but now in
real-time propagation. As this kind of simulation does not involve transversal
excitations of the BEC it is sufficient to use one of the effective 1D equations
here (see Fig. 2.14 and section 2.2.1). The effective 1D equations are much less
time consuming in simulations.

Figure 2.14: top: Two soliton IS simulation using the 3D GPE resulting in νd =
0.744. bottom: Two soliton IS simulation using the NPSE resulting in νd = 0.751.
The path of the density minimum of one of the solitons is shown by the white
lines. For the parameter sets of our measurements (see section 4.2) we checked the
difference of the oscillation frequency obtained by numerical simulations using the
NPSE from the 3D GPE result. For the mean deviation of ν3DGPE − νNPSE we get
∆(ν3DGPE − νNPSE) = 1%± 0.6%. Parameters: Set #4 of tables 4.1 and 4.2.

b) Simulations including the preparation process. In these kind of simulations
we include the full creation process of the solitons in our experiments as de-
scribed in section 3.3. As we merge two atom clouds in this process transverse
excitations of the BEC might occur. Therefore it is more accurate to perform a
full 3D GPE simulation for reconstructing the exact time evolution in this case.
Even though the effective 1D equations still give acceptable agreement with the
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3D GPE results for short enough evolution times, details of the dynamics can
differ (see Fig. 2.15).

Figure 2.15: Comparison of simulations taking the creation process (see section 3.3)
of the solitons into account using the 3D GPE (top) and the NPSE (bottom).
Note that an effective 1D equation like the NPSE is especially not a very good
approximation for the initial state of the creation process. In this double well potential
the BEC in each of the wells has rather a three-dimensional character than a one-
dimensional one. According to this fact we have to adjust the barrier height of the
initial optical lattice to get a similar result for the simulations of both equations:
V 0

3DGPE = 1500 HZ and V 0
NPSE = 1250 HZ. Parameters: N = 2000, ν⊥ = 408 Hz,

νz = 37 Hz, tνz = 10 ms and tSW = 0.5 ms, with tνz the ramping times of the
longitudinal trap frequency and tSW the ramping time of the optical lattice.

By determining the path of the density minima of the solitons in the simulations
and afterwards fitting we can extract the oscillation frequencies of the solitons from
the simulations. In the single soliton case the fit is performed with a sin-function,
whereas we use the absolute value of a sin for the two soliton case. The obtained
frequencies in the two soliton case are divided by two in order to compare them to
the oscillation frequencies of single trapped solitons.
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2.3 Dark solitons in the crossover regime between

1D and 3D

Due to the lack of an analytic solution in the crossover regime we have to perform
numerical simulations of the 3D GPE or one of the effective 1D equations to learn
about the dynamics of dark solitons in this regime. We have performed extensive
studies using the NPSE, and also the MDE, to investigate the effects which can
influence the oscillation frequencies of dark solitons in harmonically trapped BECs.
The outcome of our NPSE-IS simulations and their agreement with the interaction
potential approach (see section 2.1.6) will be discussed in the following two sections
(2.4 and 2.5).

2.4 A single dark soliton in a harmonically con-

fined BEC

Busch and Anglin [Bus2000] (see section 4.2) have shown that a dark soliton in a
harmonically confined BEC in the Thomas-Fermi 1D regime (see section 4.2 and
[Men2002]) can be described by an equation of motion in a particle-like manner (see
Fig 2.16):

z̈ +
ω2
z

2
z = 0. (2.25)

This implies that the soliton should oscillate (see Fig. 2.18) slower than the trap
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Figure 2.16: A dark soliton in a harmonically trapped BEC can be modeled by a
classical particle oscillating in an effective potential with frequency νd and νz >
νd > νz/

√
2. In the idealized 1D-TF regime the effective potential exhibits the

frequency νz/
√

2, shown by the dashed line.

frequency with ν1D
d = νz/

√
2. Muryshev et al. have reproduced this result using
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a Bogoliubov-de-Gennes analysis [Mur1999]. Besides Fedichev et al. demonstrated
that in the homogeneous 1D regime, adding a harmonic trap decreases the energy
of a dark soliton by the term −Mω2

zz
2/4 [Fed1999]. The ratio of the soliton mass

−M over this potential energy of the soliton gives: 1/(ω2
zz

2/4), which is exactly two
times the ratio of the atomic mass m over the external potential: 1/(ω2

zz
2/2). In this

sense a dark soliton can be regarded as a particle with a negative mass of −2m ·Nd

[Bra2006, Bec2008, Fed1999], with Nd the number of atoms repelled out of the soliton
notch4. Since the prediction of Busch and Anglin is derived for the Thomas-Fermi
1D regime characterized by NΩas/a⊥ � 1 and ((N/

√
Ω)as/a⊥)1/3 � 1 it is also

interesting to observe other regimes closer to experiments and look for deviations
from this result.

Figure 2.17: Exemplary simulation of a dark soliton oscillating in a harmonically
trapped BEC in the 1D Thomas-Fermi regime using the NPSE. For the oscillation
frequency of the soliton we get νd = 0.712 in this case of NΩas/a⊥ = 0.001 and
((N/

√
Ω)as/a⊥)1/3 = 17.3. In contrast to simulations of the 1D GPE where the

oscillation frequency of a dark solitons always (independently of Ω) tends toward
the value of ν1D

d = νz/
√

2 for NΩas/a⊥ → ∞, one has to choose extremely small
values of Ω to observe this result in a more adequate effective 1D or 3D simulation
(see Fig. 2.19). Parameters: N = 1000, ν⊥ = 5000 Hz and νz = 5 Hz.

Theocharis et al. [The2007] have investigated the oscillation frequencies of single
dark solitons in a harmonic trap in the crossover regime between 1D and 3D by
numerical studies using the 3D GPE and the NPSE. Additionally they perform
a Bogoliubov-de-Gennes analysis of the NPSE and 1D GPE model, which reveals
the different eigenfrequencies of the system. They show that one of the frequencies
obtained by the Bogoliubov-de-Gennes analysis of the NPSE, the so called anomalous
mode, coincidences with the soliton oscillation frequency. By performing the analysis
for a multitude of values of the dimensionality parameter NΩas/a⊥ (see section 3.4)
they obtain curves which show the dependence of the oscillation frequency on this
parameter.

4Fedichev et al. [Fed1999] have shown, that the number of atoms missing at the soliton notch
can be calculated as Nd = nS · 2ξ, with n the background density, S the transverse cross section of
the condensate and ξ the healing length.
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Figure 2.18: Oscillation of a dark soliton in a harmonically trapped BEC. If a dark
soliton is created away from the trap center it will gain velocity and start to oscillate.
As the darkness of the soliton is connected to its speed, its speed is highest on
positions close to the trap center (right) and zero on the turning point (left).
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Figure 2.19: Oscillation frequencies of single dark solitons in the crossover regime
between 1D and 3D obtained by Bogoliubov-de-Gennes analysis by [The2007]. left:
Oscillation frequency vs. NΩas/a⊥ for the case of Ω = 0.05. blue dashed line:
1D-TF prediction, dashed black line: 1D GPE result, black solid line: NPSE result,
green stars: 3D GPE simulation. For (N/

√
Ωas/a⊥)1/3 � 1 the 1D GPE result

is expected to match ν1D
d = νz/

√
2. The red dashed line marks the value PTF =

(N/
√

Ωas/a⊥)1/3 = 6.1. right: Comparison for three different values of Ω. The
NPSE result, in contrast to the 1D GPE result, only tends towards ν1D

d = νz/
√

2
for extremely small values of Ω. The green dashed line marks the 1D-TF prediction.
Note that NΩas/a⊥ � 0 when the 1D GPE result matches ν1D

d for large values
of Ω. This is out of the validity regime of the 1D GPE. Note that the oscillation
frequency is given in units of [Ω] = [νz/ν⊥] here. Figures taken from [The2007] and
adapted.

They find out that the oscillation frequency of a dark soliton in the observed regime
can differ on the order of 10% from the asymptotic prediction ν1D

d = νz/
√

2. One of
their main results is shown in Fig. 2.19 where the behavior of the oscillation frequency
ωd = 2πνd is plotted for different aspect ratios of the trap Ω = ωz/ω⊥. Firstly, we see
that for small values of the dimensionality parameter NΩas/a⊥ the frequency tends
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towards the trapping frequency ωz (ωz/ω⊥ in the units of Fig. 2.19). This behavior
is expected, because when the dimensionality parameter is decreased the density of
the gas gets lower and lower until the nonlinear interaction term no longer dominates
the Gross-Pitaevskii equation. On that point one enters the linear regime.
More interesting is the behavior of the frequency towards large values of NΩas/a⊥.
As we see the 1D GPE simulations predict that ωd should always go down to the
asymptotic value of ν1D

d = νz/
√

2 when the TF-limit is reached, like also observed in
[Bus2000]. But the 1D GPE is not a sufficient equation for the regarded regime as it
cannot capture the effects of dimensionality of the system. This is emphasized by the
NPSE and 3D GPE simulations, which for the shown values of Ω never go completely
down to ν1D

d = νz/
√

2. This means that in the crossover regime between 1D and
3D the frequency of a single dark soliton in a harmonically trapped BEC is always
νd > νz/

√
2. We will refer to this effect as the dimensionality effect. Theocharis

et al. have also shown, that an effective 1D equation like the NPSE is a very good
approximation to the 3D GPE for the observation of dark solitons in the crossover
regime between 1D and 3D. Exemplary Fig. 2.21 shows a numerical simulation of a
dark soliton in the crossover regime between 1D and 3D oscillating with a frequency
νd = 0.757νz 6= ν1D

d .
In addition to the work of Theocharis et al. [The2007] we have performed a
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Figure 2.20: Frequency dependence of a single dark soliton on the oscillation am-
plitude obtained by NPSE-IS simulations. Parameters: N = 1000, νz = 50 Hz and
ν⊥ = 500 Hz.

multitude of NPSE simulations of a dark soliton in a harmonically trapped BEC for
different oscillation amplitudes. Fig. 2.20 shows that the dependence of the soliton
oscillation frequency on the oscillation amplitude is small.
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Figure 2.21: Oscillation of a single dark soliton in the crossover regime using the
NPSE, νd = 0.757νz. Parameters: N = 1000, νz = 50 Hz, ν⊥ = 500 Hz and initial
displacement from trap center: 2µm. The path of the density minimum is marked
by the white line.

2.5 Multiple dark solitons in a harmonically con-

fined BEC

Up to now we have only considered single solitons in a harmonically trapped BEC.
Since we have seen in section 2.1.6 dark solitons exhibit a mutual interaction. It is
therefore interesting to find out how this interaction affects the oscillation of solitons
in a harmonic trap.
In this section we will investigate NPSE simulations for the case of two and three
solitons symmetrically oscillating in a harmonically confined BEC. Both cases are
relevant for our experiments described in section 4.2. We will also extend our in-
teraction potential approach to this regime and compare its results with numerical
simulations.

2.5.1 The effective potential approach for the crossover regime

It is possible to include the soliton interaction potential discussed in section 2.1.6
together with a potential taking the harmonic confinement plus the dimensionality
effect into account in an effective soliton potential. Again we make an ad hoc ap-
proach here which we do not derive formally. But as we will see our approach fits
the numerical multi soliton IS simulations very well and can therefore be justified
afterwards. We assume the effective soliton potential for the symmetric two soliton
collision to be described by the following potential:

Veff (z, ż) = Vinteraction(z, ż) + Veff trap(z)

Veff (z, ż) = (2πν1S)2 z
2

2
+

µB2

2m sinh2(2Bz/ξ)
, (2.26)

where ν1S is the oscillation frequency of a single dark soliton in the regarded harmonic
trap. Due to the dimensionality effect (see section 2.4) this frequency always lies in



30 CHAPTER 2. Dark solitons in BECs: Theoretical approach

the range: νz/
√

2 < ν1S < νz, with νz the longitudinal trap frequency. Therefore
the first term on the right hand side describes the effective harmonic potential for
the soliton including the dimensionality of the system. The second term is the inter-
soliton interaction potential derived for the homogeneous 1D regime as suggested by
[Kiv1995]5. We set the interaction constant µ to be the chemical potential obtained
from the 3D GPE and the darkness of the soliton to B =

√
1− ż2/c2

s, with cs =√
µ/m the Bogoliubov speed of sound. From the potential of Eqn. 2.26 we can

derive a Lagrange equation of motion for two symmetrically colliding dark solitons
in a harmonic trap, as described in section 2.1.6.6

As also described in section 2.1.6 we can again generalize Eqn. 2.26 to the case
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Figure 2.22: Comparison of the soliton oscillation frequencies obtained from
Eqn. 2.26 to the ones obtained from a similar potential where the sinh function
has been replaced by cosh. red curve: sinh case, blue curve: cosh case.

of asymmetric collisions in a harmonic trap. Then the effective potential takes the
form:

V eff
i = (2πν1S)2 z

2
i

2
+
∑
j 6=i

µB2
ij

2m sinh2(2Bij(zi − zj)/ξ)
, (2.27)

with zi and zj the positions and Bij = (B1 + Bj)/2 the average darkness of two

colliding solitons. From the Lagrangian L =
∑n

i=1 żi
2/2−

∑n
i=1 V

eff
i we can now in

principle derive the equations of motion for an arbitrary number of colliding solitons
in a harmonic trap. As an example we show the collisions and oscillations of three
solitons in Fig. 2.23.

5Note that the potential shown here differs from the one shown in [Kiv1995] and used in [Wel2008]
as it contains a sinh instead of a cosh. [Kev] found out while reconstructing the derivation of Eqn.
2.15, that the sinh is the formally correct function here. This was confirmed by W. Krolikowski,
one of the authors of [Kiv1995]. But as the derivation of Eqn. 2.15 explicitly assumes that the
potential is valid when the two solitons do not overlap, only the asymptotic behavior of the function
is important which is the same for sinh and cosh. In this validity regime of Eqn. 2.15 no significant



2.5 Multiple dark solitons in a harmonically confined BEC 31

Figure 2.23: Oscillation of three dark solitons in the crossover regime, νd = 0.904νz.
The path of the density minimum of one of the solitons is marked by the white line.
For the same soliton we also give the trajectory obtained from the effective potential
approach of Eqn. 2.27 as the green line. Both results nearly overlap. Parameters:
N = 2000, νz = 53 Hz, ν⊥ = 890 Hz and initial displacement from trap center:
2µm.

2.5.2 Two dark solitons in a harmonically confined BEC

To illustrate the behavior of the frequency of two dark solitons symmetrically os-
cillating (v1 = −v2) in a harmonic trap we perform a multitude of IS simulations
(see section 2.2.2) of the NPSE for different oscillation amplitudes, or in other words
different mean distances between the solitons. We see in Fig. 2.25 that the oscil-
lation frequency in the two soliton case is always higher than for a single soliton
(see Fig. 2.20) and is strongly depending on the oscillation amplitude. An exam-

Figure 2.24: Oscillation of two dark solitons in the crossover regime using the NPSE,
νd = 0.797νz. The path of one density minimum is marked by the white line.
The green line shows the trajectory obtained by the effective potential approach for
the same soliton. Parameters: N = 1000, νz = 50 Hz, ν⊥ = 500 Hz and initial
displacement from trap center: 2µm.

ple of such simulation is shown in Fig.2.24. Additionally we plot in Fig. 2.25 the

deviation occurs if cosh is changed to sinh.
6Fig. 2.22 shows that changing the sinh function in Eqn. 2.26 to cosh does not influence the

oscillation frequency of the solitons significantly.
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oscillation frequencies as obtained from the differential equation (ODE) stemming
from the effective potential approach of Eqn. 2.26. Wee see that the simulation- and
effective-potential results are in good agreement. A more detailed interpretation of
these results will be discussed in section 4.2, where we will discuss our experiments
performed in this context.
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Figure 2.25: Frequency dependence of two dark solitons on the oscillation ampli-
tude and comparison to the single soliton case. Bold curves: NPSE-IS simulations.
Dashed curve: Effective potential approach. Parameters: N = 1000, νz = 50 Hz
and ν⊥ = 500 Hz.

2.5.3 Three dark solitons in a harmonically confined BEC

In the case of three symmetrically oscillating (v1 = −v3, v2 = 0) dark solitons the
oscillation frequency is even more upshifted from the single soliton results as in the
case of two solitons, see Fig. 2.26. Again the agreement with the effective potential
approach of Eqn. 2.27 is good. The symmetric three soliton oscillation in a harmon-
ically trapped BEC is exemplified in Fig. 2.23. For comparison we additionally plot
the trajectories expected from the effective potential approach in this figure. We
again leave the further interpretation to chapter 4.

In conclusion, in this chapter we have discussed the basic features of dark solitons
and of their mutual interaction. We have combined an interaction potential for dark
solitons derived in the 1D homogeneous regime with a harmonic potential taking the
effective soliton frequency due to the role of dimensionality into account. We have
shown that the resulting effective potential can describe the essentials of the soliton
dynamics of a harmonically trapped BEC in the crossover regime between 1D and
3D. Furthermore, we have seen that in the case of multiple harmonically trapped
solitons, the oscillation frequencies strongly depend on the mean distance between



2.5 Multiple dark solitons in a harmonically confined BEC 33

4 6 8 10 12 14 16 18 20 22
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

oscillation amplitude [ξ]

os
ci

lla
tio

n 
fre

qu
en

cy
 [ 

ν z]

NPSE: 3DS

ODE: 3DS
ODE: 2DS

NPSE: 2DS
NPSE: 1DS

Figure 2.26: Frequency dependence of three dark solitons on the oscillation ampli-
tude and comparison to the single- and two-soliton case. Bold curves: NPSE-IS
simulations. Dashed curves: Effective potential approach. Parameters: N = 1000,
νz = 50 Hz and ν⊥ = 500 Hz.

the solitons. This opens the way to a new possibility of detecting the interaction
between dark solitons experimentally and will be very important for our experiments
discussed in section 4.2.
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Chapter 3

Experimental observation of dark
solitons in Bose-Einstein
Condensates

We start this chapter with a short summary of the history of dark solitons in BECs.
Then the two main methods, including our method, for the creation of dark solitons
in BECs will be presented. Furthermore, we will discuss in which regime the solitons
should be created experimentally.

