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Ein neues Objektiv zur hochauflösenden Abbildung von Bose-Einstein Kon-
densaten

Im Rahmen dieser Arbeit wurde ein neues Abbildungssystem zur Messung der ato-
maren Dichteverteilung in Bose-Einstein Kondensaten aufgebaut und charakterisiert.
Die erreichte optische Auflösung von 1.1 µm nach dem Rayleigh Kriterium bietet nun die
Möglichkeit Effekte auf der Skala der sogenannten ’healing Länge’ zu untersuchen. Diese
’healing Länge’ ist eine Konsequenz der Wechselwirkung zwischen den Einzelatomen und
gibt die charakteristische Größenordnung an, auf der sich Variationen in der Dichte-
verteilung innerhalb des Kondensats vollziehen. Ein bekannter Effekt auf dieser Skala
sind dunkle Solitonen, welchen nichtdispersive Strukturen im Kondensat entsprechen.
Im zweiten Teil dieser Arbeit wird ein Experiment zur Erzeugung dunkler Solitonen mit
Hilfe eines Bose-Einstein Kondensats in einem Doppelmuldenpotential vorgestellt und
erste Ergebnisse analysiert.

A New Objective for High Resolution Imaging of Bose-Einstein Condensates

In the framework of this thesis a new imaging system for the measurement of the atomic
density distribution in Bose-Einstein condensates has been built and characterized. The
achieved optical resolution of 1.1 µm according to the Rayleigh criterion makes it now
possible to observe structures on the scale of the so-called ’healing length’. This ’healing
length’ is a consequence of the interaction between the atoms and gives the typical order
of magnitude on which density variations in the condensate occur. A known effect on
this scale are dark solitons, being non-dispersive structures in the condensate. In the
second part of this thesis an experiment for the generation of dark solitons with the help
of a Bose-Einstein Condensate in a double-well potential is presented and first results
are discussed.
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Fundamental Constants

Quantity Symbol Value Unit
Speed of light c 2.99792458 · 108 m s−1

Boltzmann Constant kB 1.3806503(24) · 10−23 J K−1

Planck Constant h 6.62606876(52) · 10−34 J s
h/2π 1.054571596(82) · 10−34 J s
kB/h 20.836644(36) Hz nK−1

Specific Data on Rubidium-87
Mass m 1.4445 · 10−25 kg
s-Wave Scattering Length a 5.32 nm
Saturation Intensity Isat 1.58 mW cm−2

D2-Line Width Γ 2π × 6.065 MHz
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1 Introduction

Our view of the world is predominantly established by those parts of the world which
are directly accessible with our senses. All the more, what is often popularly called
the ’microcosmos’, bears many surprises for us. The most counterintuitive phenomena
arise from quantum mechanics, describing the physical laws on length scales of atoms or
elementary particles. The idea of a deterministic theory has to be given up, substituted
by the introduction of probability amplitudes. This leads to new effects as e.g. the
wave-like character and thus interference of particles, which was first demonstrated by
Davisson and Germer in 1927 [1], by investigating the diffraction of electrons at a nickel
crystal. This behaviour of seemingly massive particles can be explained by ascribing
a wavelength to them that depends on their momentum. Such a concept was already
developed by Louis DeBroglie in 1924 [2]. Another effect not known in the macroscopic
world is the tunnelling of particles through classically forbidden regions. The detection
of tunneling occurs in most cases indirectly, e.g. in Josephson junctions [3, 4] known
from solid state physics. These junctions consist of two superconductors separated by
a thin insulating barrier. Tunneling of Cooper pairs through this barrier is revealed by
a current flowing although no voltage is applied to the junction, as long as electrons
are delivered by an external current source. So the question arises if systems can be
found in which quantum mechanical effects can be observed directly. This question
can be affirmed. Bose-Einstein Condensates (BEC) turned out to be perfect model
systems for the observation of quantum mechanical effects on a macroscopic length
scale. Macroscopic means here on the micrometer range, but this is accessible with the
help of a microscope.
The phenomenon of Bose-Einstein Condensation was theoretically predicted for massive
particles by Albert Einstein [5] in 1924 who was inspired by the work of Satyendra Nath
Bose [6] on photons one year before. Following their considerations a large number of
bosons (particles with integer spin) can occupy the same quantum state, so that the
hole atomic ensemble can be described by one single macroscopic wavefunction. The
prototype of a Bose-Einstein Condensate is superfluid 4He or 3He. In the case of 3He
pairs of fermions form the condensate, similar to the situation in superconductors where
the condensing bosons are pairs of electrons. Due to the strong interaction between the
particles, even at T = 0 the condensate fraction in He liquids is only about 10% or
even less. This lead to the search for systems in which interaction is weaker and thus
the condensate fraction bigger. Dilute gases turned out to be well suited candidates,
although the cooling of such samples is techniquelly a big challenge and new methods
of cooling atoms e.g. laser cooling had to be developed until the first Bose-Einstein
Condensate in dilute gases could be accomplished by Wiemann, Cornell, Hulet and
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Ketterle in 1995 [7, 8, 9].
The interference of matterwaves can be impressively demonstrated with BECs. This was
for the first time done by Andrews et al. in 1997 [10]. They created two BECs in a double
well potential, after switching off all confining potentials the wave packets expanded,
overlapped and formed clear interference fringes with high visibility, demonstrating the
wave-like behaviour of massive particles. In the presence of a tunneling coupling between
the two condensates these interference patterns, or more accurate their shot to shot
fluctuations, can even be utilized for thermometry of ultra low temperatures [11, 12, 13]
and a measurement of the heat capacity of a degenerate bose gas. Also the tunnelling
of particles was demonstrated in a double well potential [14]. An initial imbalance in
the population of the two wells leads to an oscillatory tunnelling dynamics of particles
from one well to the other. In this experiment it was for the first time possible to look
directly at tunnelling processes with a microscope.
These are only examples of the rich variety of effects that can be studied using Bose-
Einstein Condensates. In all cases the acquired information is deduced from pictures of
the atom distribution. Consequently, the imaging system is one of the decisive parts of
a BEC experiment. In order to get the maximum amount of information from an image,
the resolution should be as high as possible. Ideally, it is on the order of the so-called
healing length which is a result of the interatomic interaction and gives the typical length
scale on which density variations in a BEC occur. This enables the direct observation of
e.g. vortices or dark solitons [15]. The development of an imaging system fulfilling these
requirements is the main subject of the thesis at hand. Suggestions for an objective lens
with high numerical aperture are also given in [16, 17], but our design achieves an even
higher value.