3.1 History of dark solitons in BECs

Dark solitons in BECs have been created for the first time by Burger et al. [Bur1999]
and Denschlag et al. [Den2000]. These experiments showed, that dark solitons can
move through a BEC. Yet the solitons were so short-lived that solely their transla-
tion and not their oscillation in the harmonically trapped BEC could be observed.
Theoretical works discovered, that this instability was due to the 3D character of
the trap and the corresponding dimensionality regime. The trap was either chosen
to produce a nearly spherical BEC or a cigar-shaped BEC with too high number
of atoms. The dimensionality parameter (see section 3.4) in these experiments was
Nω as

a⊥
� 1 which characterizes the genuine 3D regime. Solitons, which are in prin-

ciple one-dimensional objects, created in such regime, get bent, fill up from the
side and finally decay into two vortex rings. This is the so called ’snaking instabil-
ity’ [Mur1999] (see section 4.5.1), which was revealed experimentally by Anderson
et al. [And2001]. The interesting predictions of Busch and Anglin [Bus2000] and
Theocharis et al. [The2007] (see section 2.4) that dark solitons in harmonically
trapped BECs should not oscillate with the trap frequency but slower than this,
could not be observed, because of the short lifetime of the solitons.
Most of these experiments used the so called phase imprinting method (see section
3.2.1) for the creation of dark solitons. Later additional methods have been explored
like dragging a laser beam through a condensate [Eng2007] or using a compressed
pulse of slow light to create a defect which evolves into dark solitons [Dut2001].
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Very recently it has become possible to overcome the snaking instability by creating
dark solitons in cigar-shaped condensates in the crossover regime between 1D and
3D where they are stable. A single oscillation of one dark soliton [Bec2008], a single
collision between two dark solitons [Ste2008] and multiple oscillations and collisions
of two dark solitons in a harmonically trapped BEC [Wel2008] have been reported.
Also a periodic transition between a soliton and a vortex ring has been observed
[Sho2008]. In the experiments of [Sho2008] and in our experiments [Wel2008] the
solitons were created by means of matter wave interference (see section 3.2.2) after
merging two condensates initially prepared in a double well potential. As we will
show in this section our experiments reveal the predicted frequency reduction for
the oscillation of dark solitons in a harmonically trapped BEC and the repulsive
interaction between them. This interaction is observed as an increase of the oscilla-
tion frequency with decreasing amplitude of the distance between the solitons during
their oscillation.

3.2 Methods of creating dark solitons in BECs

Among the many methods of creating dark solitons in a BEC, two offer the possibility
to create solitons with shot-to-shot reproducibility. The first one is the so-called
phase imprinting method, which was the first method to produce dark solitons. The
second one is the method of matter wave interference also referred to as density
engineering, which is used in our experiments. In the following we will describe
these two methods in more detail.

3.2.1 The phase imprinting method

Since a dark soliton is connected to a phase jump ∆φ ≤ π, imprinting this structure
onto the wavefunction of a BEC by means of a light field will lead to the creation
of a soliton. The needed intensity profile I(z) must correspond to a step function
with a width of its edge close to the width of the soliton [Bur2002] (see Fig. 3.1). A
possible experimental realization consists in shining a laser pulse onto the edge of a
razor blade.

Such potential takes the form U(z) = (~Γ2/8δ)[I(z)/I0] [Den2000] (see also section
5.2.1) corresponding to a phase of φ(z) = U(z)τ/~ with Γ the transition line width, I0

the saturation intensity, δ the detuning of the laser beam from the atomic resonance
and τ the duration of the laser pulse. The laser pulse must be applied for a duration
shorter than the correlation time of the condensate τcor = ~/µ, with the chemical po-
tential µ, so that the wavefunction acquires the local phase factor exp(−iφ) without
changing its density profile. A formula for estimating the imprinted phase is given
in [Bur2002]

φ(z) =
∆φ

2

(
1 + tanh

[
z − z0

0.45le

])
(3.1)
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Figure 3.1: a) Density profile of a BEC including an ideal standing dark soliton. The
width of the soliton is given by the healing length l0. b) The corresponding phase
profile to this case is a step funcion with a sharp phase step of π. c) Demonstration
of light-shift potential which leads to the creation of a dark soliton. le denotes the
potential edge. Figure taken from [Bur1999].

where le denotes the width of the potential edge, which determines the steepness of
the phase gradient at z − z0. The factor 0.45 is an empirical factor and determines
the experimental steepness of the phase gradient resulting from the potential edge le.
Attainable values for this edge are in the order of le ≈ 2µm. The desired imprinted
phase step ∆φ can be chosen by the amplitude of the potential. However, a sharp
phase jump of π is impossible to reach in any experimental situation because of the
finite slope of the potential edge. Therefore the generated soliton will always be
moving with its speed and depth directly depending on le and ∆φ. Furthermore,
the imprinted phase profile leads to a field of superfluid flow vz(z) = (~/m)∂φ(z)/∂z
[Bur2002] (see also chapter B). This velocity field leads to a depletion of the density
profile in the region of ∂vz/∂z > 0 for z > z0, which develops into the dark soliton,
and to an increase of the density in the region ∂vz/∂z < 0 for z < z0 (see Fig. 3.2).
The timescale for the soliton to develop can be estimated by τd ≈ τcor(le/ξ) [Bur2002]
with the healing length of the condensate ξ. In order to efficiently create a soliton, le
must be on the order of ξ otherwise only shallow solitons can be created. Choosing
the correct phase step ∆φ ≈ π is equally important, because if ∆φ is too small the
soliton will be very shallow or it will not be possible to create a soliton at all. Yet a
phase imprint of ∆φ > π leads to the creation of multiple solitons [Bur2002].

3.2.2 The interference method (density engineering)

Under certain conditions, the collision of two initially separated condensates can lead
to the creation of dark solitons. We will now discuss these conditions and the involved
mechanism in more detail following the explanation of Scott et al. [Sco1998]. Let us
first imagine a single displaced ground state of a BEC evolving in a harmonic trap.
As shown by [Mor1997] this wavefunction will retain its shape while undergoing an
oscillation with the trap frequency. The spatial phase profile of this system is linear
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Figure 3.2: Simulation of the phase imprinting method and time evolution of the
created soliton by means of the Muñoz Mateo-Delgado equation (see section 2.2.1).
The corresponding imprinted phase profile is shown in the inset. Directly after the
phase imprint (t = 0) a density notch and a peak have developed. The notch develops
into a dark soliton moving to the right side. Whereas the peak and accompanying
sound waves move much faster to the opposite side. Parameters: N = 1400,
νz = 35 Hz and ν⊥ = 408 Hz.

in space with a slope proportional to its velocity. If we now add a second BEC of
equal number of atoms in its harmonic ground state displaced by the same distance
from the trap center as the first one but in the opposite half of the trap, there will
be two different regimes [Sco1998].
In the first one, the so-called linear regime, the wave function of the whole system can
be approximated by a superposition of the wavefunctions of each condensate alone.
In this case, the two initially separated BECs interfere in the middle of the trap,
produce a linear interference pattern there and then separate again regaining their
initial shape. At any time during the collision, the fringe spacing of the interference
pattern is just given by the wave vectors of each condensate at that time. At the
point of maximal overlap this results in a fringe spacing of lfs = π/d(~/(2mωz))
[Sco1998], with d the initial distance between the condensates. The higher the kinetic
energy the higher is the number of fringes and the smaller is the fringe spacing. The
linear regime occurs as long as the kinetic energy of the condensates exceeds the
nonlinear interaction energy of the atoms. The authors of [Sco1998] approximate
the two separate wavefunctions by Thomas-Fermi profiles, the kinetic energy by the
curvature of a cos2 interference pattern and the nonlinear energy by its value at the
center of the fringes. Following this ansatz they can estimate a condition for the
system to be in the linear regime. This condition is fulfilled if the initial distance
between the two atom clouds is bigger than a critical distance Dc.

Dc = π

(
6
N~as
νzm

)1/3

(3.2)

Here, N denotes the number of atoms, as the s-wave scattering length, νz the longi-
tudinal trap frequency and m the atomic mass.
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If the distance is smaller than Dc the system is in the second possible regime, the
so-called nonlinear regime, where the creation of stable fringes with a phase kink
on the order of π out of the interference pattern occurs. These fringes can be iden-
tified with dark solitons. Besides this the two initial condensates do not reform
separately, but the combined condensate undergoes a quadrupole excitation instead.
The formation process of the solitons starts with a linear interference pattern which

Figure 3.3: The collision of two equally but opposite displaced BEC ground states
of a harmonic trap leads to a interference pattern whose central fringes develop into
dark solitons, as described in the text. The simulation must be executed using the
3D Gross-Pitaevski equation, because of strong transverse excitations during the
collision of the two ground states. A test with an effective 1D equation did not even
produce solitons as the two atom clouds did not merge but passed through each
other meaning that their axial kinetic energy was less reduced in the collision than
in the 3D simulation. Parameters: N = 5000, νx = 30 Hz, νy = νz = 600 Hz and
d = 34µm.

possesses a multitude of fringes. The central ones exhibit a larger distance from
each other and a larger width than the outer ones, because the kinetic energy during
the collision process was still smaller during their creation than at the later created
outer ones. Only the central fringes which have a width comparable to the one of a
soliton transform into dark solitons, because it is energetically favourable to do so.
As solitons are stable topological structures they are connected to an extremum of
the total energy of the system. Fringes which cannot transform into solitons are not
stable and vanish on a time scale of T/4 [Sco1998], with the oscillation period T of
the trap. The number of created solitons is dependant on the kinetic energy and
is always an even number if the phase of the two initially separated condensates is
equal (see Fig. 3.3).
If the phase of the initially separated atom clouds is not equal the evolution pattern
of the solitons gets asymmetric and also odd numbers of solitons can occur during
the creation process. In the special case of a phase difference of ∆φ = π between the
two atom clouds the number of solitons is odd with a standing dark soliton in the
middle of the trap.
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3.3 Soliton creation by matter wave interference

in our experiment

In our experiments, matter wave dark solitons are created by the following inter-
ference method. We prepare a BEC of 87Rb in the 52S1/2 |F = 2,mF = 2〉 state
in an optical double well potential. This potential is realized by the superposition
of an crossed optical dipole trap and an optical lattice (see section 5.3.4). The
longitudinal and transversal frequencies of the dipole trap are νinitialz = 63 Hz and
νinitial⊥ = 408 Hz, the lattice spacing is l = 5.7µm. This results in a double well
potential with a well distance of ≈ 5.4µm. By switching off the optical lattice the
barrier between the two wells is removed. Subsequently the two atom clouds collide
and form an interference pattern whose fringes convert into dark solitons due to the
nonlinear inter-atomic interaction. Additionally we lower the longitudinal trap fre-
quency to the values of interest (νz, ν⊥) with an empirically optimized ramping time
to minimize the quadrupole excitation of the atom cloud (see Fig. 3.4). Typical

a) b) c) d)

Figure 3.4: a) The initial double well potential. b) The barrier in the middle is
switched of which transforms the double well into a harmonic potential. c) The two
atom clouds collide in the harmonic potential. The trap is opened in an empiri-
cally optimized ramping time to minimize the excitation of quadrupole vibration of
the combined atom cloud. d) A nonlinear interference pattern forms whose fringes
convert into dark solitons.

examples for this ramp are from (νinitialz , νinitial⊥ ) to (νz, ν⊥) = (53 Hz, 408 Hz) within
10 ms for N = 1700 atoms or to (58 Hz, 408 Hz) within 3 ms for N = 950. The height
of the initial barrier which is on the order of 1 kHz has to be well optimized. On the
one hand it has to be low enough to allow a sufficient tunneling coupling to prevent
thermal phase fluctuation at the estimated temperature of 10−20 nK1. On the other
hand it has to be high enough so that high contrast solitons are formed. As the phase
difference between the wells is in principle zero an even number of solitons is created.
However, by variation of the experimental parameters the number and the distance
between the solitons can be changed as we will discuss below.

1This temperature was determined by the method of [GatII2006]
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Figure 3.5: Experimental example for the creation of dark solitons by means of
matter wave interference.

3.3.1 Varying the number and the distance of the created
solitons

Varying the following experimental parameters makes it possible to increase the
kinetic energy during the collision process, and by doing so, to lower the distance
between the created solitons and to create additional solitons further away from the
trap center: Lowering the number of atoms, lowering the ramping-down time of the
optical lattice (see Fig. 3.6) and increasing the aspect ratio ωz/ω⊥ of the trap. This
knowledge was gained by extensive sets of numerical simulations. Even though it is
additionally possible to vary the soliton distance by the height of the optical lattice in
the simulations this possibility has to be dropped in the experiment, because we use
it to adjust the tunneling coupling between the two initial wells and the initial phase
coherence. This is necessary because of the finite temperature of the experiment,
whereas the simulation always assumes zero temperature.

Figure 3.6: Varying the distance of the central soliton pair and the creation of
additional solitons further away from the trap center is possible by e.g. changing
the duration of the ramping down time of the optical lattice. From left to right:
tramp = 0 ms, tramp = 2 ms and tramp = 4 ms. For the case of longer ramping times
the system acquires less kinetic energy which leads to the production of less soliton
pairs. Parameters: N = 1400, νz = 63 Hz, νperp = 408 Hz and V0 = 1200 Hz.
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3.3.2 Creating an odd number of solitons with our setup

By changing the symmetry of the double well potential for a certain time we can
accumulate a phase difference between the wells. This becomes possible by shifting
the second beam of the crossed optical dipole trap (’Xdt’) (see section 5.3.2) and
leads to an energy difference between the levels of the two wells (see Fig. 3.7). In
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Figure 3.7: By moving the center of the harminic trap relative to the optical lattice
we can change the symmetry of the double well potential. This leads to an energy
difference ∆E between the levels of the two wells which makes it possible to acquire
a phase difference between the two initial atom clouds: ∆φ = ∆E/~ · t.

accordance to the equation ∆φ = ∆E/~ · t the phase difference is proportional to the
duration of the time while the potential is shifted. A small phase difference between
the wells leads to an asymmetric evolution pattern of the solitons while a phase shift
close to π leads to the creation of a soliton between the other solitons meaning that
an odd number of solitons can be produced by this method. If the phase difference
is exactly π the central one is a standing dark soliton (see Fig. 3.8). In principle it
should be possible to produce even a single soliton by very slowly ramping down the
optical lattice resulting in a low collisional energy. However, we could not observe
this in the experiment. One problem is the necessary long ramping down time of
about tol = 7 ms of the optical lattice. This results in a very shallow slope of the
decreasing light intensity, meaning also a long time at low intensities, which is a
problem for the phase lock of the optical lattice (see section 5.3.3).
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a) b)

c) d)

Figure 3.8: By shifting the symmetry of the double well for a certain time a phase
difference between the wells can be accumulated as discussed in the text. This can
result in the production of an odd number of solitons. By a slow ramping down time
tol of the optical lattice in principle even a single soliton can be gained. a) ∆φ ≈ π,
tol = 2 ms, b) 0 < ∆φ < π, tol = 2 ms, c) 0 < ∆φ < π, tol = 7 ms, d) ∆φ ≈ π,
tol = 7 ms. Parameters: N = 1000, νz = 35 Hz, νperp = 408 Hz and V0 = 1150 Hz

3.3.3 Differences between our method and the theoretically
suggested method of Scott et al.

In our experiments we start with a BEC in a double well potential which we transform
to a harmonic potential and collide the two atom clouds there. The wavefunction
has to adjust to the new potential, which means that the situation is more complex
than in the case of Scott et al. [Sco1998] (see section 3.2.2). However, the resulting
soliton pattern is much less complex as can be seen in Fig. 3.9a. A substantial
difference occurs in the creation process of the solitons as from our method only
few interference fringes are produced which all convert into solitons (see Fig. 3.10).
This shows that the kinetic energy of the colliding atom clouds is much smaller in
our case than in the collision of two displaced ground states of the harmonic trap as
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regarded by [Sco1998]. Besides, in our case the two atom clouds are not perfectly
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Figure 3.9: Simulation using the Muñoz Mateo-Delgado equation of the different
regimes for matterwave interference for our system assuming three different lattice
spacings l. Eqn. 3.2 predicts a critical distance of Dc = 25.4µm to be in the linear
interference regime. a) nonlinear regime as used in our experiments, l = 5.7µm. c)
linear regime, l = 26µm, b) transition regime, l = 15µm Parameters: N = 1400,
νz = 22 Hz and νperp = 408 Hz. The lattice height was adjusted to result in a
small but finite density between the wells in each case. Note the different oscillation
frequencies of the fringe patterns for the three cases as the trap frequency was kept
constant.

in the Thomas-Fermi regime, which was assumed by Scott et al.. This means that
Eqn. 3.2 can only be an approximation for our case. But still it gives reasonable
results for our situation as can be seen in the example of Fig. 3.9. Furthermore we
learned from numerical simulations that there is also a transition regime between
the linear and nonlinear regime where at first a linear interference pattern occurs
and solitons are formed after several collisions. Fig. 3.9 shows simulations for three
different initial distances between the atom clouds: Our case (the nonlinear regime),
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a case where the distance is slightly above the critical distance Dc (the linear regime)
and a situation in between.
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Figure 3.10: DE simulation showing the soliton creation by our method. All
fringes that occur are converted into solitons in contrast to the idealized method
of [Sco1998].

3.4 Dimensionality regime

A dark soliton in a Bose-Einstein condensate appears from the theoretical point of
view as a solution of the homogeneous one-dimensional Gross-Pitaevski equation
(see Eqn. 2.2) and is therefore actually a one-dimensional object. However, from
the experimental point of view a genuinely 1D regime of the BEC is impossible to
reach for two reasons. First every experimentally realizable trapping potential will
result in a finite transversal width of the condensate. Second if one can manage to
realize a trap with a very small aspect ratio of the trap frequencies Ω = ωz/ω⊥ and a
small number of atoms, as needed for a 1D regime, another problem will occur, the
breakdown of the long-range phase coherence of the BEC [Hel2001] which is then
referred to as a quasi-BEC. The appearing phase fluctuations of the BEC cannot be
captured by the GPE. In this regime a dark soliton, which is directly connected to a
phase-kink, cannot be stable. For the creation of a dark soliton the experimentalist
has to make a compromise. The system should be close to 1D but cannot be gen-
uinely 1D. This restricts one to a regime which is called the crossover regime between
1D and 3D with a cigar shaped BEC. Dark solitons can be dynamically stable there
[Mur1999, Mur2002] so that only dissipative effects induced by the finite tempera-
ture can destroy the soliton [Fed1999].

To estimate the dimensionality of a BEC the following dimensionless parameter can
be employed [Men2002]:

NΩas/a⊥, (3.3)
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with as the s-wave scattering length and a⊥ =
√

~/(mω⊥) the transverse harmonic
oscillator length. For NΩas/a⊥ � 1 the system is in the radial Thomas-Fermi
regime [Men2002] where many modes of the harmonic oscillator are excited in the
radial direction. This is the genuinely 3D regime where all directions of the BEC are
described by a Thomas-Fermi density profile. The Thomas-Fermi density profile in
the longitudinal direction n1 can be calculated by n1(z) = 1

16a
(15NΩa/a⊥)4/5(1− z2

Z2 )2

[Men2002] with the Thomas-Fermi radius Z = az√
Ω

(15NΩa/a⊥)1/5 and the longitudi-

nal harmonic oscillator length az =
√

~/(mωz).
For NΩas/a⊥ � 1 the 1D mean field limit is reached [Men2002], where the BEC
approaches the Gaussian ground state of the harmonic oscillator in its radial direc-
tion. In this regime the Thomas-Fermi condition for the longitudinal density profile
is only fulfilled if (

N√
Ω

a

a⊥

)1/3

� 1. (3.4)

We refer to the regime which fulfills NΩas/a⊥ � 1 as well as Eqn. 3.4 as the Thomas-
Fermi 1D (TF 1D) regime. The crossover regime between 1D and 3D is characterized
by NΩas/a⊥ ≈ 1. Fig. 3.11 shows the different possible regimes for a BEC. Most

106101 102 103 104 105N
Ω

a / a
┴

Figure 3.11: Different dimensionality regimes of a BEC. The 3D and the 1D mean
field regime are discussed in the text. In the Tonks regime the atoms of the BEC
behave like hard core particles. The dashed line indicates the NΩ = Ω3/2a⊥/a for
the example of Ω = 10−4. Stable dark solitons can be created in the crossover
regime between 1D and 3D. The regimes of different experiments concerning dark
solitons are marked by the dots. green: Burger et al. [Bur1999], magenta: Shomroni
et al. [Sho2008], red: Stellmer et al. [Ste2008], blue: our experiments. Diagramm
taken from [Men2002] and adapted.

experiments which have been executed concerning dark solitons were performed with
a high number of atoms between 104 to 106. Consequently, with Eqn. 3.3 a very small
aspect ratio of the trapping frequencies is needed to get close to the 1D regime.
Our experiment offers the possibility to reproducibly create BECs with small atom
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numbers on the order of 103 which additionally helps to reduce the dimensionality
of the system. Fig. 3.11 shows some of the dark soliton experiments that have been
closest to the 1D regime. For our measurements the parameter NΩas/a⊥ was in the
range of 1.2− 1.8 and the parameter ((N/

√
Ω)as/a⊥)1/3 ≈ 2.8− 4.4.
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Chapter 4

Experimental results

In this chapter we will discuss in detail the experiments about dynamics and inter-
action of dark solitons in Bose-Einstein condensates performed in the context of this
thesis. We will start explaining how our measurements were conducted in general.
Then we will go on to the systematic measurements of the frequency of two solitons
oscillating together in a harmonic trap and to the effects of the solitons mutual inter-
action which we can conclude from our observations. The experimental results are
compared with simulation using the three-dimensional Gross-Pitaevskii equation (3D
GPE) and the Nonpolynomial-Schrödinger equation (NPSE) and with the effective
potential approach. We demonstrate the possibility to vary the number of created
solitons in our experiment. Finally we discuss the stability of our created solitons.

4.1 Observation of dark solitons in our experi-

ments

We start with the creation of our solitons using the interference method explained in
section 3.3 and take images of the the BEC after the desired evolution time. Using
the technique of high power absorption imaging we shine a resonant laser beam onto
the atom cloud and detect the shadow of the BEC on a CCD camera (see section
5.4). In single shots of the experiment we get pictures like shown in the top row of
Fig. 4.1. In these pictures we can detect the distance of the solitons from the trap
center at different points in evolution time to observe their oscillation dynamics as
discussed in section 4.2 or the depth of the soliton notch as discussed in section 4.5.4.
To demonstrate the time evolution of the solitons it is more convenient to use pic-
tures averaged over several shots to reduce the noise of the images. To enhance the
contrast of the solitons in the pictures we additionally use a short time of flight before
imaging between 0.6 and 0.9 ms. Note that averaging the images only works up to
about 80−100 ms of evolution time. On longer evolution times we loose the shot-to-
shot reproducibility of the experiment due to effects that smear out the trajectories
of the solitons. We will discuss these effects in detail in section 4.5.4. Up to the above
mentioned time scale we can use the averaged images to produce time evolution plots
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Figure 4.1: Single shots of the density profile of the BEC including two dark solitons.
The solitons appear as density notches in the profiles. left: Point of closest distance
of the solitons. Because of the limited optical resolution of the experiment (≈ 1µm)
we can not distinguish the two solitons at this point resulting in a single density dip.
right: Two dark solitons close to the amplitude of their oscillation in the trap. For
each point in time the original images as well as their integration over the transverse
direction is shown.

−20 −10 0 10 20
0

0.02

0.04

0

0.01

0.03

0

0.02

0.04

0

0.02

0.04

−20 −10 0 10 20 −20 −10 0 10 20 −20 −10 0 10 20

−20 −10 0 10 20−20 −10 0 10 20

a)

b)

no
rm

al
iz

ed
 d

en
si

ty
no

rm
al

iz
ed

 d
en

si
ty

x [μm]

x [μm]
0

0.01

0.03

0

0.01

0.03

Figure 4.2: Images of the dark soliton dynamics in the harmonically trapped BEC at
different point during the time evolution of the solitons. The images are averaged
over approximately 15 shots. a) Time of flight of 0.8 ms. b) Insitu imaging without
time of flight. The images of each column correspond to similar points in the time
evolution.

in analogy to the evolution plots obtained by simulations. To do so we integrate the
averaged pictures over their transverse direction and get longitudinal density pro-
files. If we now pile up these longitudinal profiles (vertical lines in Fig. 4.3) in a row
we can get experimental time evolution plots like the ones shown in Fig. 4.3a and 4.4.

We additionally compare our experiments to simulations which helps to understand
the soliton dynamics in more detail and to optimize the choice of experimental pa-
rameter sets. As an example we execute a 3D GPE simulation (see Fig. 4.3b) for
the experimental parameters used for the measurement of Fig. 4.3a. Including the
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optical and time resolution, the experimentally observed density profile evolution is
well reproduced (see Fig. 4.3c). A dominant pair of solitons oscillates close to the
center of the cloud and we can also distinguish additional pairs of solitons with much
lower contrast. In the following, we focus on the dynamics of the dominant central
pair and show that its oscillation frequency is well described within a two soliton
approximation.

Figure 4.3: Observation of the time evolution of dark solitons in a harmonic trap.
The dominant soliton pair is indicated by arrows. a) Experimental observation of the
dynamics of the longitudinal atomic density. Each longitudinal density profile (vertical
lines), corresponding to a given evolution time, is deduced from 7 experimental
realizations. The obtained absorption images of the condensate at each time step
are averaged and integrated over their transverse direction. The number of atoms in
the shown case is N = 1700 and the trapping frequencies are (νz, ν⊥)=(53 Hz,890
Hz). b) Result of the numerical integration of the 3D GPE taking into account the
full preparation process of the solitons. c) Same as b), taking into account the finite
spatial (1 µm) as well as temporal resolution (1 ms) of the experiment. The loss
of contrast on this timescale can be explained by the convolution of the imaging
process (see section 4.5.4 and Fig. 4.17).
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Figure 4.4: Experimental time evolution of soliton dynamics. Parameters: νz =
37± 0.85 Hz, ν⊥ = 407.5± 40.8 Hz, N = 1603± 132.

4.2 Measurement of the oscillation frequencies and

the inter-soliton interaction

Having overcome the snaking instability (see section 4.5.1) our solitons are dynam-
ically stable. This enables us to observe the soliton dynamics including multiple
collisions and makes it possible to measure interesting features of the solitons such
as their oscillation frequency, their velocity and their mutual interactions.
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Figure 4.5: In order to extract the oscillation frequency of the solitons in the experi-
mental data, we determine the distance between the two solitons in single shots of the
experiment for 3 to 10 runs. Subsequently, the results are averaged for each point in
time. Note that it is not always possible to determine a proper distance in every shot.
In these cases the shots are dropped. We then fit the resulting time evolution of the
inter-soliton distance. The obtained frequency is divided by two in order to compare
it to the oscillation frequency expected for a single trapped soliton. The shot to shot
reproducibility of the soliton dynamics up to 100 ms allows the observation of up to 7
collisions. The typical statistical experimental error in the frequency measurement is
±1.5% In the shown examples (parameter set 7 and 10 of Tabs. 4.1 and 4.2) we de-
termine the oscillation frequency to be: νd = (30.25±0.24) Hz = (0.778±0.007)·νz
(left) and νd = (46.70± 0.28) Hz = (0.810± 0.009) · νz (right).
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4.2.1 Oscillation frequency and dimensionality effect

Particularly interesting is the fact that the oscillation frequency of a dark soliton in
a harmonic trap is expected to be slower than the trap frequency (see section 2.4).
For a single dark soliton oscillating in a harmonically trapped BEC it was calculated
analytically to be [Bus2000]:

ν1D
d =

νz√
2
≈ 0.707νz, (4.1)

with νz being the longitudinal frequency of the trap. This result obtained by Busch
and Anglin is only valid for the TF 1D regime [Men2002], which is characterized
by NΩas/a⊥ � 1 and ((N/

√
Ω)as/a⊥)1/3 � 1. Later Theocharis et al. [The2007]

showed that if the system is not perfectly 1D or not in the TF-regime the frequency
of the soliton νd is still smaller than the frequency of the harmonic trap, but lies in
the range: ν1D

d < νd < νz (see section 2.4). As the value ν1D
d became quite famous

and well known we regard every soliton frequency in the range of ν1D
d < νd < νz as

being upshifted from ν1D
d .
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Figure 4.6: Comparing the experimental results with the values obtained from NPSE
simulation of the corresponding parameter sets and with the results from the effective
potential. Details are discussed in the text.

The parameter ranges for the TF- and dimensionality-parameters in our experiments
which we will discuss in the following are given by: ((N/

√
Ω)as/a⊥)1/3 ≈ 2.8 −

4.4 and NΩas/a⊥ ≈ 1.2 − 1.8, respectively. As therefore all our measurements
are performed in the crossover regime between 1D and 3D (see section 3.11) the
measured frequencies are expected to be upshifted from ν1D

d and we will call this the
dimensionality effect. This is exemplified in the two measurements of Fig. 4.5 for
which we get vd = (0.778± 0.007)νz and vd = (0.810± 0.006)νz. How we determine
the soliton oscillation frequency from single shots of the experiment is explained in
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the caption of Fig. 4.5. But we measure deviations from ν1D
d of up to 16% (see

Fig. 4.6) which cannot be explained by the dimensionality effect alone. These high
upshifts are due to the fact that in our experiments not a single but two solitons
oscillate in a harmonic trap. The interaction between the two solitons leads to an
additional frequency upshift. This will be the content of the following.

4.2.2 Inter-soliton interaction effects

Since the two dominant solitons created in our experiment have a distance of a few
healing lengths ξ (ξ is on the order of 250−400nm) the inter-soliton interaction leads
to a significant modification of their oscillation frequency as discussed in section 2.5.2.
This interaction and the corresponding frequency upshift is strongly depending on
the oscillation amplitude of the solitons, or in other words, on the mean distance
of the solitons during the oscillation. To observe this effect we perform systematic
measurements for different mean inter-soliton distances.
As discussed in section 3.3.1 our setup offers different possibilities to change the
distance between the created solitons. In our measurements we varied the aspect
ratio Ω = νz/ν⊥ and the number of atoms N forming the BEC. The experimental
parameter sets of the 12 executed measurements are shown in table 4.1. These result
in soliton oscillations specified by the parameters of table 4.2. In Fig.4.6 we see that
the oscillation frequency clearly increases with decreasing oscillation amplitude. At
first we compare this result with IS simulations using the NPSE (see section 2.2.2) at
which we initialize a single dark soliton in a trap corresponding to the experimental
parameters and at an oscillation amplitude equal to the one obtained from the fit of
the experimental data, see Fig.4.6. We observe two facts: Firstly the frequencies of
the single soliton simulations are upshifted from the value of ν1D

d by a few percent
due to the dimensionality of the system; secondly the experimental data,in agree-
ment with the two soliton simulations and the effective potential approach, is again
upshifted from the single soliton simulation results by another few percent. This
second effect, which in contrast to the dimensionality effect, strongly depends on
the oscillation amplitude, can only be explained by the repulsive interaction between
dark solitons due to the effective potential (see section 2.5.1 and Eqn. 2.26):

V (z, ż) = (2πν1s)
2 z

2

2
+

µB2

2m sinh2(2Bz/ξ)
. (4.2)

In this model we regard the solitons as particles oscillating in an effective potential
of Eqn. 4.2, which takes into account the dimensionality of the system and the mu-
tual interaction between the solitons. This picture is exemplified in Fig. 4.7. We set
the interaction parameter µ to be the chemical potential of the condensate obtained
from the 3D GPE equation and the darkness of the solitons to B =

√
1− ż2/c2

s,

with cs =
√
µ/m the Bogoliubov speed of sound. Now we can apply the equation of

motion corresponding to the potential of Eqn. 4.2 to the frequencies obtained from
the single soliton simulations ν1s. By doing so we include the dimensionality effect.
As can be seen in Fig. 4.6 the oscillation frequencies get shifted up to the values
marked by the ”red x” due to the effect of the interaction potential. The obtained
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Figure 4.7: Two solitons symmetrically oscillating in a harmonically trapped BEC
can be modeled by classical particles. The effective potential has to include the
repulsive inter-soliton interaction. We show here a simplified plot of the effective
soliton potential neglecting the velocity dependence of the interaction.

frequencies are in good agreement with the experimental data. We confirm our find-
ings by IS simulations where we initialize two solitons in the BEC at an oscillation
amplitude equal to the one obtained from the fit of the experiment. These are also
marked in Fig. 4.6 and fit the experimental data as well as the results obtained by
the analysis of the interaction potential. The good agreement between numerics and
experiments also shows that the dynamics produced by our experimental method
is well described within a two soliton approximation even though extra solitons are
produced.
For a more systematic analysis of the effects which influence the oscillation frequency
of dark solitons we perform extensive numerical studies using the NPSE for each ex-
perimental parameter set. Here we keep the parameters of the trap and the atom
number constant but vary the oscillation amplitude of the solitons in many steps. We
perform simulations for the single as well as for the two soliton case and determine
the oscillation frequencies by fitting the soliton trajectories. From these simulations
we can draw curves that show the behavior of the soliton oscillation frequency de-
pending on the oscillation amplitude for both cases (see Fig. 4.8). Additionally we
apply the equation of motion to all the single soliton simulations resulting in another
set of curves of the type frequency vs. amplitude. As exemplified in Fig. 4.9 the
agreement of the model with NPSE simulations is better than 5% in our experimen-
tally accessible parameter range. This allows us to clearly identify the significant
role of the repulsive interactions and shows that the effective repulsive potential in
Eqn. (4.2) obtained in the 1D homogeneous case is a good approximation to our
complex situation. We can now plot in Fig. 4.8 the range covered by all two soli-
ton simulation curves together with the experimental data and realize that there is
good agreement between the behavior of the frequency trend of the experimental
measurements and the simulations. For reasons of clarity we also plot three selected
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Figure 4.8: left: Frequency trend mainly due to the inter-solitonic interaction. As
every parameter set is expected to have a slightly different dependency of its soliton
oscillation frequency vs. its oscillation amplitude we show the range expected by
numerical simulations for all parameter sets together as the grey shaded area. right:
The distance between the solitons in the experiment is varied using different aspect
ratios of the trap and different mean atom numbers. The experimental data points
are grouped in three different ranges of the aspect ratio. For each range we plot
a selected simulation curve corresponding to the parameter set of the unfilled data
point. The experimental errors are estimated from the standard deviation of the
calibrations for the trap frequencies and the systematic error of the atom number.

simulation curves, one for each of the three different aspect ratio ranges Ω used in
the experiment and add these to the experimental data (see Fig. 4.8(right)).
Eventually our investigation reveals, that dark solitons can be modeled by regarding
them as classical particles with repulsive short range interaction exhibiting a length
scale of the healing length. Additionally our experiments show that dark solitons
can indeed survive multiple collisions, as predicted by numerical simulations of the
GPE.