Generation of Dark Solitons Fans

In standard textbooks on statistical mechanics [18] Bose-Einstein Condensation is al-
ways discussed in the framework of ideal gases, i.e. without interaction between single
particles. But interaction gives rise to new phenomena, among them solitons. The
character of solitary waves is that they maintain their shape under temporal evolution.
One can distinguish two different types of solitons. Bright solitons corresponding to
a non-dispersive matterwave packet, where dispersion is compensated for by attractive
interaction between the particles and dark solitons which are a reduction of the density
with respect to its bulk value. This structure is stable due to a balance of the interaction
trying to decrease the minimum in density and a phase gradient trying to enhance it.
Dark solitons have already been generated with a phase imprinting method [19, 20, 21].
The last chapter of this thesis also deals with the generation of dark solitons. In this
work the solitons are created by interference of two matterwave packets in an optical
dipole trap [22]. The resultant interference minima are formed into dark solitons due
to interaction. The presented experimental results are of preliminary character. This
measurement should be repeated when the new imaging system is installed. The higher
resolution will make quantitative measurements possible.
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Contents of this Thesis

This thesis is divided into three main parts. In chapter two I give an introduction into
the theory of imaging. In most imaging system lenses play a major role. Hence, the
first two subsections focus on basic properties of lenses, especially their influence on
an incident wavefront and their ability to form fourier transforms of an object placed
in the focal plane. These considerations will enable us to understand how an image is
formed by a lens. We will see, that the image of a given object can be calculated by a
convolution with the so called Point Spread Function (PSF) which is the response of the
imaging system on a single point (δ-excitation) in the object plane. For a circular pupil
of the system this PSF is given by an Airy Function determining the resolution and is
therefore crucial for the imaging quality. Another way to evaluate the quality of imaging
systems is their ability to transfer spatial frequencies. Although such an analysis has not
been performed during this thesis, some theory of frequency response is discussed as it
gives a deep insight into the theory of imaging. It follows a description of the five most
important lens errors. Some of them are also demonstrated with our new objective. To
finish this chapter an overview over techniques of imaging a Bose-Einstein Condensate
is given.
Chapter three is devoted to the new objective built during this thesis. After a short
motivation, why an extension of the current setup is necessary, I will present the lens
data and describe the mount accommodating them. In order to specify the quality of
the new imaging setup various test measurements including the CCD camera have been
performed, whose results establish the main part of this chapter. To conclude this part
a plan how to install the objective in the experimental setup is presented.
The fourth chapter deals with the generation of dark soliton fans in Bose-Einstein Con-
densates. After an introduction into the basic theory of dark solitons the results of a
preliminary measurement are given. The Appendix contains technical drawings for all
components the objective consists of.
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2 Theory of Imaging

The most important components of common imaging systems are, of course, lenses.
Before we devote ourselves to the new imaging setup developed during this thesis, some
lens theory and the theory of image formation are discussed. We will see that there is
an easy mathematical connection between object and image in form of a convolution of
the object with a function called Point Spread Function (PSF), whose form is crucial
for the quality of the imaging. Differences between coherent and incoherent illumination
of the sample will be discussed, as well as the influence of lens aberrations. Finally, an
overview over techniques for imaging a Bose-Einstein Condensate (BEC) will be given.

2.1 Phase Transforming Properties of Lenses and
Paraxial Approximation

As well known, lenses are made of an optically dense material with usually spherical
surfaces. The effect of a lens on an incident light ray depends on the refractive index
and on the shape of the lens’ surfaces. There are several types of lenses, only a small
selection is shown in Figure 2.1.

a) b) c) d) e)

Figure 2.1: A small selection of lens types: a) bi-convex b) plano-convex c) positive meniscus d)
plano-concave e) bi-concave

In principle, a lens imprints a position dependent phase delay on the incident light. The
phase delay is given by:

Φ(x, y) = kn∆(x, y) + k (∆0 −∆(x, y)) (2.1)
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∆0 is the maximum thickness of the lens; ∆(x, y) describes the thickness of the lens in
a plane perpendicular to the optical axis; n is the refractive index of the lens material

For a bi-convex lens as shown in Figure 2.1, with radii R1 (left side) and R2 (right side),
the thickness function can easily be calculated as:

∆(x, y) = ∆0 −R1

(
1−

√
1− x2 + y2

R2
1

)
+ R2

(
1−

√
1− x2 + y2

R2
2

)
(2.2)

where R1 is taken positive and R2 negative due to the usual sign convention that surfaces
which are curved to the left side have a positive radius and surfaces curved to the right
side have a negative radius. The light ray is always assumed to travel from left to right.

In many situations it is possible to simplify expression (2.2) significantly. This approxi-
mation is valid when considering only parts of the wavefront that are close to the optical
axis. Then the square root can be expanded in a Taylor series up to second order:√

1− x2 + y2

R2
1/2

≈ 1− x2 + y2

2R2
1/2

(2.3)

This expansion is called paraxial approximation. Substituting (2.3) into the thickness
function (2.2) yields:

∆(x, y) = ∆0 −
x2 + y2

2

(
1

R1

− 1

R2

)
(2.4)

Together with (2.1) the influence of the lens on the incident wavefront can mathemat-
ically be expressed as a multiplicative phase. Let U0(x, y) be the (complex) amplitude
of the incident wave, then the field right after the lens U ′(x, y) is given by:

U ′(x, y) = P (x, y) exp (ikn∆0) exp

(
−ik

x2 + y2

2f

)
U0(x, y) (2.5)

where the refractive index and the radii of the lens surfaces have been absorbed in the
focal length f which is defined as 1/f := (n − 1)

(
1

R1
− 1

R2

)
. P (x, y) is called pupil

function and describes the finite aperture of the lens.

P (x, y) =

{
1 , within the aperture
0 , outside of the aperture

(2.6)

The physical meaning of (2.5) is most obvious in the case of a plane wave with an
unitary amplitude so that U0(x, y) = 1 ∀ x, y. For f > 0 this corresponds to a parabolic
approximation to a spherical converging wave, while for f < 0 the wave is diverging.
These results may give rise to the assumption that a lens with perfect spherical surfaces
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generates a perfect spherical wavefront which converges in one single point. On the one
hand, the consideration rely on the applicability of the paraxial approximation which
is only possible in a region near the optical axis, on the other hand a focus consisting
of one single point is physically not possible as the intensity would be infinity in the
focus. The finite aperture of the lens rather limits the spot size in the focus due to
diffraction effects. The resulting pattern is described by an Airy function as we will see
later. In practice, lenses are often aspherically corrected in order to produce a wavefront
resembling a sphere as good as possible, or many spherical lenses are used to compensate
the aberrations of one lens with the aberrations of the other ones.

2.2 A Lens as a Fourier Transformer

In this part it will be shown that a convex lens acts as an exact Fourier transformer for
an object which is placed in its focal plane. First the more general case that the object
is placed at a distance d in front of the lens and can be described by the (complex)
field amplitude U0(x0, y0) is considered. In the following the Fresnel diffraction formula
will be used, which describes the free propagation of a field amplitude U0(x, y) over a
distance z. The resulting field is then given by

U ′(x′, y′) =
exp(ikz)

iλz

∫
dxdyU0(x, y) exp

(
i
k

2z

[
(x′ − x)2 + (y′ − y)2

])
(2.7)

A derivation of this formula can be found in [23] or [24]. One can interpret this expression
as a convolution of the incident wavefront with an exponential function. According to
the convolution theorem [25] a convolution in real space corresponds to a multiplication
in Fourier space1. For this reason it is useful to write down the Fourier transform of the
exponential function in (2.7). This yields the following transfer function

H(fx, fy) = exp(ikz) exp
[
−iπλz(f 2

x + f 2
y )
]

(2.8)

with fx = x′

λf
and fy = y′

λf
. The special choice of the spatial frequency will be clear later.