4.2.3 Separating the effect of interaction from the dimen-
sionality effect in our measurements

Finally, we discuss the role of the dimensionality effect for our measurements in more
detail. This effect can be decomposed into two contributions: The actual effect of
dimensionality and the effect of being out of the TF-regime. For example, consider-
ing one specific parameter set with Ω ≈ 0.06, the upshift for a single soliton is ≈ 5%
(see Fig. 4.9). Predictions using the 1D GPE already give a value ≈ 2% higher than
the asymptotic limit because the Thomas-Fermi limit is not reached. The effect of
dimensionality, i.e. the role of the transverse degrees of freedom which is captured
only by the NPSE or the 3D GPE, accounts for the remaining ≈ 3%. To demonstrate
the dimensionality effect Fig. 4.9 shows the comparison between the single soliton
NPSE simulation and the νz/

√
2-prediction for the considered parameter set.
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Figure 4.9: Oscillation frequencies expected for dark solitons vs. the oscillation am-
plitude for the example of parameter set 2 of table 4.1. Due to the dimensionality
effect the frequencies obtained by numerical simulations for a single soliton (thin
line) are always higher than the TF 1D frequency prediction (bold dashed line). If
we apply the ODE corresponding to the effective potential of Eqn. 4.2 to the fre-
quencies obtained by the single soliton simulations, we get upshifted to the thin
dashed line. The two soliton NPSE simulation is in good agreement with this result.
The deviations are smaller than 5%. Comparison between single soliton simulation,
two soliton simulation and effective potential result reveals, that the strongly oscil-
lation amplitude dependent upshift of the two soliton case is due to the repulsive
inter-solitonic interaction. The insets show an example for a single and a two soliton
NPSE-IS simulation. The zoom in the two soliton case shows, that the solitons do
not cross in the simulations. The white lines denote the trajectories of the density
minima of the two solitons.

Note that one has to be careful if trying to separate the effects of dimensionality and
interaction. Since the interaction strength of the potential of Eqn. 4.2 is dependent on
the chemical potential µ and is therefore itself influenced by the dimensionality of the
system. This means that it is only possible to separate the effects of dimensionality
and interaction, if one regards the case of single soliton and two soliton oscillation
for the same set of the parameters: νz, ν⊥ and N . Therefore, in Fig. 4.8(right) only
the single and two soliton simulation curves of equal color can be compared.
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Set# νz[Hz] ν⊥[Hz] Ω N NΩas/a⊥
1 53.85± 0.27 890± 89 0.061± 0.006 1372± 93 1.22± 0.15
2 53.0± 0.25 890± 89 0.060± 0.006 1708± 81 1.50± 0.15
3 25.7± 0.17 407.5± 40.8 0.063± 0.006 2079± 106 1.30± 0.15
4 32.9± 0.7 407.5± 40.8 0.081± 0.008 1763± 116 1.42± 0.17
5 37.0± 0.85 407.5± 40.8 0.091± 0.009 1603± 132 1.45± 0.19
6 37.0± 0.85 407.5± 40.8 0.091± 0.009 1438± 97 1.30± 0.16
7 38.9± 0.19 407.5± 40.8 0.096± 0.010 1536± 126 1.46± 0.19
8 54.0± 0.82 407.5± 40.8 0.133± 0.015 1375± 124 1.81± 0.25
9 57.65± 0.29 407.5± 40.8 0.142± 0.014 863± 134 1.21± 0.22
10 57.65± 0.29 407.5± 40.8 0.142± 0.014 945± 120 1.33± 0.22
11 57.97± 0.31 407.5± 40.8 0.142± 0.014 1055± 105 1.49± 0.21
12 57.0± 0.3 407.5± 40.8 0.140± 0.014 870± 120 1.21± 0.21

Table 4.1: Experimental parameters for the 12 measurements.

Set# ν1s[Hz] νd[Hz] νd/νz zmax[ξ] ξ[µm]
1 39.68 41.32± 0.26 0.767± 0.006 12.15± 0.78 0.257
2 39.03 40.32± 0.20 0.761± 0.005 12.94± 0.60 0.250
3 18.91 19.67± 0.13 0.765± 0.007 13.43± 0.66 0.377
4 24.32 24.77± 0.26 0.753± 0.018 11.09± 0.91 0.372
5 27.57 29.49± 0.34 0.797± 0.021 8.81± 0.78 0.371
6 27.63 29.55± 0.19 0.799± 0.019 8.15± 0.48 0.377
7 28.91 30.25± 0.24 0.778± 0.007 9.47± 0.40 0.371
8 40.49 42.37± 0.35 0.785± 0.014 7.44± 0.47 0.359
9 43.95 47.56± 0.29 0.825± 0.007 6.05± 0.32 0.380
10 43.78 46.70± 0.28 0.810± 0.006 6.50± 0.37 0.375
11 44.03 46.35± 0.60 0.830± 0.009 5.61± 0.62 0.369
12 43.33 48.12± 0.48 0.813± 0.011 5.84± 0.53 0.380

Table 4.2: Parameters characterizing the soliton oscillation.

4.3 Experimentally varying the number of soli-

tons

As discussed in section 3.3.1 our experimental setup allows to vary the number of
created solitons. Fig. 4.10 shows the example of four oscillating solitons and two
additional weak solitons at the edge of the trap. In this case an increased lattice
height was chosen to create a higher number of solitons. On the one hand this results
in a higher collisional energy producing more solitons but on the other hand we loose
the initial phase stability resulting in an early fading out of the soliton contrast (see
section 3.3.1). The evolution plot is averaged over 10 runs.
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Figure 4.10: Observation of the oscillation of four dark solitons including the creation
process.

4.3.1 Three oscillating solitons

Using the procedure described in section 3.3.2 we can produce an odd number of
solitons. Especially interesting is the case were one soliton is standing between the
others in the center of the trap. In this case the interaction potential is increased
as the resting soliton is really black, meaning B = 1 in the potential of Eqn. 2.27.
This case can be realized by a phase difference of an odd multiple of π between the
wells of the initial double well. We can now set the creation process and its involved
kinetic energy to produce three solitons as shown in Fig. 4.11. In analogy to the two
soliton case we would now be able to probe the soliton oscillation frequency depend-
ing on the inter-soliton distance. Due to the increased interaction in this case we
expect according to the simulation and effective potential results a higher frequency
upshift as in the two soliton case (see section 4.11). A first measurement has been
taken (Fig. 4.11) and its frequency has been deduced. In Fig. 4.13 we additionally
show the corresponding ideal one soliton and three soliton simulation curves. Un-
fortunately the outer solitons were created with very high oscillation amplitude in
the experiment, which on the one hand prevents the direct comparison with our ex-
ecuted two soliton measurements and on the other hand involves additionally fitting
problems in the IS simulations (see caption of Fig.4.13). The reason for this is that
the oscillation amplitude of the performed three soliton experiment is very close to
the longitudinal size of the condensate. The solitons in the IS simulation, if put in at
such large oscillation amplitude, cause a breathing of the whole atom cloud resulting
in a growing oscillation amplitude and the excitation of additional weak solitons (see
Fig. 4.12).
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Figure 4.11: Experimental observation of three dark solitons averaged over 16 runs.
The soliton in the center of the trap is at rest (black soliton) whereas the two
outer ones are undergoing an oscillation with increased frequency due to the stronger
interaction with the standing soliton in the middle, compared to the two soliton case.
The reduction of the collisional energy and the resulting high oscillation amplitude
of the outer solitons was achieved by a slow ramping down of the optical lattice
on a timescale of 2 ms (see section 3.3.1). Parameters: νz = 36.1 ± 0.25 Hz,
ν⊥ = 407.5± 40.8 Hz, N = 1570± 146

Figure 4.12: IS simulation corresponding to the parameter set of the three soliton
measurement.
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Figure 4.13: Comparison of the three soliton measurement and corresponding single
and three soliton NPSE simulation curves to the two soliton results. The single
soliton simulation corresponding to the parameters of the three soliton experiment
is shown by the dashed line.
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4.4 Experimental determination of the velocity and

darkness of dark solitons

An important feature of a dark soliton is its propagation through the condensate
with a velocity vd slower than the speed of sound

c̄s =
√
n̄0g/m =

√
n0g/2m (4.3)

[Zar1998, Mur2002], with n̄0 the average density of the condensate over its cross-
section. As shown in section 2.1.1 the speed of a soliton can take values between
zero and the speed of sound1 and is directly connected to its darkness. Hence, one
can estimate the darkness of the soliton

√
nd/n0 from the experimental data by

measuring the velocity during the collision and using

nd
n0

= 1−
(
vd
c̄s

)2

. (4.4)

If the speed of the soliton is known it is possible to get an approximation for the
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Figure 4.14: Estimation of the soliton velocity during the oscillation and collision
dynamics of two solitons in a harmonic trap. The dashed line shows the fitted
distance between the two solitons. The solid line represents the velocity of one of
the solitons, obtained as the derivative of the fit and dividing by two. c̄s has been
calculated to be 2.1 · 10−3m/s.

oscillation amplitude zmax of a soliton oscillating in a harmonic trap by the equation

zmax =
√

2vd/ωz. (4.5)

1It has been shown in [Zar1998] that a sound wave in an elongated BEC propagates with a
speed of c̄s = cs/

√
2. So c̄s is the speed of sound relevant to solitons in an experimental situation

[Mur2002]. Whereas the Bogoliubov speed of sound cs is the critical speed for solitons in an idealized
1D regime described by the homogeneous 1D GPE.
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This result was obtained in [Kon2004] by regarding the soliton as a quasiparticle
within the framework of the TF approximation. It gives reasonable results in first
approximation even for our case of two solitons oscillating in the trap, see table 4.3
and compare with table 4.2.
Knowing the soliton velocity is also interesting, because it enables one to figure out
in what regime a collision between two solitons occurs. As discussed in section 2.1.4
it is possible to define a critical velocity vcd = 0.5cs, from the analytical approach of
[Akh1993, Kev], which separates two regimes. At the critical velocity vcd = 0.5cs the
minimal distance d = 2z0 between the two soliton becomes zero during the collision.
This behavior can be seen from the following equation (see also section 2.1.4):

z0 =
1

2
√
n0 − nmin

cosh−1

(√
n0

nmin
− 2

√
nmin
n0

)
ξ. (4.6)

nmin/n0 = 1− nd/n0 denotes the point of minimal density at the density notch and
n0 the background density. ξ = ~/√mµ is the healing length. For our experiments
we get vd/c̄s = 0.4− 0.52 corresponding to nd/n0 = 0.84− 0.73, see table 4.3. This
suggests that most of the experiments were performed well in the regime where the
minimal distance 2z0 is always bigger than zero and the solitons can be regarded
as classical repulsive particles. Our NPSE-IS simulations confirm this result. Here
we get a density different from zero between the solitons during their collision for
all data sets. In our experiments the two solitons collide up to 7 times showing
that dark solitons can survive several oscillation periods and collisions. In a recent
experiment [Ste2008] a single collision between dark solitons has been observed. The
depths of the two colliding solitons were there estimated to be nd/n0 = 0.74 and 0.69
corresponding to vd/c̄s = 0.51 and 0.56, respectively.

Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8 Set9 Set10 Set11 Set12
vd
c̄s

0.41 0.40 0.46 0.47 0.44 0.42 0.48 0.50 0.51 0.52 0.43 0.50
nd
n0

0.84 0.84 0.79 0.78 0.81 0.83 0.77 0.75 0.74 0.73 0.81 0.75
z0
µm 0.15 0.16 0.15 0.14 0.18 0.21 0.10 0.04 0 0 0.19 0.04
zmax
µm 3.39 3.48 5.48 4.40 3.69 3.47 3.86 2.96 2.68 2.80 2.34 2.65

Table 4.3: vd/c̄s denotes the soliton speed during collisions estimated from the fit
of our experimental data. nd/n0 is the depth of the soliton notch calculated from
the estimated speed. The approach of Ankhmediev and Ankiewicz approximates the
minimal distance 2z0 during the collision by Eqn. 4.6. Note: In our two soliton NPSE
simulations the solitons never overlap during the collision. zmax denotes the soliton
oscillation amplitudes as estimated from Eqn. 4.5.

4.5 Stability of dark solitons in BECs

4.5.1 The snaking instability

As mentioned in section 3.4 a dark soliton as an actual 1D object is not dynamically
stable in a genuinely 3D regime. It will decay through a transverse instability first
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discussed for optical solitons by [Kuz1988] and [Kiv1998]. Muryshev et al. inves-
tigate the case of standing dark solitons (kink states) in a BEC, explain the decay
process and find a condition under which the decay does not occur in elongated
condensates [Mur1999]. The authors explain that the kink related kinetic energy

K = −1
2
Ψd

d2Ψd
dz2
∼ µ can be transferred by the inter-particle interaction to unstable

transverse modes of the condensate. The inter-particle interaction is characterized by
the chemical potential µ = n0g, with n0 the peak density of the condensate and g the
interaction constant. In this picture the instability will not occur if the condensate
is strongly enough radially confined such that the lowest possible radial excitation
exceeds K ∼ µ. This leads to the condition: ~ω⊥ > µ.
In an additional more quantitative investigation the authors perform a Bogoliubov-
de-Gennes analysis which can be used to find unstable modes of the condensate.
These unstable modes exhibit an imaginary eigenfrequency in the Bogoliubov spec-
trum. The authors start their analysis with the case of no trapping field: ν⊥ = 0 and
νz = 0. They show that the unstable modes correspond to transverse wave vectors
of k⊥ = 2π/λ⊥ <

√
mµ/~. Hence these modes correspond to perturbations with

long wavelengths λ⊥ in transverse direction of the condensate. If k⊥ >
√
mµ/~ the

transverse modes are stable exhibiting a real eigenfrequency. Therefore, to prevent
the instability one finds a similar condition as before. The condensate has to be
radially confined such that: ~ω⊥ > (k2

⊥~2)/(2m) = µ/22. Due to the confinement
the long wavelength modes do not fit into the radial potential.

Based on these findings Muryshev et al. further investigated the case of transversal
and longitudinal trapping confinement: ν⊥ 6= 0 and νz 6= 0. They calculate the
critical value γc of the parameter

γ = µ/(~ω⊥), (4.7)

for which a standing dark soliton is still dynamically stable for various values of
ω⊥/ωz (see Fig. 4.15). For the limit ω⊥ � ωz they find γc ≈ 2.4. Additionally, we
mark the values of γ for different experiments in this figure.

Later on Muryshev et al. [Mur2002] also considered the case of moving dark solitons
and pointed out that r . L ∼ ξ, with r the radial size of the condensate and L
the width of the soliton, is a similar condition for being in the radial non-TF regime
[Mur2002]. When the soliton is moving with speed vd, L is increased and the insta-
bility border r ∼ L is reached at larger values of γ = µ/(~w⊥) than in the case of
standing solitons. In other words, w⊥ can be smaller. Thus, the stability condition
is more relaxed for a moving soliton [Mur2002], see Fig. 4.16. To get an intuitive
image of the instability process, one should remember that the local speed of sound
cs(r) =

√
n0(r)g/m is density dependent. This means that in the radial TF regime

the local velocity of the soliton, which is proportional to the local speed of sound, de-
pends on the radial coordinate, so that the soliton moves faster in the central region

2This is contrarily connected to the condition µ � ~ω⊥ for being in the Thomas-Fermi (TF)
regime for an infinitely long or homogeneous system [Men2002].
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Figure 4.15: Dependence of the critical value γc below which standing dark solitons
are still dynamically stable vs. ω⊥/ωz. Being the first experiment fulfilling this
criterium the values of our measurements are marked by the blue dots. Diagram
taken from [Mur1999] and adapted.

than at the edge of the trap and gets bend. The notch velocity increases whereas its
depth decreases. Finally the soliton decays into phonon waves [Mur2002] or into a
vortex-antivortex pair [Mur1999].

From numerical simulations Muryshev et al. observed that for γ > 10 imprinted
phase kinks always decay, whereas they accelerate and transform into a proper soli-
ton with a flat nodal plane for γ . 5 [Mur2002]. The decay of dark solitons into
vortex-rings was observed experimentally by [And2001]. Particularly interesting is
the recent experiment [Sho2008] observing a periodic soliton/vortex-ring, a soliton
which transforms into a vortex-ring and back, for γ = 4.95.
Our experiments with γ ≈ 2 are the first ones performed in and not only near the
dynamically stable regime for all velocities between 0 and c̄s. This explains why we
have been able to observe multiple oscillation periods of the solitons. This requires
the experiment to fulfill the stability condition for a stationary soliton, because oth-
erwise the solitons will get unstable when they come to rest on their turning point
at the oscillation amplitude3.

4.5.2 Comparison of different experiments

Table 4.4 shows the values of the parameters discussed in this section for different
experiments investigating systematic measurements on dark solitons in BECs. The
values for these experiments are also marked in Fig. 3.11, 4.15 and 4.16 as far as
they fit in the parameter range shown there. The experiment of [Den2000] appears
in none of the figures, because it is far away from the parameters that are optimal

3Note that the stability criterion for a soliton at the position of its oscillation amplitude might
slightly differ from the one of a stationary soliton in the center of the trap as the local density is
different there.
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0.4 0.6 0.8 1

Figure 4.16: For a moving soliton the criterium for dynamical stability γc is more
relaxed. The limit for standing solitons is given by the dashed line. vc denotes the
speed of the soliton here. Different experiments are marked by the dots. green:
Burger et al. [Bur1999], magenta: Shomroni et al. [Sho2008], red: Stellmer et al.
[Ste2008], blue: our experiments. Diagramm taken from [Mur2002] and adapted.

for the stability of dark solitons. The most important is the parameter µ/(~ω⊥)
(second column), describing the dynamic stability of dark solitons as discussed in
section 4.5.1, and the parameter NΩas/a⊥ (third column) describing the optimal
dimensionality regime for dark solitons as discussed in section 3.4. The later is also
related to the stability parameter. It becomes obvious that decreasing the aspect
ratio of the trap Ω is not enough to get into a dynamically stable regime. Besides this
the atom number has to be small enough to really fulfill the stability criteria, because
it influences the dimensionality of the system as well. Note that the dissipative decay
constant discussed in section 4.5.3 is not shown in table 4.4, because the temperature
is not given in most articles as it is hard to estimate. An estimation of the decay
time for our experiment is discussed in section 4.5.3.

4.5.3 Dissipative instability

Under the condition of dynamic stability the dark soliton is perfectly stable at T = 0.
However, as every experiment is performed at finite temperature dissipative insta-
bilities induced by thermal excitations will occur. To address these effects Fedichev
et al. have developed a model using a Fokker-Planck approach [Fed1999, Lif1995]
where they regard the dark soliton as a heavy particle in a gas of light particles.
The approach describes the probability density of the particle position under the in-
terplay of a diffusive force and a friction force transferring momentum from thermal
excitations to the moving kink.
A dark soliton is an excited state with a local energy extremum. Its energy is the
higher the slower the soliton is. Thermal excitations scattered by the kink can stim-
ulate its diffusive motion and increase its mean velocity. This induces a dissipative
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Ω µ/(~ω⊥) NΩas/a⊥

(
N√
Ω
as
a⊥

)1/3

Set 1 0.061 1.96 1.22 4.35
Set 2 0.060 2.07 1.50 4.69
Set 3 0.063 1.99 1.31 4.35
Set 4 0.081 2.04 1.42 3.95
Set 5 0.091 2.05 1.45 3.76
Set 6 0.091 1.99 1.30 3.62
Set 7 0.096 2.06 1.46 3.67
Set 8 0.133 2.19 1.81 3.35
Set 9 0.142 1.95 1.22 2.84
Set 10 0.142 2.00 1.33 2.92
Set 11 0.142 2.07 1.49 3.03
Set 12 0.140 1.95 1.21 2.85
Burger et al. [Bur1999] 0.033 6.86 50.24 20.33
Denschlag et al. [Den2000] 1.414 22.83 870.37 8.03
Shomroni et al. [Sho2008] 0.111 4.95 17.78 7.83
Stellmer et al. [Ste2008, Bec2008] 0.044 3.13 12.62 11.05

Table 4.4: Parameters relevant for the dynamical stability of dark solitons. Set 1 to
Set 12 denote our measurements.

force proportional to the speed of the kink, which soon exceeds the diffusion and
accelerates the kink to the speed of sound [Fed1999]. During this process the soliton
state continuously transforms to the ground state of the BEC. This can be under-
stood by regarding the expression for the energy of the kink state given in [Fed1999]:

H(ż) = 1
3
Mc2

s

(
1− ż2

c2s

)3/2

, with M = 4(n0Sξ)m � m. −M can be treated as the

negative mass of the kink and S is the transverse cross section of the BEC. If the
kink energy is decreased by dissipation, the kink accelerates in a run-away process,

because its dynamic mass −M
(

1− ż2

c2s

)1/2

[Fed1999] gets smaller and smaller. In

contrast to a realistic particle, where an infinite force would be necessary to accel-
erate its increasing mass to the speed of light, the soliton kink reaches the speed of
sound and the system has decayed to the ground state of the condensate.
From their Fokker-Planck model Fedichev et al. [Fed1999] can estimate the following
expressions for the diffusion time τD and the lifetime of the dark soliton τ for the
case kBT � µ:

τ−1
D = 24ζ(4)ω⊥(πn0a

3)1/2

(
T

µ

)4

, (4.8)

τ−1 = 2τ−1
D ln−1[Mµ/(mT )]. (4.9)

In first approximation it can be said that the ratio of the thermal energy to the
chemical potential should be kBT/µ � 1 to minimize thermal excitations. For our
experiments we estimate the temperature to be T = 10 − 20 nK by the method of
[GatII2006]. The case of T = 10 nK gives for our parameter sets with ν⊥ = 890 Hz:
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kBT/µ ≈ 0.1 and τ ≈ 12 s; and for the sets with ν⊥ = 408 Hz: kBT/µ ≈ 0.25 and
τ ≈ 1.5 s. The case of t = 20 nK yields kBT/µ ≈ 0.25, τ ≈ 0.5 s and kBT/µ ≈ 0.5,
τ ≈ 0.1 s.
From Eqn. 4.9 the decay of the soliton contrast C = 1− v2

d/c̄
2
s from the initial value

C0 to C0/e can be calculated from the relation

τc = (0.47 ln((1− C0/e)/(C0/e))/ ln(10)−
0.47 ln((1− C0)/C0)/ ln(10))τ. (4.10)

This relation has been obtained numerically in [Mur2002]. Note that it is not valid
for v ≈ 0. The soliton contrast C equals the expression nd/n of section 2.1.1. A
preliminary measurement is discussed in section 4.5.4.

4.5.4 Soliton decay in our experiment

As discussed in section 4.5.1 the solitons in our experiments obey all conditions for
dynamic stability. The only decay which can still occur is the dissipative decay
induced by thermal excitations which is due to the finite temperature of the exper-
iment. As we have seen in section 4.5.3 this decay depends strongly on the ratio
kBT/µ. The rough estimation of the temperature to T = 10 − 20nK provides a
decay time of the order of 0.1s to 12s for our measurements. This decay time has to
be observed carefully in the experiment, because it is masked by other decay effects.

Effects masking the real soliton decay in experimental images

We will show in the following why it is more sufficient to determine the experimen-
tal decay of the solitons from single shots of the experiment and not from averaged
pictures.

Our analysis reveals, that for single shots of the experiment the observed loss of soli-
ton contrast for the timescale of the measurements of 80 ms can be explained quite
well by one effect alone. This effect is the convolution of the pictures due to the
imaging process. As an example we observe the measurement corresponding to data
set 2 (see table 4.1). We investigate this effect by simulating the experimental situa-
tion by means of the 3D GPE. In the simulation we see that additionally created low
contrast solitons whose number seems to increase during the subsequent collisions
get out of phase of the two dominating oscillating solitons. This adds noise to the
dominating solitons (see Fig. 4.3b). Now applying the finite spatial as well as the
temporal resolution of our imaging system to the 3D GPE evolution plot reproduces
the experimentally observed loss of contrast on the time scale of 80 ms, see Fig. 4.17,
4.3c. In our example the effect seems to stop increasing further by the end of the
experimentally observed timescale of 80 ms.

If in contrast averaged pictures are observed, as we did for obtaining the time evo-
lution plots (e.g Fig. 4.3a), additional effects smear out the soliton contrast in these
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Figure 4.17: left: Loss of contrast of the collision point of the solitons at z = 0
during the time evolution. Additionally created weak solitons cross the two domi-
nating ones and add noise to them (see also Fig. 4.3). The density at z = 0 during
the time evolution is plotted. Black line: 3D GPE simulation, blue line: mean
over 10 3D GPE simulations taking randomly into account a standard deviation of
∆N/N ≈ 0.15 and ∆φ/(2π) = 0.07 plus the spatial (1µm) and temporal (1 ms)
convolution of the imaging system, green dashed line: 3D GPE simulation plus con-
volution, red line: experimentally observed density. As the blue and the green dashed
line do not deviate much from each other the given standard deviation of the ex-
perimental parameters does not seem to be a limiting factor. right: simulation for
a longer evolution time of 300 ms, the evolution time of the experiment is marked
by the dashed red line. blue line and green line: same as before, but for longer
evolution time. On longer timescales the slightly varying starting conditions of the
experiment indeed lead to a further decrease of the contrast of averaged images. Pa-
rameters: νz = 53 Hz, ν⊥ = 890 Hz and N = 1700 (parameter set 2) corresponding
to Fig. 4.3a.

images. First of all the frequency of the solitons can vary from shot to shot, because
of slightly different starting conditions of the experiment. This smears out the con-
trast of averaged images especially at long evolution times. Dominating here are the
variation of the atom number which has a standard deviation of ∆N/N ≈ 0.15 and
the noise on the initial phase which we determine to be ∆φ/(2π) = 0.06. Checking
the decrease of soliton contrast at the coordinate z = 0 for the parameter set of
data set 2 (see table 4.1) of our experiments we discover that this effect does not
dominate the loss of soliton contrast for the observed timescale of the experiment
of 80 ms as can be seen in Fig. 4.17(left). But for longer evolution times this effect
indeed leads to a further decay of the soliton contrast as can be seen in the blue
curve of Fig. 4.17(right).
Furthermore, due to the thermally induced decay the solitons will accelerate in a
process of statistic nature, which would even smear out the averaged images addi-
tionally. Note, if averaging too many images per point of the time evolution, also
a long term shift of the double well potential as discussed in section 5.3 might get
relevant for the contrast decay of the averaged time evolution plots.

To emphasize again all these effects only lead to a technical loss of contrast of the
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two solitons of interest in the images. They are not a real decay of the solitons.

Temperature induced decay

We have performed a preliminary measurement observing the temperature induced
decay (see section 4.5.3) of two4 oscillating solitons for 200 ms with a time step of
2 ms. We determine the depth of the solitons in single shots of the experiment on
selected points during the evolution at which the two solitons meet in the center of
the trap. The contrast is determined by measuring the maximum and the minimum
of the soliton notch manually in the density profiles. We drop shots where it is not
possible to detect the soliton notch properly. This investigation results in Fig. 4.18.
We can determine a reasonable decay time of the soliton contrast of τc = 178±44 ms
by fitting our experimental data. The given error is the standard deviation of a least
square fit. Taking the experimental parameters νz = 57 Hz, ν⊥ = 408 Hz, N = 870
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Figure 4.18: Soliton decay observed from single shots of the experiment. It can be
seen that for longer evolution times not in every image a soliton can be assigned due
to increasing noise.

and C = nd/n0 = 0.74 into account and assuming a reasonable temperature range of
T = 10−20 nK (kBT/µ = 0.26−0.51) Eqn. 4.10 results in τc = 576−34 ms which is
on the same order of magnitude for τc as the experimental observation. (Assuming
T = 13 nK would yield τc = 193 ms.) If the above mentioned decay effect due to the
imaging convolution (all other discussed effects are prevented by using single shots)
is involved the real decay time might be longer than the experimentally observed
one. Therefore we can assume the measured time constant as a lower limit of the
decay time τc in our experiment, so that: τc ≥ 178 ± 44 ms. Note that this lifetime

4Note: To exclude possible dissipative effects due to the soliton collisions it might be more
appropriate to observe single solitons instead of two.
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is one of the shortest among our parameter sets. For one set for example we get
kBT/µ = 0.15 expecting a lifetime of 2.4 s at T = 13 nK. In selected single shots of
the experiment we have detected solitons after t ≈ 1 s.

In conclusion, our measurements have revealed the inter-soliton interaction experi-
mentally and have confirmed theoretical predictions of the oscillation frequency of
dark solitons. Furthermore we have discussed that our created solitons are dynami-
cally stable and should therefore decay due to temperature induced effects.
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Chapter 5

Experimental setup

The following chapter will describe the experimental apparatus producing our BEC of
87Rb atoms. We will focus on the ’next generation’ changes to the setup, which have
been carried out during the time of this thesis. These are especially the stabilization
of the optical dipole traps as well as of the optical lattice and the installation of a
new imaging system. We will start with a short description of the entire setup. A
detailed description of the construction of the apparatus from scratch can be found
in [Eie2004] and the first realization of the optical double well potential in [Alb2005].

5.1 General description of the setup

For the first time achieved less than 15 years ago and later awarded with the noble
price of physics, the creation of Bose-Einstein Condensates of dilute atomic gases
[And1995, Dav1995] has nowadays become a standard tool in atomic physics. We use
an established three step technique to achieve Bose-Einstein condensation. We start
by precooling 87Rb atoms in a magneto-optical trap (MOT), perform further cooling
in a magnetic trap and subsequently we cool the atoms below the critical temperature
for Bose-Einstein condensation in an optical dipole trap. Our experimental setup (see
Fig. 5.2) can be roughly separated into two parts. The first part is the area containing
the vacuum chamber (denoted as ’darkened area’ in Fig. 5.2) which is necessary to
prepare the ultra cold atoms in a UHV environment. The second part is the laser
system, which prepares narrow-line-width light at appropriately near detuning from
an atomic transition as needed for laser cooling and imaging the atomic density
distribution and far-detuned light for the optical dipole traps.

5.1.1 The vacuum chamber

The vacuum chamber (see Fig. 5.1) is separated into two parts by a differential
pumping stage, a high vacuum (HV) chamber at a pressure of p ≈ 10−8 mbar and an
ultra high vacuum (UHV) chamber at p < 10−11 mbar. This separation is necessary
to decouple the atom source and the experimental chamber where an UHV is needed
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to obtain a BEC. In the HV chamber the atoms are evaporated from Rubidium
dispensers and precooled and collimated by a 2D+ MOT, also called funnel [Eie2004].
The funnel exhibits two pairs of balanced counter-propagating laser beams in the
transversal axes and a non-balanced pair of laser beams in the longitudinal axis.
In this axis one of the beams is set to have higher intensity than the other one
pushing the atoms in a slow collimated beam towards the UHV chamber. The
UHV chamber provides the experimental chamber with a standard 3D MOT (see
[Eie2004, Ank2005, Raa1987] for details), a magnetic time-orbiting-potential (TOP)
trap and the optical dipole traps. The UHV at p < 10−11 mbar is necessary to prevent
collisions of the cooled atoms with the background gas. After precooling in the MOT
on the (F = 2→ F ′ = 3) cycling transition the atoms are optically pumped into the
52S1/2|F = 2,mF = 2〉 state and transferred into the TOP trap for further cooling.
The TOP trap (see [Eie2004, Alb2005, Pet1995] for details) consists of a magnetic
quadrupole trap whose zero-point is rotated by magnetic bias fields at a frequency
of 10 kHz. This prevents the atoms from changing their spin state at the zero-point
of the field and from escaping the trap. Finally, the atoms are evaporatively cooled
in a far-detuned crossed optical dipole trap. This is done by decreasing the intensity
of the laser beams providing the trap for a certain time, resulting in a lowered trap
depth so that hot atoms can escape.

Glas cell

Funnel chamber MOT and BEC chamber

Differential
pumping stage

Pump
55 l/s

Pump
150 l/s

Magnetic trap
Slow atomic beam

Dispenser

Funnel coils

3D-MOT
BEC

Figure 5.1: The vacuum system. The BEC chamber where the experiments are
performed is located on the very right side.
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Figure 5.2: Experimental apparatus. Details see text. The L-shaped dark grey
shaded area marks the aluminum block mechanically connecting the dipole traps
and the optical lattice interferometer. Note that the optical lattice interferometer is
actually placed below the Xdt, which is shown here differently due to simplification.
The new imaging system is discussed in section 5.4.
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5.1.2 The laser system

The light provided by the different lasers (except for the repumper) is coupled to
optical single-mode fibres and delivered directly at the vacuum chamber. Another
advantage of optical single-mode fibres is their transversal mode cleaning as only the
TEM-00 mode can be coupled into these fibers. In total we operate four different
lasers. The lasers Ti:Sa I and the repumper are frequency-locked by means of doppler-
free absorption spectroscopy of Rubidium vapor.

Ti:Sa I This is a Titanium-Saphire (Ti:Sa) laser (Coherent, Monolitic-Block-Resonator
110) with an optical output power of ≈ 1.2 W (after optical isolator) and a line
width of ∆ν = 100 kHz. This narrow line width is reached by the combina-
tion of an etalon lock with an external cavity lock. The Ti:Sa I is pumped by
an frequency doubled Nd:YVO4 laser (Coherent, Verdi V10) with an output
power of 10 W. We lock this laser to the (F = 2 → F ′ = (3, 1)) transition
crossover of the 87Rb D2 line near a wavelength of 780 nm (see C.1). The beam
is split into three paths: magneto-optical trap (MOT), funnel and imaging.
In each of the paths the laser light is shifted about 210 MHz, by means of
acousto-optical modulators (AOMs) in double pass configuration, towards the
(F = 2→ F ′ = 3) cycling transition. We keep a sufficiently small detuning for
funnel and MOT and match the transition frequency for the imaging beam.

TiSa II The second Titanium-Saphire laser (Coherent, 899) delivers the light for
the optical lattice. It has been operated at a wavelength of 843nm for the dark
soliton experiments with an output power of ≈ 1.1 W.

Repumper The repumper recollects atoms of the MOT and the funnel which have
decayed to the |52S1/2, F = 1〉 state. Although this is unlikely for a single
event it is very important in a MOT because of the high number of transition
processes during the lifetime of the MOT. For this purpose a Distributed-
Feedback diode laser (Toptica, LD-0780-0080-DFB-1) is used, which is locked
to the (F = 1 → F ′ = 2) transition of the D2 line and has a line width of
about 4 MHz at an output power of ≈ 25 mW.

YAG A diode pumped Nd:YAG laser (Spectra-Physics, T40-X30-106QW) with a
wavelength of 1064 nm operated at an output power of about 3 W provides the
light for the far red-detuned optical dipole trap beams.

5.2 Optical dipole traps

5.2.1 The light shift potential

Before discussing the ultra stable reconstruction of the optical dipole traps and the
optical lattice, we will give a short introduction to optical light shift potentials.
The interaction of a light field with an idealized two-level atom can be derived in a
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semiclassical description using the steady-state solutions of the optical Bloch equa-
tions [Met1999]. The resulting force can be separated into two parts, a conservative
force and a velocity dependent dissipative one. The dissipative force also called the
’radiation pressure force’ allows for the different laser cooling techniques as it slows
down the atoms. The conservative force, the ’dipole force’ occurs in light fields with
spatially varying intensity. It corresponds to an optical trapping potential for atoms
[Met1999]:

Vdip(r) =
~δ
2

ln

(
1 +

I(r)/Is
1 + (2δ/Γ)2

)
, (5.1)

with the saturation intensity Is = ~Γω3
0/(12πc2), I(r) the local light intensity, Γ

the natural line width of the transition and c the speed of light. The depth of this
potential depends on the detuning δ = ωl − ω0 of the laser frequency ωl from the
optical transition frequency ω0. In the case of large detuning, I(r)/Is � 1 + (2δ/Γ)2

and δ2 � Γ2, the potential can be approximated by:

Vdip(r) ≈ ~Γ2I(r)

8δIs
. (5.2)

In the limit of Ω � |δ| Eqn. 5.2 can also be calculated directly from the coupling
of a two-level atom to a light field, which is given by the Rabi frequency Ω(r) =
Γ2I(r)/(2Is). The resulting shift ∆E(r) = ~Ω2/(4δ) of the atomic energy levels
equals Eqn. 5.2 and is referred to as the light shift or ac-stark shift. The resulting
force Fdip = −∇Vdip drives the atoms to the intensity maximum of a light beam if
δ < 0 (red-detuned) and repels them out of the beam if δ > 0 (blue-detuned).