This transfer function connects the Fourier transform of the incident field F (fx, fy) with
the Fourier transform of the propagated field via

F ′(fx, fy) = H(fx, fy)× F (fx, fy). (2.9)

We are interested in the resulting field amplitude in the back focal plane of the lens.
Assuming that the field U ′

l (x, y) right after the lens is known, the field distribution
Uf (xf , yf ) in the focal plane is given by applying (2.7)

1
∫∞
−∞ dτf(t)g(t− τ) = F−1 (F(f) · F(g))
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Uf (xf , yf ) =
1

iλf
exp

[
i

k

2f
(x2

f + y2
f )

]
∫

dxdyU ′
l (x, y) exp

[
i

k

2f
(x2 + y2)

]
exp

[
−i

2π

λf
(xxf + yy)

]
.

(2.10)

The constant phase factor exp(ikf) was dropped. Using equation (2.5) one can rewrite
(2.10)

Uf (xf , yf ) =
1

iλf
exp

[
i

k

2f
(x2

f + y2
f )

] ∫
dxdyUl(x, y) exp

[
−i

2π

λf
(xxf + yyf )

]
︸ ︷︷ ︸

Fl(fx,fy)

(2.11)

where I have neglected the phase factor exp(ikn∆0) and the finite aperture size of the
lens. This is satisfied if the diameter of the lens is much bigger than the spatial extend
of the imaged object. The integral expression is simply the Fourier transformation of
the field amplitude in the front plane of the lens, which suggests the application of the
transfer function given in (2.8) yielding after some algebra our final result

Uf (xf , yf ) =
1

iλf
exp

[
− k

2f

(
1− d

f
(x2

f + y2
f )

)]
F0

(
xf

λf
,
yf

λf

)
(2.12)

or in detail

Uf (xf , yf ) =
1

iλf
exp

[
i

k

2f

(
1− d

f

)
(x2

f + y2
f )

]
∫

dxdyU0(x0, y0) exp

[
−i

2π

λf
(x0xf + y0yf )

] (2.13)

For d = f the prefixed phase factor vanishes and the resulting field amplitude equals the
exact Fourier transformation of the imaged object. In this derivation the finite aperture
of the lens was neglected. In real situations the aperture stop leads to the so called
vignetting effect, as for one point in the back focal plane not the whole object contributes
but only that part which corresponds to the region from which light is collected by the
lens.
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2.3 The Point Spread Function

A very important feature of lenses is their ability to form images i.e. if an object is located
in a plane in front of a lens an intensity distribution resembling the object is reproduced
in a plane different to the object plane (see Figure 2.2). With the considerations done
in the two previous chapters we are now in the position to get a deeper insight in the
process of image formation. For simplicity I will first assume an aberration-free thin lens
and monochromatic coherent illumination leading to a linear relation between image and
object. So the interesting question is, what the image of a point-like object looks like.
The superposition principle allows then to calculate the image of arbitrary shapes by
evaluation of the integral

U1(x1, y1) =

∫
dx0 dy0 h(x1, y1; x0, y0)U(x0, y0). (2.14)

h(x1, y1; x0, y0) is the so called point spread function (PSF) whose calculation is straight
forward. Let us imagine a point source located at r0 which is emitting a spherical wave.

Object plane

�
�

Lens plane

’�

Imaging plane

�1

d0 d1

r
0

r
1

Optical axis

f

Figure 2.2: Planes and notation for image formation

The normalised field at the point r′ in the lens plane is then given by2:

U(r′, r0) =
exp (ik|r′ − r0|)

iλ|r′ − r0|
. (2.15)

Applying the paraxial approximation and using full coordinate notation this expression
reads (z0 := 0)

U(x′, y′; x0, y0) =
1

iλd0

exp

[
ik

d0

(
d2

0 +
(x′ − x0)

2

2
+

(y′ − y0)
2

2

)]
. (2.16)

2The factor 1/iλ is introduced to be consistent with the Fresnel diffraction formula. In a detailed
derivation it emerges because of the introduction of imaginary secondary sources. For further reading
refer to [23].
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As described in section 2.1 the lens imprints a parabolic phase (2.5) and the propagation
to the distance d1 after the lens is done by using the Fresnel formula (2.7). This leads
to the lengthy result:

U(x1, y1; x0, y0) =
1

λ2d0d1

exp

[
i

k

2d1

(x2
1 + y2

1)

]
︸ ︷︷ ︸

(1)

exp

[
i

k

2d0

(x2
0 + y2

0)

]
︸ ︷︷ ︸

(2)∫
dx′ dy′P (x′, y′) exp

[
i
k

2

(
1

d0

+
1

d1

− 1

f

)
(x′2 + y′2)

]
︸ ︷︷ ︸

(3)

exp

{
−ik

[(
x0

d0

+
x1

d1

)
x′ +

(
y0

d0

+
y1

d1

)
y′
]}

=: h(x1, y1; x0, y0).

(2.17)

Most disturbing in (2.17) are the quadratic phase factors (1)-(3) as indicated in equation
(2.17). Fortunately, they can be eliminated by the following reasons:

(1) This is a pure phase factor in the imaging plane, independent on the coordinates
of the object. Since most detectors are only sensitive on intensity this factor can
be dropped immediately.

(2) To neglect this factor a more detailed argumentation is necessary, because it is
dependent on coordinates in the object plane which are integration variables in
(2.14). In the case of a good imaging system, only a small region in the object
plane contributes to the image at the point (x1, y1). Then one can approximate:

exp

[
i

k

2d0

(x2
0 + y2

0)

]
≈ exp

[
i

k

2d0

x2
1 + y2

1

M2

]
(2.18)

where M is the magnification. Now this factor can be neglected for the same
reasons as above.

(3) From geometric optics the lens law

1

f
=

1

d0

+
1

d1

(2.19)

is known. It connects the focal length of the lens with the distances from object
(d0) and imaging plane (d1). So this phase factor is equal to one and can also be
omitted.
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By defining the magnification of the imaging system as M = −d1

d0
(the minus sign

represents the inverting property of the imaging), and (x̃/ỹ)0 = M(x/y)0 , one can write
the PSF as:

h(x1, y1; x̃0, ỹ0) =
1

λ2d0d1

∫
dx′ dy′P (x′, y′) exp

{
−i

k

d1

[(x̃0 − x1)x
′ + (ỹ0 − y1)y

′]

}
= h(x̃0 − x1, ỹ0 − y1)

(2.20)

I apply a second coordinate transformation, now concerning the coordinates in the lens
plane

u =
x′

d1λ
and v =

y′

d1λ
(2.21)

which results in

h(x̃0 − x1, ỹ0 − y1) = M

∫
dudvP (λd1u, λd1v) exp {−i2π [u(x̃0 − x1) + v(ỹ0 − y1)]} .