For setting the optimal trapping frequency of a red-detuned light beam, also the rate
of spontaneous emission due to the absorption of photons from the light field has
to be taken into account. The spontaneous emission of photons leads to heating of
the atoms and should be as small as possible. The spontaneous emission rate can be
calculated to be [Met1999]:

Γsp =
ΓI(r)/(2Is)

1 + I(r)/Is + (2δ/Γ)2
≈ Γ3I(r)

8δ2Is
(5.3)

The approximation on the right hand side of Eqn. 5.3 is valid in the same limit as
Eqn. 5.2. The compromise of a strong trapping force, which is ∝ δ−1 and a low
spontaneous emission rate which is ∝ δ−2 lies in the far red-detuned range.

5.2.2 Trapping potential of a Gaussian laser beam

Optical dipole traps can be realized by laser beams. For a Gaussian beam of the
TEM-00 mode, the intensity profile takes the form:

I(r) =
I0

1 + (z/z0)2
exp

(
−2

x2 + y2

σ2
0(1 + (z/z0)2)

)
with z0 =

πσ2
0

λl
, (5.4)
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the Rayleigh range. On the length scale of z0 the light intensity decays in longitudinal
direction from I0, the peak intensity of the beam, to I0/2. λl denotes the laser
wavelength and σ0 the beam waist, which corresponds to the length scale on which
the intensity decays transversally to 1/e2 of its maximum value I0. Combining Eqn.
5.4 and Eqn. 5.2 leads to the light shift potential of a Gaussian beam optical dipole
trap. This Gaussian potential can be approximated in its central region by a three-
dimensional harmonic potential. In the case of large detunings δ2/Γ2 � I/Is, one
gets

Vharm(r) = V0 −
1

2
mω2

zz
2 − 1

2
m(ω2

xx
2 + ω2

yy
2), with (5.5)

V0 =
~Γ2I0

8δIs
. (5.6)

The corresponding transversal and longitudinal trap frequencies are given by:

ωx,y =

√
4|V0|
mσ2

0

and ωz =

√
2|V0|
mz2

0

= ωx,y
λl√
2πσ0

. (5.7)

From Eqn. 5.7 we see that if the laser wavelength is much smaller than the beam
waist λ � σ0 the longitudinal confinement is very weak. If more than one atomic
transition is of relevance, the dipole potentials stemming from all of these transitions
have to be summed up. In our case of 87Rb atoms in the 52S1/2 |F = 2,mF = 2〉
state, the atoms can be excited to the states 52P1/2 |F = 2,mF = 2〉 (D1 line),
52P3/2 |F = 2,mF = 2〉 (D2 line) and 52P3/2 |F = 3,mF = 2〉 (D2 line) assuming
linear polarized light. Hence, all of these lines have to be regarded, resulting in the
following estimation:

Vdip(r) = V0

(
2

3δ2

+
1

3δ1

)
. (5.8)

δ1 and δ2 denote the detunings to the D1 and D2 line respectively. The prefactors
denote the corresponding Clebsch-Gordon coefficients, which are approximated to be
1/3 for each transition in our estimation.

Gravitational sag

As additionally gravity (considered to be in y direction) pulls down the atoms in an
atomic trap, there is a balance between this force and the spring-like force of the
trap: mg = ky = ω2

ym · ∆y. This results in a shift of the atoms in direction of
gravity: ∆y = g/ω2

y. Hence, the trap frequency must be chosen such that ∆y . σ0

with σ0 the Gaussian beam waist. out of the trap.
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5.2.3 1D optical lattices

A one-dimensional optical lattice can be realized interfering two counter propagating
far-detuned laser beams. This configuration results in an optical standing wave. As
the light intensity varies from zero at a node to its maximum value at an antinode,
the optical light shift potential is modulated on a length scale of λ/4. The so-called
lattice spacing L = λ/2 denotes the distance between two intensity maxima. This
offers the possibility to confine atoms in sub-micrometer regions of space [Met1999].
By letting the two laser beams cross under a certain angle θ between them it is
also possible to create optical lattices with larger lattice spacing without exchanging
the laser. In this configuration only the transverse (for θ < 90◦) components of
the wave-vectors of the two beams contribute. The resulting intensity pattern and
lattice spacing can be calculated as follows. We assume that the transverse size of
the two crossing beams is much larger than the wavelength σ0 � λl and can therefore
approximate the interference pattern in the central region as a superposition of two
plane waves. Furthermore we assume the beams to be of equal intensity and equal
frequency ωl = ω1 = ω2, |k| = |k1| = |k2|. Thus the electric field can be described by

E = E0(cos(ωlt+ k1r) + cos(ωlt+ k2r + φ)). (5.9)

Considering the transverse components of the wave vectors k1⊥ = |k| sin(θ/2) and
k2⊥ = −|k| sin(θ/2) we get:

E = 2E0 cos(ωlt+ φ/2) cos(|k| sin(θ/2)z − φ/2) (5.10)

The trapping potential VOL is proportional to the intensity I (see Eqn. 5.2), i.e.
VOL ∝ I ∝ E2, which leads to:

VOL = V0

(
1 + cos

(
2π

L
z − φ

))
(5.11)

with the resulting lattice spacing

L =
λl

2 sin(θ/2)
. (5.12)

By Taylor expansion of Eqn. 5.11 we get V ≈ V0 − 1
4
V0(2π/L)2z2 whereas we get

V ≈ V0 − 1
2
mω2

zz
2 from Eqn. 5.6. Equating both expressions and solving to V0 leads

to:

V0 =
mω2

zL
2

2π2
, (5.13)

which denotes the height of the optical lattice.
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5.3 Next generation ultra stable optical dipole traps

and optical lattice interferometer

We use a crossed optical dipole trap configuration consisting of the ’charger’ (see
section 5.3.1) and the ’Xdt’ (see section 5.3.2) beam, which meet under an angle of
90◦. Additionally we have the possibility to overlap a 1D optical lattice (see section
5.3.3) with that trap.
The light intensity of our optical dipole traps is set by acousto-optic modulators
(AOM). An established method of stabilizing these traps is the active stabilization
of the beam intensities by means of feedback control [Alb2005, Gat2006]. Reflec-
tions of the main beams detected by photodiodes serve as input in the feedback
loops. Additionally the laser light is coupled to optical fibres and directly delivered
close to the experimental chamber. As few optical components as possible are used
after the fibre outcouplers to prevent drifts of the beams. We have now performed
measurements where this high stability of the experiment was indispensable on a
time scale of many hours. Therefore the stability of the experiment has been further
improved. Special attention had to be paid to the relative stability of the two optical
dipole traps and the optical lattice. The building of a quasi drift free setup (see
Fig. 5.3) which connects all of these three components was a crucial point for both
experiments [Est2008, Wel2008] performed during the time of this thesis. Therefore

Xdt mount
charger mount

Optical lattice interferometer
    (inside aluminum block)

BEC chamber

imaging light

a) massive aluminum block Xdt mount

charger mount

optical lattice interferometer

  photodiode
optical lattice
  phase lock

b)

piezo z-translation stage

cylindrical-lens-system
focusing lens

mirror

mechanical z-translation stage
polariser

pickup
 plate

fiber outcoupler

c)

EOM

LM

NBS outcoupler

d)

Figure 5.3: Ultra stable optical dipole trap and optical lattice setup. a) Setup
integrated in the experiment. b) All parts put together after construction c) The
Xdt mount. d) The optical lattice interferometer is integrated in a hole inside the
massive aluminum block. NBS denotes the non-polarizing beam splitter and LM the
two last mirrors directing the lattice beams to the BEC.
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the fibre outcouplers of both beams of the crossed optical dipole trap have been fixed
in massive aluminum mounts. All necessary optical components have been placed on
the same mounts to minimize the relative movement between them. The first beam
of the optical dipole trap (called ’charger’) and its mount have already been charac-
terized in [App2007]. The second beam, the crossing dipole trap (called ’Xdt’) will be
discussed in section 5.3.2. As we have in total four different beams (’charger’, ’Xdt’
and the two beams of the optical lattice) which have to overlap without drifts the key
to the stability of this setup was their connection via a massive aluminum block with
a mass of ≈ 40 kg. Therefore, also the interferometer producing the optical lattice
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Figure 5.4: Tolerance of the double well symmetry. top: The change of the atom
number imbalance of the left and write well ∆N = |N1−N2|/(N1 + N2) during
a measurement series of ≈ 10 h was checked to be typically 5%. This corresponds
to a relative spatial instability between the dipole traps and the optical lattice of
∆z ≈ 250 nm on this timescale. bottom: A spatial shift between dipole traps and
optical lattice of ∆z = 250 nm leads to a small change in the symmetry of the
evolution dynamics of dark solitons produced by matter wave interference.

had to be rebuilt (see section 5.3.3) to be placed into a hole inside of this aluminum
block. The aluminum block is placed on the optical table on three steel balls and has
no other connection to the table. This minimizes heat transfer between the block
and the table. For the material we chose cast and annealed aluminum because it
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has little tension and exhibits only the natural coefficient of expansion of aluminum.
Still this coefficient of expansion is quite high with α = 23 · 10−6K−1 at 20◦C. For
the dark soliton experiments we set ourselves the limit that the imbalance of the
atom number between both wells ∆N of the initial double well potential should be
∆N = |N1 − N2|/(N1 + N2) < 10% during the whole measurement series, with
N1 and N2 the atom number in the left and right well respectively. Otherwise the
time evolution pattern of the created dark solitons would change with time in an
unacceptable way. After every experimental run of ≈ 10 h duration ∆N was checked
and was found to be typically ∆N ≈ 5%. This corresponds to a stability in relative
position of the optical dipole traps and the optical lattice beams of ∆z ≈ 250nm
resulting in a small possible shift of the symmetry of the double well potential as
illustrated in Fig. 5.4. The limit of ∆N = 10% was never exceeded.

Regarding the coefficient of expansion of aluminum this stability of ∆z ≈ 250 nm
corresponds to a temperature stability of the block of ∆T = 0.025 K. These condi-
tions are mainly achieved passively in our case by letting the experimental apparatus
run on the measurement cycle for ≈ 10 h. After that time the machine has reached
its equilibrium temperature, so that the optical dipole trap configuration is quasi
drift-free. We can then let the apparatus automatically run on its measurement cy-
cle for ≈ 10 h without the need of adjustment. As evidences for this stability we
show in Fig. 5.16 two long term measurements of the symmetry of our BEC in the
double well potential and of the interference pattern of the two BECs out of this
potential in time of flight.

5.3.1 The optical dipole trap - ’charger’

The charger has been characterized in [App2007]. It consists of a tightly focused
far-detuned (λ = 1064 nm) laser beam with a Gaussian waist of σ0 = 5µm. The
achievable trap frequencies lie in the range of ν⊥ = 400−1000 Hz corresponding to a
beam power of ≈ 1− 6 mW. As the beam waist of the charger is small it exhibits a
considerable trapping confinement in the longitudinal direction (see Eqn. 5.7), which
we determined to be νz ≈ ν⊥/20 = 20 − 50 Hz. Therefore the charger can trap the
BEC without the need of additional confinement. Like every atom trap the charger
has a principle lower limit of its achievable trap frequencies via the gravitational
sag ∆y = g/ω2

y (see Fig. 5.5). This phenomenon limits the trap depth Edepth and
results in an experimentally observed minimal trap frequency of ν⊥ ≈ 350 Hz. The
trap depth is also connected to the maximal temperature Tmax = Edepth/kB of the
atoms that can be trapped by the charger. For the starting value in the dark soliton
experiments of ν⊥ = 408 ± 41 Hz we estimate the temperature to T = 10 − 20 nK
using the method of [Gat2006], which should be close to the trap depth.
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Figure 5.5: Illustrating the trap depth including gravity. Decreasing the trapping
frequency, from green to the red curve, leads to a reduction of the trap depth. In
the case of the red curve the trap depth gets zero so that the atoms can no longer
be trapped.

5.3.2 The crossing optical dipole trap - ’Xdt’

In this section we will characterize the new crossing optical dipole trap, called ’Xdt’.
It is intensity-controlled by an AOM which is placed before the optical fiber. This
far-detuned (λ = 1064nm) optical trap is used to provide additional and adjustable
confinement of the BEC in longitudinal (z-)direction of the trap. The ’Xdt’ out-
coupler and all necessary optical components are fixed to an aluminum mount (see
Fig. 5.6) which stabilizes the beam passively. The outcoupler (Schäfter und Kirch-
hoff, 60FC-4-A18-03) delivers a collimated beam with a Gaussian waist of 1.8 mm.
Directly after the outcoupler the polarization of the beam is purified by means of a
polarizing beam splitter cube. A small fraction of the beam is reflected to a pho-
todiode by a pickup plate and serves as input for a feedback control loop of the
beam intensity. This feedback control sets the AOM such that the light intensity
after the fibre outcoupler always has the requested value. The beam is widened up
in vertical direction by a lens system of two cylindrical lenses (Thorlabs, LJ1144L1-
C,f1 = 500 mm; Thorlabs, LK1487L1-C, f2 = −400 mm) with a combined focal
length of: f12 = −2200 mm. Afterwards it is focused by a third lens (Thorlabs,
LA1484-C) with a focal length of f3 = 303 mm. The resulting beam has an elliptical
cross-section with expected σz0 = 57µm and σy0 = 266µm (calculated by Oslo) at
the position of the BEC (note that σy0 actually is not a waist as the beam is not
focused on the position of the atoms in this axis). In two experimental tests using a
beam profiler camera and applying the method of moving a razor blade through the
beam (see Fig. 5.7) we get σz0 = 60µm and σy0 = 240µm. Because of this elliptical
cross-section of the intensity profile the ’Xdt’ only provides a significant confinement
in the longitudinal direction of the trap. From the ratio of σz0 and σy0 we can esti-
mate the ratio of the trap frequencies in both axes: νz/νy = σy0/σ

z
0 ≈ 4. In order

to create a symmetric double well potential it is necessary to be able to move the
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optical lattice beams

Xdt beam

imaging beam

MOT beam

Xdt mount

Figure 5.6: Construction drawing of the ’Xdt’ mount and schematics of different
beams directed onto the atoms. green line: direction of the ’Xdt’ beam, yellow line:
direction of the imaging beam, red lines: two of the MOT beams, black lines from
below: beams of the optical lattice.

’Xdt’ beam by remote control in z-direction of the combined trap to assure that an
intensity maximum of the optical lattice lies in the center of the trap (see section
5.3.4). We have implemented this feature by reflecting the beam under an angle of
45◦ on a mirror fixed on a piezo translation-stage (Physik Instrumente, P-611.ZS),
see Fig. 5.8. Thus moving the stage forth and back results in moving the ’Xdt’ beam
right and left (z-direction). The positioning of the piezo translation stage is feedback
loop controlled by means of a strain gauge. This compensates for the hysteresis of
the piezo and allows to move the ’Xdt’ beam during the experimental sequence to
arbitrary positions in a spatial range of 140µm corresponding to the travel range of
the piezo stage of 100µm. The positioning noise is currently limited by electronic
noise of the controlling signal of 2 mV peak to peak. The voltage resolution of our
sequence control program limits the step resolution of the beam translation to 35 nm.
This results in the following resolution and accuracy of the Xdt beam positioning:

∆zXdt = 35± 14 nm, (5.14)

where the positioning noise of the beam is 14 nm. By moving the laser beam with
the piezo stage behind a sharp edge and detecting with a photodiode we estimate the
step response of the feedback loop controlled piezo to be 4− 5 ms, see Fig. 5.9. The
whole ’Xdt’ mount is vertically angled, so that the beam is directed onto the atoms
under an angle of 15◦ (see Fig. 5.6). Furthermore, the beam can also be vertically
adjusted by moving the lens system up and down, which is mounted on a mechanical
micrometer translation stage (Melles Griot, 07TEZ703).
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Figure 5.7: By moving a razor blade through the beam and recording the decay of
the light intensity it is possible to determine the width of a gaussian laser beam. The
obtained light intensity vs. time is described by the so-called error function which
is the integral of a Gaussian. Fitting the error function enables one to determine
the parameter σ of the corresponding Gaussian. By taking a measurement series for
different positions in longitudinal direction of the beam makes it possible to find the
minimal Gaussian σ, which is the waist of the beam σ0. We get σz0 = 60.2± 0.4µm
for the ’Xdt’ beam. The given error is an estimation from the fit.

Additional and adjustable longitudinal confinement by the Xdt

As the ’Xdt’ beam has a much larger cross-section on the position of the BEC than
the charger more optical power is needed to achieve high trap frequencies. The
’Xdt’ is operated at beam powers of up to 500 mW corresponding to an additional
longitudinal confinement of up to νXdtz = 70 Hz. Calculating the total longitudinal
trap frequency in the combined trap of charger and Xdt works as follows:

νz =
√
ν2
z charger + ν2

z Xdt ≈
√

(ν⊥/20)2 + ν2
z Xdt, (5.15)

with ν⊥ = νx = νy the transversal frequency of the charger and νz charger and νz Xdt
the longitudinal frequencies of ’charger’ and ’Xdt’. Fig. 5.10 illustrates the two laser
beams, ’charger’ and ’Xdt’, creating the crossed optical dipole trap. The isosurfaces
on which the intensity has decayed transversally to 1/e2 of its maximum value Imax(z)
and Imax(x) respectively are shown. These correspond to the Gaussian width σ(z)
for the charger and σy,z(x) of the ’Xdt’, respectively. Note that for simplicity we
regard a coordinate system for the ’Xdt’ whose x-axis is the beam axis of the ’Xdt’.
As the ’Xdt’ beam is directed onto the atoms at an angle of 15◦ to the optical table,
this coordinate system is rotated to our generally used one.
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Figure 5.8: Schematics of the ’Xdt’ optics. Moving the ’Xdt’ beam works by moving
a mirror forth and back using a piezo translation stage. The lens system is illustrated
in a simplified way.

Figure 5.9: The step response of the feedback loop controlled piezo is measured to
be 4− 5 ms by means of moving a reflected laser beam.