(2.22)

We see that the PSF is shift invariant depending only on the difference of (x̃, ỹ)0−(x, y)1,
which makes the relation between object and image mathematically interpretable as a
convolution.

So the integral (2.14) can be written as

U1(x1, y1) =
1

M2

∫
dx̃0 dỹ0 h(x̃0 − x1, ỹ0 − y1)U0

(
x̃0

M
,
ỹ0

M

)
(2.23)

From this expression it is clear that the image is smoothed out with the point spread
function. The broader the PSF the more details are lost in the image. For a good
imaging system the PSF should resemble a delta function as good as possible.

The point spread function (2.22) is physically interpretable as the Fraunhofer diffraction
of a circular aperture of the size of the lens. For an evaluation of this integral see e.g.
[23]. The result is the so called Airy function, which is radially symmetric and given by

h(r) ∝
2J1(kaMr/d1)

kaMr/d1

(2.24)

where a is the radius of the lens and J1 is the Bessel function of first kind.

The absolute square of (2.24) is the intensity distribution a point-like object produces
in the imaging plane (scaled in units of the object plane).
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I(r) ∝

∣∣∣∣2J1(kaMr/d1)

kaMr/d1

∣∣∣∣2 (2.25)

An example is plotted in Figure 2.3 a).
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Figure 2.3: a) Example of a normalized PSF for λ = 780 nm,a = 1 cm and a working distance of
d0 = 2.2 cm. The resolution is approximately 1.1 µm b) Incoherent image of two points
separated by the Rayleigh distance (For this example the parameters of the new imaging
setup have been used)

This function determines the resolution of the imaging system. Commonly resolution
is defined as the minimum distance which two points may have, so that they are still
separated in the image. According to the Rayleigh criterion this minimum distance is
the distance between the central maximum and the first minimum of (2.25). The first
minimum of the Airy function is located at 1.22π. This leads to the following equation
for the resolution

ka|M |∆rRayleigh

d1

= 1.22π ⇒ ∆rRayleigh =
0.61λd0

a
. (2.26)

Figure 2.3 b) shows the incoherent image (differences between coherent and incoherent
illumination will be discussed later) of two point objects separated by the Rayleigh
distance. The plot shows a clear minimum in the middle. Consequently, the Rayleigh
criterion is a pessimistic estimation of the resolution, since even for smaller distances the
two points will be observed separately. At a certain distance this minimum will vanish
and only a single intensity peak is visible. This distance corresponds to the resolution
according to the Sparrow criterion. In this case the resolution is given by

∆rSparrow =
0.47λd0

a
(2.27)

12



and amounts about 75% of the value according to the Rayleigh criterion.

These considerations did not take into account any lens aberrations and describes only
the behaviour of so-called diffraction-limited systems. The influence of aberrations will
be discussed later in this chapter, see section 2.5.

2.4 Frequency Response of an Imaging System

The quality of an imaging system cannot only be evaluated by analysing the image of
very small objects. Another standard technique is to investigate how spatial frequencies
are transferred by the system. Although such an analysis has not been performed during
this thesis, it is worthwhile having a look on the theory of frequency response.

2.4.1 Coherent Illumination

As shown in the previous section the image forming process can mathematically be
described by the convolution

U1(x1, y1) =

∫
dx̃0 dỹ0 h̃(x̃0 − x1, ỹ0 − y1)Ug(x̃0, ỹ0) (2.28)

with the abbreviations

h̃ =
h

M
and Ug(x̃0, ỹ0) =

1

M
U0

(
x̃0

M
,
x̃0

M

)
. (2.29)

In section 2.2 it has already been made use of the convolution theorem which is also
applicable here. The frequency spectra of the object and the image are given by the
Fourier transform of U1 and Ug

Fg(fx, fy) =

∫
dx̃0 dỹ0 Ug(x̃0, ỹ0) exp [−i2π(fxx̃0 + fyỹ0)]

F1(fx, fy) =

∫
dx1 dy1 U1(x1, y1) exp [−i2π(fxx1 + fyy1)]

(2.30)

The Fourier transform of the PSF is called Coherent Transfer Function (CTF).

H(fx, fy) =

∫
dx1 dy1 h̃(x1, y1) exp [−i2π(fxx1 + fyy1)] (2.31)

The convolution theorem tells us how these Fourier transforms are connected

F1(fx, fy) = H(fx, fy)× Fg(fx, fy) (2.32)
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According to (2.22) the PSF is itself the Fourier tranform of the pupil function of the
imaging system. The CTF can consequently be written as

H(fx, fy) = F (F (P (λMd0x̃, λMd0ỹ))) = P (−λd1fx,−λd1fy) (2.33)

This expression gives a deep insight into the frequency response of a diffraction limited
imaging system. The pupil function was defined as 1 inside the aperture of the imaging
lens and zero outside. Thus this function has the same value at each point inside the
aperture and drops suddenly to zero at the margin of the lens. These properties are
directly transferred to the CTF. For a circular aperture all spatial frequencies which are
smaller than the cut-off frequency will be transferred without any perturbation while
frequencies bigger than the cut-off frequency cannot pass the imaging system.

For a lens aperture with radius a the cutoff frequency is given by the equation

λd1fcutoff = a ⇒ fcutoff =
a

λMd0

(2.34)

for our example in Figure 2.3 and an elevenfold magnification the cutoff frequency is

fcutoff =
1cm

780nm× 11× 2.2cm
≈ 52

cycles
mm in the imaging plane

(2.35)

2.4.2 Incoherent Illumination

In the last subsection our considerations were focused on a coherent illumination of
the object. We saw that the mathematical description is linear in the (complex) field
amplitude, in the incoherent case this description is linear in intensity. The intensity in
the imaging plane is therefore given by

I1(x1, y1) =

∫
dx̃0 dỹ0

∣∣∣h̃(x̃0 − x1, ỹ0 − y1)
∣∣∣2 Ig(x̃0, ỹ0). (2.36)

Following the same steps as in the previous subsection, one can write this expression
again as a multiplication in Fourier space (in the incoherent case calligraphic letters will
be used for the Fourier transforms)

G1(fx, fy) = H(fx, fy)× Gg(fx, fy). (2.37)

The only difference to the already discussed case is that now the normalized frequency
spectra are used

H(fx, fy) =

∫
dxdy

∣∣∣h̃(x, y)
∣∣∣2 exp [−i2π(fxx + fyy)]∫

dxdy
∣∣∣h̃(x, y)

∣∣∣2 (2.38)
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The normalization by the zero frequency component is done for a physical reason. The
information contained in an image is to a large extent dependent on the ratio of the
Fourier coefficients of higher frequencies to the zero frequency background, which is
also interpretable as the contrast with which a certain frequency is transferred by the
imaging system. The functionH(fx, fy) is called Optical Transfer Function (OTF) and is
in general complex valued. Its absolute value |H| is known under the name of Modulation
Transfer Function (MTF) and its phase part is called Phase Transfer Function (PTF).

There are some general properties of the OTF which should be mentioned here [23]:

1. H(0, 0) = 1

2. H(−fx,−fy) = H∗(fx, fy)

3. |H(fx, fy)| ≤ |H(0, 0)|

Since both the CTF and the OTF can be calculated from the PSF h̃ it is not astonishing
that there is a relation between them:

H(fx, fy) =

∫
dξ dηH

(
ξ + fx

2
, η + fy

2

)
H∗
(
ξ − fx

2 , η − fy

2

)
∫

dξ dη |H (ξ, η)|2
(2.39)

With (2.39) it is now easy to write down a formula for the OTF of a diffraction limited
system. As shown in the previous subsection the CTF is just given by the pupil function
of the imaging system (2.33). Thus, it follows

�

�
region of overlap

M1

M2

Figure 2.4: Illustration of formula (2.40): The numerator corresponds to the grey shaded overlap
area of the two circular pupil functions. From this point of view it is also clear that the
OTF of a diffraction limited system with circular aperture is always real an nonnegative.
M1 =

(
λd1fx

2 ,
λd1fy

2

)
, M2 =

(
−λd1fx

2 ,−λd1fy

2

)
.

H(fx, fy) =

∫
dξ dηP

(
ξ − λd1fx

2
, η − λd1fy

2

)
P
(
ξ + λd1fx

2
, η + λd1fy

2

)
∫

dξ dηP (ξ, η)
. (2.40)
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This formula can be illustrated by geometrical means. The numerator is just the overlap
of two pupil functions which are centered at the points M1 =

(
λd1fx

2
, λd1fy

2
)
)

and M2 =(
−λd1fx

2
,−λd1fy

2

)
while the denominator is a normalization by the area of the pupil

function. Figure 2.4 depicts the situation for a circular pupil function. Because of
symmetry it would be sufficient to set fy = 0, but for clarity the graph shows the general
case. Using this geometrical interpretation of (2.40) it is easy to derive an analytical
expression for the OTF of a circular pupil, which reads [23]

H(fx) =
2

π

arccos

(
fx

fic

)
− fx

fic

√
1−

(
fx

fic

)2
 (2.41)

where fic = 2a
λd1

is the incoherent cutoff frequency. In Figure 2.5 the CTF and the OTF
for the parameters of our new objective are shown. Comparison of with (2.34) shows
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Figure 2.5: Optical Transfer Function (dashed line) and Coherent Transfer Function (solid line) for
a = 1cm, λ = 780nm, a working distance of d0 = 2.2cm and an elevenfold magnification.
The behaviour is totally different. While the CTF is equal to one up to the coherent cutoff
frequency, the OTF decreases continuously. The parameters of our new objective have
been used for this diagram. The x-axis refers to cycles/mm in the imaging plane.

that the incoherent cutoff frequency is twice the value of the coherent one. This could
suggest that the resolution in the incoherent case is a factor of two better than with
coherent illumination, but this is not true in general and depends on the object one
wants to image. Let us for example consider the resolution of two points separated by
the Rayleigh distance. For incoherent illumination the intensity distribution is shown in
Figure 2.3 b). In the coherent case, of course, first the amplitudes have to be added and
the absolute square must be taken afterwards. The intensity distribution in the image
therefore depends on the relative phase between the two point sources.
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I(x) =

∣∣∣∣∣∣2
J1

(
1.22π(x−∆r/2)

∆r

)
(

1.22π(x−∆r/2)
∆

) + exp(iΦ) 2
J1

(
1.22π(x+∆r/2)

∆r

)
(

1.22π(x+∆r/2)
∆

)
∣∣∣∣∣∣
2

(2.42)
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Figure 2.6: Coherent image of two point sources separated by the Rayleigh distance for different phase
shifts between them.

Figure 2.6 depicts the image of two point sources which are separated by the Rayleigh
distance. We see that the separation depends strongly on the relative phase. For Φ = π/2
the result is the same as for illumination with incoherent light, but for phase Φ = 0 one
cannot distinguish between the points anymore, while the separation is best for Φ = π.
This simple example shows that in the case of a coherent light source interferences play
a significant role and can decide about the resolving power of the imaging system. De-
pending on the phase distribution in the object plane they can improve the performance
or they can lead to an extensive degradation.

2.5 Lens Aberrations

In the previous sections it was always assumed that the imaging system is diffraction
limited and no lens errors are present. In general imperfections of the lens will introduce
a disturbance of the wavefront. It was Lord Rayleigh who introduced a criterion for the
evaluation of an optical instrument in terms of wavefront distortion. According to him,
the image is appreciably blurred when the deviation of the wavefront is more than one
fourth of the wavelength for λ = 550 nm. As lens aberrations are discussed in many
textbooks [26, 27] (a more mathematical description can be found in [28]), first a short
quantitative discussion of the various types of lens errors is given before considering the
influence on the CTF and OTF.
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Spherical Aberration

Even if the surfaces of a lens are perfectly spherical not all rays intersect the optical axis
at the same point. Rays passing the lens at points on the margin experience a stronger
refraction as rays propagating in a region where the paraxial approximation is valid. See
Figure 2.7.

paraxial focus

Figure 2.7: Path of rays for a convex lens with spherical surfaces. Rays on the margin of the lens
are refracted stronger than rays in the central region where the paraxial approximation is
valid, leading to a smearing out of the focus.

As explained in the former sections the intensity distribution in the focus can be de-
scribed by an Airy pattern. The effect of spherical aberration on this pattern is that
light is transferred from the central intensity peak to the outer rings. A deviation of
the wavefront of λ/4 diminishes the intensity in the center about 20%. For some lenses
the orientation decides about the amount of spherical aberration. In the case of a
plano-convex lens, the plane surface should be oriented to this side where the angle of
beamspread is bigger. Hence, for focusing a collimated beam the curved side must face
the incoming wave. This can also be seen in the lens configuration of our new objective
(Figure 3.1), the third lens is plano-convex and the curved side faces the collimated
beam.

Coma

Coma appears in the image of objects which are not centered on the optical axis but
laterally shifted. The image of a point-like object exhibits comet tail looking blurrings
which increase with the distance from the center. The reasons for this degradation of
the imaging quality are similar to the ones of spherical aberration, but now the rays
additionally impinge under an angle on the surface of the lens, so that the refraction
angle is not symmetric anymore for rays above and below the optical axis. Figure 2.8
shows an image of point-like objects far away from the optical axis. This image was
acquired with the test setup (see section 3.4.1) for our new imaging setup built during
this thesis.
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Figure 2.8: Coma aberration for point-like objects approximately 350 µm away from the optical axis.
The comet tail form is clearly visible. This image was taken with the test setup for the new
objective. These patterns only appear far away from the optical axis, thus this aberration
does not diminish the imaging quality in the region of interest. The astigmatism discussed
in the following is more critical, see section 3.4.5.