5.3.3 The optical lattice

To create our optical double well potential we need a one-dimensional optical lattice
as described in section 5.2.3. Such optical lattice can be achieved by an interferometer-
like setup. To integrate the optical lattice into the new ultra stable beam configura-
tion of the traps we had to redesign this interferometer. We kept the basic principle
described in [Alb2005, Gat2006] but changed the folding of the beam path and the
whole mount. The interferometer is now placed in a hole going horizontally through
the massive aluminum block which also connects the two dipole traps. The idea is
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Figure 5.10: Crossing beams of charger and ’Xdt’. Isosurfaces with I = Imax(z)/e2

and I = Imax(x)/e2 respectively are shown. The ’Xdt’ beam has an elliptic cross-
section with a ratio of σy0/σ

z
0 ≈ 4. For simplicity the angle of incidence of the ’Xdt’

of 15◦ onto the atoms is not regarded here and we use a coordinate system whose
x-axis is the beam axis of the ’Xdt’ and whose z-axis is the beam axis of the charger
respectively.

again to have a mechanical connection of all outcouplers of laser beams necessary
for the creation of our optical double well potential, so that relative drifts are mini-
mized. The interferometer exhibits a Mach-Zehnder type beam configuration. After
the fiber outcoupler and an absorptive polarizer the beam is split into two paths by
a non-polarizing beam splitter. One beam path contains an electro-optic modulator
(EOM) which can shift the phase of the light field by means of the Pockels effect.
The two final mirrors direct the two beams from inside the aluminum block under
an angle of 22◦ upwards to the position of the BEC. There they cross and interfere
(see Fig. 5.11) under an angle of 8.5◦ resulting for the applied wavelength of the
laser (λl = 843 nm) in an optical lattice with a lattice spacing of 5.7µm. The lattice
spacing can be directly measured with our CCD camera as shown in Fig. 5.12. By
adjusting the relative phase of the two beam paths with the EOM the phase of the
resulting interference pattern can be changed shifting the lattice. The intensity and
the phase of the optical lattice are feedback-loop-controlled. The intensity lock is
similar to the ones of the dipole traps, using an AOM. Pickup plate and photodiode
to detect the intensity of a small fraction of the main beam are integrated directly
into the mount of the fiber outcoupler. To be able to lock the phase of the lattice,
reflections of the two lattice beams from a pickup plate close to the experimental
chamber are directed to a photodiode with a micrometer slit in front of it. There they
create an image of the interference pattern at the BEC. The feedback loop adjusting
the phase by the mentioned EOM locks an intensity maximum of the interference
pattern in front of the slit. As the signal is noisy a lock-in amplifier is employed.
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Figure 5.11: Scheme of the optical lattice interferometer. The interferometer is
placed in a hole of the massive aluminum block which connects all optical dipole
traps. The two lattice beams are directed onto the BEC from below under an angle
of 22◦ in the x-y-plane (not illustrated in this simplified scheme). Details see text.
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Figure 5.12: Image of the interference pattern created by the optical lattice inter-
ferometer. The lattice spacing L was measured directly on the CCD camera to be
L = 5.7µm.

For this purpose, the light of the two lattice beams is modulated by a frequency of
60 kHz on the AOM. The two lattice beams have a diameter of ≈ 500µm at a wave-
length of λ = 843 nm. Thus the condition σ � λ is fulfilled so that the interference
pattern at the position of the atoms can be well approximated as an interference of
two plane waves. Also the spatial extension of the whole BEC in the dipole trap is
much smaller than the beam diameter by approximately a factor of 10. The lattice
can be operated with optical powers of up to ≈ 100 mW in each beam. This results
in a typical lattice height of the order of up to V0/h ≈ 4000 Hz. The different angles
under which ’Xdt’ and optical lattice beams are directed onto the BEC are illustrated
in Fig. 5.13.

5.3.4 The ultra stable optical double well potential

As described above we have mechanically connected the three components (see sec-
tions 5.3.1, 5.3.2 and 5.3.3) that create our optical double well potential in a new
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Figure 5.13: Scheme of different beams directed onto the BEC in view from the side.

quasi drift-free setup. This double well potential is created by superimposing the
crossed optical dipole trap (consisting of the ’charger’ and the ’Xdt’) with the 1D
optical lattice. An example for such a potential is shown in Fig. 5.14. To give
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Figure 5.14: left: We create a double well potential (blue curve) by superimposing
a harmonic optical dipole trap (green dashed curve) and a one-dimensional optical
lattice (red dashed curve). right: Ground state density (red curve) of a BEC in the
double well potential (blue curve).

evidence for the claimed stability of our setup we show two long term measurements
of the BEC in our double well potential. We illustrate the drift freeness of the den-
sity distribution as well as the stability of the relative phase between the two wells
measured in time of flight [And1997] (see Fig. 5.16).

This stability has enabled us to perform measurements of the full evolution dynamics
of dark solitons in a BEC like shown in Figs. 4.3a,4.4, 4.10 and Fig. 4.11, where
additionally the ’Xdt’ beam had to be moved several hundred times during the
measurement series to obtain a phase difference of π between the two wells of the
initial double well potential.
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Figure 5.15: Experimental image of a BEC trapped in the double well potential.

5.4 Imaging the density distribution of the BEC

One of the key points of our experiments is the detection of the density distribution
of a BEC. We use the technique of high power absorption imaging, which is well
suited for imaging large optical density clouds. To do so, a resonant laser beam is
directed onto the atoms, captured by an imaging objective and detected on a CCD
camera. Thereby the shadow of the BEC is imaged onto the chip of the camera. As
the laser beam is resonant to an atomic transition the absorption imaging technique
[Ket1999] is of destructive nature. In our experiment we use a σ+ polarized Gaussian
laser beam (waist 1.9 mm) resonant on the F = 2→ F ′ = 3 transition of the D2 line
of 87Rb at a pulse duration of 5µs and a CCD camera (Q-Imaging, Retiga EXi) with
a quantum efficiency of 15% and a pixel size of 6.45µm. The camera has been tested
to be shot noise limited (see [Ott2006] for details). A new objective with a resolution
of ≈ 1µm (see Fig. 5.17) has been built into the imaging system. The total imaging
system including an additional imaging lens has a magnification of M = 11.2.
To determine the density distribution of the BEC we take two pictures. The first
picture is the one where the imaging beam shines onto the atoms. From this we
can retrieve the intensity distribution Ipic. The second picture is a reference picture,
where the imaging beam is switched on, but without any atoms. This picture provides
the intensity distribution Irefpic. Our camera has a negligible dark count rate for
the applied imaging pulse duration of 5µs. Therefore, the intensity profiles of the
imaging beam before going through the atoms Iin and after going through Iout are
directly given by:

Iin = Irefpic and Iout = Ipic (5.16)

We now have the task to calculate the atomic density distribution from the two
measured quantities Iin and Iout. To do so, we consider the reduction of the intensity
of a laser beam profile going through an absorptive medium. This process is described
by the following differential equation (see also [Gat2006]):

dI(r)

dx
= −σsc(I(r))n(r)I(r) (5.17)

with n(r) the local atomic density distribution, I(r) the intensity profile of the laser
beam and σsc the scattering cross-section,

σsc(I(r)) = σ0
sc

(
1 +

I(r)

Is

)−1

with σ0
sc =

Γ~ωl
2Is

(5.18)
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Figure 5.16: Testing the stability of the setup. left: Spatial stability of the double
well. No significant symmetry shifts are observed on the checked timescale of ≈ 11 h
corresponding to 700 shots of the experiment. The small spatial jitter of≈ 1µm from
shot to shot is due to the movement of the imaging objective and the corresponding
reproducibility in positioning. This effect does not change the symmetry of the
double well. right: Stability of the phase difference between the two wells ∆φ,
measured in time of flight for a time scale of ≈ 1 h corresponding to 70 shots. We
determine the phase stability to be ∆φ = 0± 0.06.

at the applied laser frequency, which is proportional to the rate of spontaneous
emission given by Eqn. 5.3. As only the column density N(y0, z0) [Gat2006] of the
atom cloud in x-direction (beam direction),

N(y0, z0) =

∫ y0+dy/2

y0−dy/2

∫ z0+dz/2

z0−dz/2

∫ +∞

−∞
n(x, y, z)dxdydz, (5.19)

is accessible to the experiment we have to express this quantity in terms of the
intensity decay described by Eqn. 5.17. We assume that the column density is
locally homogeneous around (y0, z0), the center of each camera pixel. The effective
pixel size can be expressed as dy · dz = P/M2, with the real pixel size P and the
magnification of the imaging system M . Integration over the pixel size and inserting
dx of Eqn. 5.17 into Eqn. 5.19 leads to:

N(y0, z0) = − P

M2

1

σ0
sc

∫ Iout(y0,z0)

Iin(y0,z0)

1 + I(r)
Is

I(r)
dI. (5.20)

Performing this integration we finally get an equation allowing to reconstruct the
atomic column density corresponding to each effective camera pixel. This equation
only needs the measured beam intensity (more precisely irradiance [W/m2]) profile
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with and without atoms, and is given by

N(y0, z0) =
P

M2

1

σ0
sc

(
Iin(x0, y0)

Is
− Iout(y0, z0)

Is
+ ln

Iin(y0, z0)

Iout(x0, y0)

)
. (5.21)

In order to apply Eqn. 5.21 to the experimental case one has to consider and calibrate
the offsets due to the measurement procedure. First of all the experimental imperfec-
tion of the used σ+ light leads to the correction factor pcor of the saturation intensity
Is as due to this effect not every photon can excite the transition: Is → Is/pcor,
with pcor ≤ 1. As the light intensity is measured by a CCD camera the detection
efficiency Ccor of this camera has to be taken into account: Ccor = (~ωl)/(QEη),
with QE the quantum efficiency and η the gain of the camera (conversion of pho-
tons to electrons). Finally, there can be an offset of the absolute intensity of the
imaging beam: I → I · Icor. As these last two calibration factors are only important
for the absolute intensity they only appear in the first term of Eqn. 5.22. Besides
this the CCD camera does not measure an intensity, but the integration of a light
intensity profile over a certain duration τ of an imaging pulse: I[W/m2]→ E[J/m2].
Regarding all these experimental calibration factors Eqn. 5.21 converts to:

N(y0, z0) =
P

M2

1

σ0
sc

(

(
Ein(x0, y0)

Esτ
− Eout(y0, z0)

Esτ

)
IcorCcor + ...

...+
1

pcor
ln

Ein(y0, z0)

Eout(x0, y0)
). (5.22)

5.4.1 The imaging system

A new imaging objective has been characterized in [Ott2006] and has been built into
the experiment during the time of this thesis. The theoretically expected resolution
by the Rayleigh criterium,

∆r = 0.61
λ

NA
= 1.1µm, (5.23)

at λ = 780 nm and a numerical aperture of NA = 0.45 was experimentally tested in
[Ott2006] and reproduced very well. Hence, the imaging objective can be regarded as
diffraction limited. Directly in the experiment the resolution has been tested again by
creating an elongated BEC with a transverse width of δy below the optical resolution
of 1µm. Due to the limited resolution such a small transverse width is blurred up to
the resolution limit. Indeed the smallest width of a BEC which could be observed
was ≈ 1µm which confirms the tests outside the experimental apparatus.
To create such a system the atom number of the BEC must be small so that the
following condition is fulfilled: µ/(~ω⊥) < 1, transverse non-TF regime (see section
3.11). In this case the transverse width of the BEC is given by the transverse
harmonic oscillator length a⊥. The atom number in the charger trap to realize this
situation lies in the range of N ≤ 500 for ν⊥ = 1000 Hz and νz = 50 Hz, resulting in
a⊥ < 350 nm.
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Figure 5.17: The imaging objective consists of a system of three lenses. It exhibits
a working distance of 2.2 cm including the wall of the BEC chamber (glass cell).
Therefore it has to be placed 2 mm away from the glass surface (very right compo-
nent) of this chamber for imaging. The objective is optimized for λ = 780 nm and
has an optical aperture of NA = 0.45.

As the objective has a working distance of 2.2 cm it has to be placed only 2 mm away
from the glass surface of the BEC chamber for imaging. As it blocks two MOT beams
in this position the objective has to be moved in and out for every experimental cycle.
It is therefore placed on a remote controlled micrometer precision translation stage
(Micos, LS-110), see Figs. 5.2 and 5.18. Behind the objective two narrow bandpass

CCD

BEC
objective

shielding tubes

imaging
   lens

horizontal translation stage

filter

lab jack

Figure 5.18: Schematics of the imaging system. The objective is placed on a remote
controlled horizontal translation stage and has to be moved forth and back during
every experimental cycle in order not to block two MOT beams. A narrow band
pass filter blocks the light of the Xdt and the optical lattice and transmits only the
imaging light at λ = 780nm. An additional lens images the picture of the BEC to
the chip of a CCD camera. Shielding tubes prevent possible scattered light from
reaching the CCD camera.

filters (Semrock, BrightLine HC 780/12) are placed. These filters block the beams of
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the ’Xdt’ and the optical lattice at an optical density of od > 1012 and transmit the
imaging beam at an efficiency of T ≈ 0.95. An additional imaging lens focuses the
light coming from the objective onto the CCD camera. A shielding tube prevents
scattered light from affecting the imaging.

5.5 Calibration of the experimental parameters

5.5.1 Calibration of the trap frequencies

Calibration of the longitudinal trap frequency νz

By moving the ’Xdt’ beam as fast as possible to the side and back (z-direction) the
BEC ground state of the crossed harmonic optical dipole trap can be displaced from
the trap center. To prevent leaving the harmonic region of the trap this displacement
should be small. As a displaced ground state in a harmonic trap does not disperse
during its oscillation in the trap the trapping frequency can be directly measured
from the propagation path of the BEC (see Fig. 5.19). The resulting relative error
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Figure 5.19: Measureing νz. By exciting the dipolar motion of the harmonic ground
state of the BEC in the trap the trap frequency can be directly measured. The fit
reveals the high grade of harmonicity of the longitudinal direction of our trap.

of the longitudinal trapping frequency is ∆νz/νz ≈ 0.01.

Calibration of the transverse trap frequency ν⊥

As the BEC in the charger trap is tightly confined transversally the resolution of
the imaging system is not sufficient to monitor a transverse dipole oscillation of the
atom cloud. Therefore we have to use a different technique for the calibration of the
transverse frequency than for the longitudinal frequency. The parametric heating
effect offers a possibility to calibrate the transverse frequency in this case. If the
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light intensity of the trap is modulated by means of the intensity controlling AOM
with a frequency of ν = 2ν⊥, the BEC is excited strongly which leads to heating and
a subsequent particle loss. This means that by scanning the modulation frequency
around the expected frequency 2ν⊥ an atom loss curve can be obtained (see Fig.
5.20) which by fitting allows the determination of the trap frequency. The relative
error for this method is on the order of ∆ν⊥/ν⊥ = 0.1.
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Figure 5.20: Measuring ν⊥. The transverse trap frequency can be measured by
parametric heating and subsequent fitting of the atom loss curve around 2ν⊥.

5.5.2 Calibration of the optical lattice height

The optical lattice can be calibrated by loading a BEC into a double well potential
with low barrier and afterwards suddenly increasing the barrier height by increasing
the lattice height. This will excite an oscillation of the BECs in the two wells. As the
two wells are small in elongation the oscillation amplitude of the two BECs exceeds
the range which can be described by the harmonic approximation. Therefore, the
oscillation trajectory is inharmonic and quite complex making it impossible to fit
the data by a simple sin-function. To solve this problem we compare the obtained
oscillation data with 3D GPE simulations of the whole process for different lattice
heights. We chose the simulation with the smallest standard deviation from the
measured data points. By doing so we determine the lattice height including a
relative error of ∆V0/V0 ≈ 0.15. A more detailed description of the method can be
found in [Gat2006].

5.5.3 Calibration of the atom number

To obtain an exact value for the number of atoms composing a BEC from Eqn. 5.22
it is necessary to calibrate two experimental offsets, as discussed in section 5.4. How
these can be obtained will be discussed in the following. The factor pcor can be
estimated by measuring the atom number of a BEC at two different intensities. At
high intensity the first term completely dominates Eqn. 5.22 and therefore the atom
number obtained can be regarded as correct. For low light intensities Eqn. 5.22 is
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Figure 5.21: By exiting the dipolar motion of the two BECs in the double well
potential and subsequent comparison with 3D GPE simulations the height of the
optical lattice can be estimated. top: Determination of the standard deviation of
the experimental data from 3D GPE simulations varying the height of the optical
lattice and keeping all other experimental parameters fixed. We see a minimum
in the standard deviation indicating the correct lattice height. bottom: Distance
between the two oscillating BECs vs. time for the chosen lattice height. For the
current double well setting the motion is quite complex and inharmonic.

dominated by the second term. The factor pcor corrects the atom number values ob-
tained at low intensity to the value obtained at high intensity. As there might still be
an uncertainty in the absolute value of the intensity Eqn. 5.22 can be cross-checked
by an independent method of estimating the atom number. For that an elongated
BEC in the longitudinal TF-regime (see section 3.11) is created in a harmonic trap.
In this regime the longitudinal width and density profile is dominated by the inter-
particle interaction, which is proportional to the number of atoms. By comparing the
experimentally measured widths in longitudinal and transverse direction of the BEC
with the corresponding values obtained by 3D GPE simulations one can estimate
the factor Icor compensating an eventual uncertainty in the absolute beam intensity.
A more detailed explanation of this method can be found in [Gat2006]. The atom
number calibration results in an estimated final offset of ∆N/N ≈ ±0.15.