Astigmatism

Another aberration appearing for objects which are not placed on the optical axis is
astigmatism. The processes leading to this imaging error are pictured in Figure 2.9.

object point

optical axis

principle ray
meridional plane

sagittal plane

primary focus line

secondary focus line

Figure 2.9: Path of rays in case of astigmatism: the formation of the primary and secondary focus
lines is clearly visible. The distance between them is called astigmatic difference. Between
these two lines the intensity pattern consists of an unsharp circular spot.

One can define two planes being perpendicular to each other. The first one is the
meridional plane containing the principle ray and the optical axis, the second one is
named sagittal plane and is perpendicular to the meridional plane containing also the
principle ray. The principle ray is the ray beginning at the object point and intersecting
the lens on the optical axis. Rays lying in the meridional plane are stronger tilted with
respect to the lens as rays in the sagittal plane resulting in different focal lengths for these
two planes. This leads to a significant deformation of the light cone leaving the lens.
Right after the lens it is circular but assumes a more elliptic shape during propagation
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whereas the semi-major axis lies in the sagittal plane until the intensity distribution
takes the form of a line, the primary focus line. After this point the form changes into
an unsharp circular spot, until after some propagation again a line form emerges which
is now perpendicular to the first one. This second line is called secondary focus line. The
difference between the points where the line forms appear is named astigmatic difference
and increases with the distance of the object from the optical axis. In real situations
the focus lines are not really lines but complicated diffraction patterns. They resemble
a line more and more when the amount of astigmatism increases. Astigmatism also
arises when imaging is done through a tilted glass plate, but this error can be corrected
with a second glass plate with accurate thickness tilted in the other direction. Since
in our setup we also image through a vacuum glass cell the influence of a tilt was also
investigated, see section 3.4.7. Figure 2.10 shows once more images of point-like objects,
while the imaging was done through a tilted glass plate. This picture was also acquired
with the test setup for the new objective.

Figure 2.10: Image acquired with the test setup for the new objective, while the glass plate was
significantly tilted. The observable structures emerge because of an interplay of coma
and strong astigmatism.

Curvature of Field and Distortion

Even when none of the aberrations mentioned above are present, the imaging plane is
not really a plane but more a curved manifold. For convex lenses this manifold is curved
towards the object plane for regions on the margin of the image. The imaging plane
is only flat when the paraxial approximation is valid. This effect is called Curvature of
field or Petzval-aberration and is observable by moving the detector in axial direction.
When this aberration plays a role the focus position for objects further away from the
optical axis is closer to the lens as for objects in the central part.

The last type of aberration I want to mention here is distortion. This effect is reasoned
by a variation of the magnification properties of the lens over its surface. This leads to
either a pincushion or barrel typed deformation of the image depending on whether the
magnification is smaller or bigger on the optical axis in comparison to the outer regions
of the lens.

20



Effects on the Coherent Transfer Function

In section 2.4.1 we saw that the CTF of a diffraction limited imaging system is in
principle given by the pupil function. This can be directly transferred to the aberrated
case, by introducing a generalized pupil function P(x, y)

P(x, y) = P (x, y) exp [ikW (x, y)] . (2.43)

where W (x, y) describes an effective path length deviation from the ideal case. The CTF
then reads

H(fx, fy) = P (−λd1fx,−λd1fy) exp [ikW (−λd1fx,−λd1fy)] (2.44)

The cut-off frequency is obviously not changed by aberrations. The only influence is the
introduction of phase distortions within the passband, which can have disastrous effects
on the quality of the imaging system.

Effects on the Optical Transfer Function

To find the effects on the OTF one just follows the steps performed in an earlier section
by substituting the generalized pupil function (2.43) into (2.40). In order to keep the
notation simple I introduce the abbreviations:

u+/− = ξ (+/−)
λd1fx

2
and v+/− = η (+/−)

λd1fy

2
(2.45)

Thus the OTF is given by

H(fx, fy)aberrated =

∫
dξ dηP (u−, v−) exp [ikW (u−, v−)] P (u+, v+) exp [−ikW (u+, v+)]∫

dξ dηP (ξ, η)
(2.46)

Using this expression as a starting point and applying Schwarz’ Inequality 3 it is easy
to conclude that

|Haberrated|2 ≤ |Hwithout aberrations|2 (2.47)

In other words, lens aberrations always lead to a degradation of the Modulation Transfer
Function. The cut-off frequency is not changed, but in general high spatial frequencies
suffer from aberrations such that they are extensively suppressed, what leads to the same
effects as a decrease of the cut-off frequency. For a diffraction limited system the OTF
is always positive. This is not true when aberrations are present. Negative values lead
to a contrast reversal, meaning that intensity maxima become minima and vice versa.

3
∣∣∫ dξ dη X(ξ, η)Y (ξ, η)

∣∣2 ≤ ∣∣∫ dξ dη X(ξ, η)
∣∣2 ∣∣∫ dξ dη Y (ξ, η)

∣∣2
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2.6 Techniques of Imaging a Bose-Einstein Condensate

All information acquired in BEC experiments is deduced from images of the atom dis-
tribution. The methods to make images of a condensate can be separated into two
major categories: destructive (e.g absorption imaging) and non-destructive techniques
(e.g. phase contrast imaging). In the first category the BEC is (as the name already
suggests) destroyed, while in the second one the condensed state is maintained. Non-
destructive methods are mainly used for BEC’s with a large number of atoms (≈ 106),
while the absorption imaging method is also applicable for small atom numbers.

2.6.1 Absorption Imaging

The standard technique to image a BEC is the Absorption Imaging method which is
also used in our experimental setup. A detailed description of the whole setup can e.g.
be found in [29] or [30].

The BEC is illuminated with a resonant collimated beam, thus the atoms absorb photons
and re-emit them in a random direction. Consequently, the intensity behind the cloud
is reduced according to the density distribution of the atoms. This ’shadow image’ is
then projected with a lens (system) onto the chip of a CCD camera.

resonant laser beam CCD

vacuum cell BEC

Imaging lens

z

y

x

Figure 2.11: Schematic overview over the Absorption Imaging setup. The atomic cloud is illuminated
with a resonant laser beam. The atoms absorb the light and re-emit it in a random
direction, leading to a decrease in intensity directly behind the cloud. This ’shadow
image’ is then projected onto a CCD camera, by means of an imaging lens.

This method has a disadvantage: the illumination of the cloud with resonant light leads
to a heating up of the atomic sample and therefore to an instantaneous destruction of
the condensate. Hence, to observe dynamics a new BEC has to be created for each time
step, requiring a stable reproduction of the starting conditions.

In one realization of the experiment three images are taken. The first one includes the
atom distribution Ipic, the second one is a reference picture Iref , which is taken under
the same conditions as the first one but without atoms and the last one is a background
picture Ib where all lasers are switched off. The evaluation of the pictures is done in the
following steps. First the relative transmission T (x, y) is deduced from all three pictures.
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T (x, y) =
Ipic(x, y)− Ib(x, y)

Irefx, y − Ib(x, y)
(2.48)

The division in (2.48) eliminates all stationary interference fringes which may be caused
by the vacuum cell or the imaging optics. From this expression it is then possible to
deduce the total number of atoms in the cloud. The laser beam traveling through the
cloud along the z-axis corresponds to a projection into the x-y plane on the CCD camera.
Therefore, the transmission is only dependent on the column density

nx,y =

∫
dz ρ(x, y, z). (2.49)

The intensity decrease along the z-axis obeys

dI

I
= −ρ(z)σ(z)dz (2.50)

where the scattering cross section is given by

σ(z) =
Γhν

2Is

1

1 +
(

I(z)
Is

)
+
(

2δ
Γ

)2 (2.51)

Is is the saturation intensity and Γ the line width. In the high intensity limit I/Is � 1
and for resonant illumination (δ = 0) equation (2.50) is easy to integrate, yielding for
the atom number in a column with base of a pixelsize

NPixel =
A

M2

2I0

Γhν
(1− T (x, y)) . (2.52)

where A denotes the area of one pixel. It is important to note that the assumption of
the high intensity limit leads to an overestimation of the atom number of about 10%.
Details can be found in [29].

2.6.2 Dark Field and Phase Contrast Imaging

In this section we want to have a look on two standard non-destructive imaging meth-
ods which are based on dispersive effects in the atomic cloud [31]. While propagating
through the cloud an off-resonant laser beam experiences a phase shift which is spatially
dependent on the atom distribution.

If E0 is the incident field the field after the cloud becomes E(x, y) = E0 exp(−µ(x, y) +
iφ(x, y)), both µ(x, y) and φ(x, y) depend on the column density n(x, y) via:

µ(x, y) = kβn(x, y) and φ(x, y) = kδn(x, y) (2.53)
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The absorption and phase coefficients belong to a complex valued refractive index of the
form:

n(r) = 1 + ρ(r)(δ + iβ) (2.54)

Since most detectors are not phase sensitive, the phase information has to be transferred
into intensity. To do so, the fraction of the light scattered by the atoms must be separated
from the undisturbed part. Figure 2.12 a) shows a setup solving this problem.

CCD

a)

CCD

b)
���

Figure 2.12: a) Dark field imaging setup: The unscattered light is filtered out by a small opaque block
b) Similar setup for phase contrast imaging: The fraction of light, not scattered by the
atoms suffers a phase shift of λ/4 and interferes with the scattered fraction on the CCD
chip. This method is more sensitive on small phase shifts acquired while passing through
the atomic cloud.

The unscattered part of the light is focused in the focal plane of the imaging lens. There
it is filtered out by a small opaque block, whose size must be chosen adequate, ideally of
focus size, in order not to influence the scattered light too much. Anyway information
about small structures is located at the margin of the Fourier plane, hence the size is
not that critical. As already mentioned one can write the field after passing through the
atoms as the sum of the unscattered fraction E0 and the part which interacted with the
atoms ∆E.

E = tE0 exp(iφ) = E0 + ∆E (2.55)

t accounts for the transmission of the cloud and φ is the phase shift suffered by the light.
In the dark field imaging method E0 is blocked, so the intensity detected with the CCD
camera is given by
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I =
∣∣∆E2

∣∣
= I0 |t exp(iφ)− 1|2

= I0[1 + t2 − 2t cos (φ)] .

(2.56)

An expansion of the last line in (2.56) shows that for small φ the intensity is quadratically
dependent on the phase shift.

The similar setup for phase contrast imaging shows Figure 2.12 b). The only difference
is that the unscattered light is not blocked but phase shifted by λ/4 with a plate of
appropriate thickness and made interfere with the scattered field. The intensity incident
on the CCD chip can consequently be written as

I =
∣∣∣E0 exp(i

π

2
) + ∆E

∣∣∣2
= I0

∣∣∣exp
(
i
π

2

)
+ t exp(iφ)− 1

∣∣∣2
= I0

∣∣2 + t2 + 2t (sin(φ)− cos(φ))
∣∣

(2.57)

If one performs again an expansion of the last line in (2.57) one can see that the intensity
goes linear for small φ. Therefore one can say that phase contrast imaging is more
sensitive in the case of small phase shifts.

2.6.3 Diffraction-contrast Imaging

Another minimal destructive method based only on diffraction effects was suggested by
Turner et. al. [32]. For this method no imaging optics is needed. In principle the object
is illuminated with a detuned laser beam and the diffraction pattern at a distance z is
recorded with a CCD camera. Restrictions to this method are that the object must not
be strongly absorbing and the phase shift experienced by the light field is spatially not
too variant

2µ(x, y) � 1 and |φ(x + a, y + b)− φ(x− a, y − b)| � 1. (2.58)

Under these assumption it is possible to derive a relation between the Fourier transforms
of the normalized contrast I/I0 − 1 and the column density:

F
[
I − I0

I0

]
= 2k

δ sin(πλzu2)− β cos(πλzu2)︸ ︷︷ ︸
h̃(u,z)

F [n(x, y)] (2.59)
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u is the spatial frequency conjugated to the spatial coordinates. h̃(u, z) is called Contrast
Transfer Function (CTF). Please do not confuse this function with the Coherent Transfer
Function defined in subsection 2.4.1. This relation can then be solved for the column
density, where some care has to be taken, since the CTF has zeros which makes it an
ill-posed inverse problem. For a phase delaying object δ > 0 one zero point is located at
small spatial frequencies, while for a phase advancing object δ < 0 the first zero occurs
for rather high frequencies. Hence, the object should advance the phase in order to
make the reconstruction process of the column density more stable. For cold atoms this
is possible by using light which is blue detuned from the resonance. Although no lenses
are used magnification is also possible by using a point source for illumination instead
of a collimated beam. If R1 is the distance from the point source to the cloud and R2 is
the distance from the cloud to the chip of the CCD camera, the magnification is given
by M = (R1 + R2)/R1.
Up to now, this method has not been tested for a Bose-Einstein Condensate. The
question is, whether the requirements in Equation (2.58) are good assumptions when
imaging a BEC. For a minimally destructive method the weak absorption condition is
necessarily fulfilled. The slowly varying phase condition is more critical. Objects with
a peak phase-shift of order one radian most likely satisfy this condition. When the
detuning of the imaging beam amounts ρmaxσ0/4 full linewidths from the resonance,
where ρmax is the maximal column density and σ0 the resonant cross section, this peak
phase-shift is reduced to one radian. An appropriate value is a detuning of 100Γ. The
authors predict that for a BEC in a glass cell and R1 = 12 mm and R2 = 60 mm, a
resolution of 3.7 µm can be achieved.
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3 A New Objective for High
Resolution Imaging

This chapter is devoted to the new imaging setup built up during this thesis. First, a
motivation will be given, why an extension of our current setup with a high resolution
imaging device is necessary. In the next two subsections, the lens system itself and the
mount accommodating the lenses are described in more detail. Several test measure-
ments were performed evaluating the imaging power of the system, concerning resolution,
field of view, astigmatism as well as the influence of a tilt of the objective with respect
to the vacuum glass cell. The resolution was estimated doing a best-fit analysis. The
results of this measurement were then confirmed in a more direct way, making use of the
so called Talbot effect, which is the generation of self-images of a grating by diffraction
at certain distances behind it [33]. The achieved resolution is 1.1 µm, which enables the
observation of structures on the scale of the healing length, e.g vortices or dark solitons.
The new setup does not only consist of the objective, also the CCD camera with which
the images are acquired plays a decisive role. Test measurements concerning noise and
quantum efficiency showed that our camera is shot noise limited and has an efficiency
of 38%.