We have characterized our experimental setup focusing on the changes made during
the time of this thesis. We have seen that an advantage of this setup is the com-
bination of ultra stable optical dipole traps with a high-resolution imaging system.
This enables one to perform experiments requiring a high rate of reproducibility as
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well as a high optical resolution, like the observations of dark solitons which we have
discussed in this thesis. The setup also has enabled the observation of squeezing and
entanglement in a BEC [Est2008]. This will be the content of [Gro].
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Chapter 6

Conclusion and outlook

We have created pairs of dark solitons in a harmonically confined Bose-Einstein con-
densate (BEC) in the crossover regime between 1D and 3D. To create the solitons we
apply the method of matter wave interference of two BECs initially separated in a
double well potential. Due to the chosen trap geometry and the low atom number of
the order of N ≈ 1500 the solitons are for the first time stable against the so-called
snaking instability [Mur1999, Mur2002] for arbitrarily small velocities. We have ob-
served multiple collisions and oscillation periods of the solitons in the harmonically
confined BEC. This has enabled us to measure the frequency of the solitons and to
show their repulsive inter-soliton interaction by probing the frequency vs. the mean
distance between the two solitons. Besides this we have compered our findings to
numerical simulations of the Gross-Pitaevskii equation and effective 1D equations
and observe good agreement between experiment and numerics. We have thereby
confirmed theoretical predictions which could not be observed in earlier dark soliton
experiments where the solitons suffered from the snaking instability and their result-
ing short lifetime. Our two most important findings are first the confirmation of the
prediction that the frequency of dark solitons νd in the crossover regime between 1D
and 3D lies in the range 1/

√
2 < νd < νz [Bus2000, The2007], with νz the longi-

tudinal trap frequency, and second the experimental demonstration of the repulsive
inter-soliton interaction from frequency measurements. Besides this we have devel-
oped an effective potential for dark solitons confined in a harmonic trap based on
an inter-soliton interaction potential given in [Kiv1995]. Within this model the soli-
tons can be described as classical particles with repulsive interaction for the case of
small soliton velocities. This model also helps us to distinguish between the effects of
dimensionality and of the inter-soliton interaction on the soliton oscillation frequency.

In a planned future experiment we will show the soliton frequency trend for the
case of one standing soliton in the middle of the trap and on each half of the trap
an additional oscillating soliton. In this symmetric three soliton system the inter-
soliton interaction is increased due to the non-moving soliton in the middle resulting
in higher oscillation frequencies. The method of creating this system is described in
chapter 3.3.2 and has already been demonstrated in a first experiment.
As our solitons are stable against the snaking instability they can only decay by tem-
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perature induced effects [Fed1999]. Another future task of our studies on dark soli-
tons would therefore be the performance of long term measurements on a timescale
of the evolution dynamics of t > 100ms. In such measurements the temperature
induced soliton decay could be observed as a decay in the contrast of the solitons
and could be compared to theoretical predictions. This would for the first time give
an experimental insight into the decay process of dark solitons.



Appendix A

Proposal for the creation of a
fundamental discrete bright soliton
by the method of [Mat2006] in our
experimental setup

In this chapter we discuss the applicability to our setup of a new method for creating
a bright soliton as proposed by Matuszweski et al. [Mat2006]. The method has a
strong analogy to the creation of spatial optical solitons in discrete waveguide arrays
[Eis1998].

A.1 Bright solitons in repulsive BECs

Since a repulsive BEC does not naturally support bright solitons but dark solitons
one has to use a trick to create such solitons there. One possible method consists of
putting the BEC into an optical lattice. Atoms in an optical lattice obey a periodic
dispersion relation similar to electrons in a solid state body leading to an energy band
structure [Eie2004]. If one can manage to create a wave packet consisting of momenta
near the edge of the first Brillouin zone the repulsive inter-atomic interaction can be
compensated by the dispersive term through a negative effective mass, allowing for
bright solitons. The effective mass formalism is valid in the approximation of weak
potentials, where V0 < 2Er [Eie2004], with V0 the depth of the lattice potential and
Er = ~2k2/(2m) the photon recoil energy. In this approximation the effective mass
on the edge of the first Brillouin zone can be estimated as:

meff (kr) =
s

s− 8
m, (A.1)

with s = V0/Er and kr =
√

(2mEr)/~2 [Eie2004]. A bright soliton in a repulsive
BEC was realized for the first time in [EieII2004] where the negative effective mass of
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the wave packet was achieved by creating a relative momentum between the optical
lattice and the BEC. As shown in [Eie2004] the atom number N of the soliton is
fixed by:

N =
~

|meff |ω⊥αNLasx0

, (A.2)

with the effective mass meff , x0 the width of the soliton and aNL = 1.5. If Eqn. A.2
is fulfilled the effects of dispersion and nonlinear repulsive interaction compensate
each other.

A.2 The creation method of Matuszewski et al.

The method of [Mat2006] suggests the creation of a bright soliton without the ne-
cessity of accelerating the lattice or the BEC. With the experimental parameters
adapted to our setup, the procedure works as follows. One starts with the BEC
of N = 200 atoms confined in only one well of an optical lattice with a height of
V0 = 15Er and a lattice spacing of L = 5.7µm. The confinement is achieved by a
harmonic trap of the frequencies ν⊥ = 125 Hz and νz = 65 Hz. In the next step νz is
switched off as fast as possible (e.g. in 1 ms) and the intensity of the optical lattice is
ramped down linearly on a time scale of tramp = 0.5 s to the final value of Vfin = 2Er
(parameters estimated by [Mat]). This results in a fundamental (stationary) discrete
bright soliton as can be seen in Fig. A.1.

Using this method and assuring that the chosen parameters fulfill Eqn. A.2 the

Figure A.1: Numerical simulation using the MDE of the creation of a bright soliton
by the method of Matuszewski et al.. left: Time evolution of the atomic density in
real space. At t = 0.5 s the soliton has been created. right: Time evolution of the
atomic density in momentum space. The momenta accumulate at the edges of the
first Brillouin zone at k = π/L. Parameters: See text

soliton creates itself. Starting from a single occupied lattice site the atoms will at
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first spread in momentum space and then accumulate at the edge of the first Bril-
louin zone as can be seen in Fig. A.1(right). Note that in the case of a discrete
lattice soliton not the wave function itself has the characteristic form of the soliton
(see Eqn. 1.2) but its envelope. This can be seen in Fig. A.2(left) where we fit the
envelope of the wave function with a sech-function. In Fig. A.2(right) we check by
numeric simulation that our system obeys Eqn. A.2. To do so we change certain
parameters according to Eqn. A.2 in a way that preserves the width of the soliton x0.
In our example we keep the product Nν⊥ fixed which as we see in Fig. A.2(right)
does not change the shape of our soliton significantly. We see that our setup in
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Figure A.2: left: Density distribution of the soliton (blue) and fit by a sech-function
(red). The width of the soliton is x0 ≈ 5µm. right: The shape of the soliton does
not significantly change if N and ν⊥ are changed preserving N · ν⊥.

principle allows the creation of the Matuszewski soliton as we have used applicable
parameters in our simulation. One problem will occur as we will see in chapter A.3:
The chemical potential µ of the condensate is higher than the lattice depth V0. This
means that the optical dipole trap has to be balanced extremely well perpendicular
to the direction of gravity. Otherwise the atoms would flow away to the side.

A.3 The Peierls-Nabarrow potential barrier

Until now we have considered only the case of a discrete lattice soliton with its cen-
ter on a lattice site, the so called on-site soliton. But it is in principle also possible
to create a soliton with its center between two lattice sites, the so called inter-site
soliton (see Fig. A.3). The inter-site soliton exhibits a higher energy than the on-site
one [Ahu2004]. Therefore if one wants to move an on-site soliton the energy differ-
ence between the two states ∆EPN , the so called Peierls-Nabarrow potential barrier,
has to be overcome. Using the parameters of chapter A.2 we can create both kinds
of solitons by numerical simulation and estimate their corresponding energies (see
Fig. A.4). We create the inter-site soliton in the simulation by starting with two
occupied lattice sites and imprinting a phase difference of π between the two sites.
Determining the energies of the on-site and the inter-site soliton numerically enables
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z z

Figure A.3: left: On-site soliton, right: Inter-site soliton. The dashed line indicates
the optical lattice. Figure taken from [Ahu2004].

us to estimate the Peierls-Nabarrow potential barrier ∆EPN . The next question is:

0 0.5 0 0.5

Figure A.4: Simulating the creation of the on-site (left) and inter-site (right) soliton.
The inter-site soliton is undergoing a continuous oscillation.

how could this barrier be estimated in an experiment?
Following a suggestion of [Ahu2004] one could do this by adding another external
potential to the system, e.g. a linear or also a harmonic one. As e.g. the slope of a
linear potential is increased step by step, from a certain slope on it is possible for an
on-site soliton to overcome ∆EPN and start moving.
We first consider the case of adding a harmonic potential as this would be easier to
realize in our experiment. To realize a slope on the position of the on-site soliton
we assume the center of the harmonic potential to be shifted away from the cen-
ter of the soliton by: ∆z = 60µm. Varying the frequency νz of the trap we can
vary the slope of the potential. Unfortunately we cannot use the parameter set of
chapter A.2 as the chemical potential of the condensate in this case is higher than
the lattice depth µ ≈ 5.3V0, with V0 = 2Er (see chapter A.2). This means that if
adding a potential slope the atoms will immediately flow away. So the first thing
we have to do is making µ smaller than V0 in a way that Eqn. A.2 is still fulfilled.
We keep the atom number fixed on N = 200, because this is already a quite small
number for an experiment. The remaining possibility is to directly increase V0. We
increase the lattice potential to V0 = 7Er implementing µ ≈ 0.5V0. By doing so
we also increase the effective mass from meff = −1/3 in the case of V0 = 2Er to
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meff = −7 in the case of V0 = 7Er (see Eqn. A.1)1. To compensate for this increase
of effective mass we have to lower the transverse trap frequency from ν⊥ = 125 Hz to
ν⊥ = 6 Hz. Unfortunately such small transverse trap frequency cannot be achieved
with our optical dipole trap. Therefore the following is a principle discussion of how
the Peierls-Nabbarow potential barrier could be measured, but is not applicable to
our experiment.
We assume the same parameters and ramping times to create the soliton as in chap-
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Figure A.5: Left: Possible momentum k∆E/kr which can be gained from the differ-
ence in potential energy ∆V/L for different values of the transverse trap frequency
ν⊥. The critical momenta to overcome different thresholds are shown by the horizon-
tal lines. Right: Maximal effective momenta gained by the whole atom cloud during
the time evolution for different values of νz. The red line is a fit to the data. The
zoom shows the area important for the observation of the Peierls-Nabarrow potential
barrier (PNPB) ∆EPN . The value of ∆EPN has been obtained by numerical simu-
lations. Below the value kovercome PNPB of the momentum corresponding to ∆EPN
the soliton cannot move. This momentum is reached at νz ≈ 0.5 Hz shown by the
green dashed line. When ∆V/L & V0−µ the atoms leak out of the lattice sites and
the soliton is destroyed. This area where no soliton can exist is found on the right
hand side of the red dashed line corresponding to νz ≈ 4.5 Hz. If ∆V/L & V0 the
atom cloud undergoes a free dipole oscillation in the trap demonstrated by the high
accumulated effective momenta above this threshold.

ter A.2, except the following parameters which we set to: V0 = 7Er and ν⊥ = 6 Hz.
The soliton is created after tramp = 0.5 s. 50 ms later we switch on a harmonic trap
shifted away from the center of the soliton by ∆z = 60µm. We perform several
numerical simulations increasing the trap frequency step by step and calculate the
difference in potential energy ∆V/L which the harmonic trap induces on the length
scale of the lattice spacing L. If ∆V/L > EPN the soliton should start moving. In
Fig. A.5(left) we show the momentum k∆E in units of kr which the solitons can
maximally gain from the potential difference ∆V/L for traps of different frequen-
cies νz. We additionally plot different important thresholds. The most important
threshold is EPN which corresponds in the regarded case to a momentum of 2.58kr,

1Note that the effective mass formalism is a less good approximation for the case of V0 = 7Er

than for the case of V0 = 2Er.
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as obtained numerically. In our example we exceed this barrier for νz & 0.5 Hz. Ex-
ceeding this threshold makes the soliton move2 in our simulations as shown in Figs.
A.7 and A.6(top right) for the case of νz = 1 Hz. Particularly interesting, the soliton

Figure A.6: Numerical simulations corresponding to different points of Fig.
A.5(right). top left: νz = 0.1 Hz, top right: νz = 1 Hz, bottom left: νz = 4.5 Hz
and bottom right: νz = 10 Hz.

moves up the potential slope. This is due to its negative effective mass. If ∆V/L
exceeds the value of ≈ V0 − µ corresponding to k∆E = 25.3kr and νz ≈ 4.5 Hz the
atoms start leaking out of the lattice sites down the potential slope and the soliton
gets destroyed. As an example we show the case of νz = 5 Hz in Fig. A.6(bottom
left). For ∆V/L > V0 the soliton is destroyed immediately and the atom cloud is
undergoing a free dipolar oscillation in the harmonic trap, as shown for the example
of νz = 10 Hz in Fig. A.6(bottom right). In Fig. A.5(right) we show the maximal
momentum which the atom cloud effectively has gained during the time evolution for
the different values of νz. We estimate this maximal momentum of the whole atom
cloud by integrating over the momentum space. The result confirms our findings
before.

2Note that integrating the momentum space already leads to a finite momentum of the whole
atom cloud for cases below the PNPB (see Fig A.5(right)). In these cases the soliton gets asym-
metrically deformed but cannot move away.
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Figure A.7: If the Peierls-Nabarrow potential barrier is overcome the soliton moves
”up the hill”.

A check of our simulations using a linear potential slope instead of a harmonic one
results in a similar behavior at the different thresholds as shown in Fig. A.8.
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Figure A.8: left: Possible momenta which the soliton can gain from a linear potential
slope, otherwise similar to Fig. A.5(left). right: Effectively gained momenta of the
atom cloud. Similarly to the case of a harmonic slope the atoms starts leaking out
of the lattice sites for ∆V/L & V0 − µ. In this case the soliton is destroyed and the
atom cloud can gain a high overall momentum down the slope.

A.4 Conclusion

In conclusion we can say that it should be possible to create a fundamental discrete
bright soliton by the method of [Mat2006] in our setup. Measuring the Peierls-
Nabarrow potential barrier is in principle possible, but not with the experimental
parameters achievable in our setup.
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Appendix B

The Gross-Pitaevskii equation
[Kev2008]

The many body Hamiltonian for N interacting bosons in the form of second quanti-
zation is given by:

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ̂(r) + ... (B.1)

...+
1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r), (B.2)

with the external potential Vext(r), the bosonic annihilation and creation field oper-
ators Ψ̂(r) and Ψ̂†(r) and the two-body interatomic potential V (r − r′). Using the
Heisenberg equation i~(∂Ψ̂/∂t) = [Ψ̂, Ĥ] for the field operator Ψ̂(r) we obtain

i~
∂

∂t
Ψ̂(r, t) =

[
− ~2

2m
∇2 + Vext(r) +

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t) (B.3)

As the interatomic interaction of a dilute ultracold gas is completely dominated by
low energetic binary collisions the interatomic interaction potential can well approxi-
mated by a delta-function potential [Pet2004]: V (r′−r) ≈ gδ(r′−r). The interaction
constant g is given by

g =
4π~2as
m

, (B.4)

with as the s-wave scattering length. Applying the mean field approximation the
field operator can be approximated by a complex function

Ψ̂(r, t) ≈ Ψ(r, t), (B.5)

which is commonly referred to as the macroscopic wave function of the condensate.
This yields the Gross-Pitaevskii equation (GPE) [Gro1961, Pit1961]:

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + Vext(r) + g|Ψ(r, t)|2

]
Ψ(r, t). (B.6)
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Note that the wave function is normalized to the total atom numberN =
∫
|ψ(r, t)|2dr.

The complex function Ψ can be expressed by:
√
n(r, t) exp(iφ(r, t)), where n(r, t) =

|Ψ(r, t)|2 denotes the density of the condensate and φ(r, t) the phase of the wave
function respectively. From the expression of the current density j = ~

2m
(Ψ?∇Ψ −

Ψ∇Ψ?) = nv it becomes obvious, that the velocity of the condensate is fixed by the
phase φ(r, t) and can be expressed as:

v(r, t) =
~
m
∇φ(r, t). (B.7)

In the case of harmonically trapped BECs relevant to our experiments the external
potential is given by:

Vext(r) =
m

2
(ωxx

2 + ωyy
2 + ωzz

2). (B.8)



Appendix C

Term scheme of 87Rb

Figure C.1: Term scheme of 87Rb. The transitions addressed by our laser system
(see chapter 5.1.2) are marked.



112 CHAPTER C. Term scheme of 87Rb



Bibliography

[Ahu2004] V. Ahufinger, A. Sanpera, P. Pedri, L. Santos, and M. Lewenstein:
Creation and mobility of discrete solitons in Bose-Einstein condensates.
Phys. Rev. A, 69, 053604 (2004).

[Akh1993] Nail Akhmediev and Adrian Ankiewicz:
First-order exact solutions of the nonlinear Schrödinger equation in the
normal-dispersion regime.
Phys. Rev. A, 47, 3213 (1993).

[Alb2005] Michael Albiez:
Observation of nonlinear tunneling of a Bose-Einstein condensate in a
single Josephson junction.
PhD thesis, Faculty of Physics and Astronomy, University of Heidelberg
(2005).

[And2001] B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W.
Clark, and E.A. Cornell:
Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein
Condensate.
Phys. Rev. Lett., 86, 2926 (2001).

[And1995] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A.
Cornell:
Bose-Einstein Condensation in a Gas of Sodium Atoms.
Science, 269, 198 (1995).

[And1997] M.R. Andrews,C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn,
and W. Ketterle:
Observation of interference between two Bose condensates.
Science, 275, 637 (1997).

[Ank2005] Thomas Anker:
Ultracold quantum gases in one-dimensional optical lattice potentials -
nonlinear matter wave dynamics -.
PhD thesis, Faculty of Physics and Astronomy, University of Heidelberg
(2005).

[App2007] Jens Appmeier:
Bose-Einstein condensates in a double well potential: A route to quan-
tum interferometry.



114 BIBLIOGRAPHY

Diploma thesis, Faculty of Physics and Astronomy, University of Hei-
delberg (2007).

[Bec2008] Christoph Becker, Simon Stellmer, Parvis Soltan-Panahi, Sören Dörscher,
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