3.1 Why a new Objective?

The project was actually started by Jonas Fölling during his diploma thesis [34]. The
first motivation for the new objective was the generation of arbitrary potentials by
scanning a focused, detuned laser beam over the BEC in a given pattern in a time T of
under 1 ms. By varying the pattern over time, time dependent potentials can be created.
Clearly, the spatial resolution of the pattern is given by the spot size in the focus. Hence,
an objective adapted to our requirements with a high numerical aperture is absolutely
necessary. But the implementation of the objective as such a phase imprinting device has
not been followed up to now, I rather concentrated on the application of the objective as
a high resolution imaging device. Since all data in BEC experiments are deduced from
images of the atom distribution, it is important that the quality of the imaging system
is as good as possible. A crucial parameter is the so called healing length, which is given
by [15, 35]

ξ =

√
~2

2mgn
(3.1)

27



where m is the mass of the particles, g is the coupling constant 1 of the two body
interaction and n is the density of the atomic sample. Simply speaking, the healing length
is the typical length scale on which the density in a BEC varies. For typical experimental
parameters this healing length is in the sub micrometer range, but especially for small
condensates it can be tuned to be on the order of one micrometer. Therefore a resolution
in this regime is desirable. This would make it possible to observe many effects directly
as e.g. the generation of vortex pairs in the Berezinskii-Kosterlitz-Thouless crossover
[36] or the creation of dark soliton fans [37, 38, 39]. In both cases a knot in the wave
function appears. Since the density increases on the order of the healing length these
structures could be seen with an adequate imaging system. Another possible application
is the measurement of density fluctuations in a Bose gas [40].

3.2 Lens Data

The new objective consists of three lenses made of SF11 glass coated with an antireflec-
tion coating with a central wavelength of 780 nm. The design of the lenses, including
the numerical calculations of the shape and the relative position of the lenses have been
accomplished by Carl Zeiss Laser Systems. Details of the single lenses and of their
objective configuration are shown in Figure 3.1. Several restrictions have to be fulfilled
by the objective. The diameter of the objective including the lens mount must not
exceed 34 mm since the access to the vacuum glass is limited by a circular aperture
of ≈ 35 mm, belonging to the mount of the B-field coils. If the objective is used as a
phase imprinting tool, the focal length must be big enough so that the focus is at the
atom’s position within the glass cell. The glass cell has a side length of 38 mm including
the walls with a thickness of 4 mm. So the focus must be 22 mm away from the front
end of the objective, when two millimeters play between the objective and the glass cell
are desired. Additionally, the optical properties of the glass cell have to be taken into
account when designing the lenses. The cell consists of quartz glass and the refractive
index was assumed to be 1.458.

3.3 Lens Mount

A mount for the lenses was not available from Carl Zeiss Laser Technik, therefore a
suitable housing was designed and machined in the workshop of the institute. Figure 3.2
shows a cut through the complete objective. The objective mount consists of two parts
made of brass. A technical drawing of the first one is shown in the Appendix in Figure
A.2. The lenses lie on the knife edges which are drawn in detail also in this figure. This
way of mounting is necessary as the lenses have a bevel on their outer rim being too
coarse to mount the lenses without tilt to each other. With the help of the knife edges
the lenses bear on their polished surface avoiding an angle between the lenses. The fetch

1The coupling constant g itself depends on the s-wave scattering length a via g = 4π~2a/m.
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a)

b)

Figure 3.1: a) Technical data of the single lenses b) Lenses in their objective configuration with beam
path for focusing a collimated beam

between the lenses and the housing is 15 µm according to the H6 DIN standard. This
part of the lens mount was milled in one clamping, in order to reach a nice centering of
both lenses. At the position of the second lens, the mount was machined so precisely
that no fixing of the lens is necessary. The friction between lens and housing is sufficient
to keep the lens at its designated position. Lens three is clamped into the objective by
means of a plastic tube and a retaining ring screwed at the back end of the objective.
Lens one is mounted in a separate component, which is screwed into the first part via a
fine thread with a pitch of 0.35 mm. An O-ring is pressed between the two components
so that the play of the thread is minimized. Figure 3.3 gives an overview over this part of
the mount. The thread enables fine tuning of the position of the first lens. It turned out
that the imaging quality is best when this part is screwed into part one as far as possible.
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Figure 3.2: Cut through the complete objective mount with lenses. (1) retaining ring for the plastic
tube, (2) first part of the housing, (3) plastic tube for fixing lens three, (4) Lens one, (5)
retaining ring for lens one, (6) lens two, (7) lens three, (8) first O-ring, (9) adjustment
screws, (10) second O-ring

Lateral fine tuning of the first lens is also possible by means of four adjustments screws.
This was actually recommended by Carl Zeiss Laser Systems but emerged not to be
necessary within the possible fetch of 0.1 mm. A lateral displacement does not influence
the imaging properties significantly. To be sure that the lens lies flatly on its bearing

Figure 3.3: Mounting component for the first lens

plane, an O-ring is pressed on the lens with the help of a clamping ring. In Figure 3.3
the O-ring is indicated as a red circle. The technical drawings of all components of the
objective are given in Appendix A.
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3.4 Test Measurements

Before installing the objective into the experimental setup a thorough analysis of its
imaging properties has to be done. The test measurements include tests concerning
magnification, resolution and field of view. Additionally, it was estimated how the
imaging quality is changed by a possible tilt of the objective with respect to the vacuum
glass cell in the experiment. All measurements have been performed with the same
components which will be installed in the experiment with exception of the vacuum cell.
To simulate the influence of the cell I used a glass plate made of the same material and
the same thickness as the wall of the cell. For performing the test measurements it is
necessary to choose an appropriate object for imaging with the objective. Especially for
the evaluation of the resolution it is essential that the structures on the test target are
smaller or at least comparable to the expected value of the resolution. In our case the
expected value is on the order of 1 µm and so a gold grating consisting of holes with
a diameter of 650 nm and a relative distance of 20 µm was taken. The measurement
of the magnification was done with a standard objective micrometer scale as described
later.

3.4.1 Test Setup

A schematic overview over the test setup is shown in Figure 3.4:

CCD

Lens Achromat

Motorized Translationstage

Objective

Grating

Fiber Outcoupler

Glass Plate

Figure 3.4: Setup for testing the imaging properties of the objective: The grating is illuminated by a
laser beam from behind and is placed in the focus of the objective, leading to a projection to
infinity. The backtransformation is done with an additional achromatic lens that projects
the image onto the chip of a CCD camera. The glass plate is used for the simulation of
the ultra high vacuum cell in the actual experimental setup.

In principle imaging with the objective works as follows: The test object is placed in
the focus of the objective with the glass plate in between. So the objective performs a
transformation of the object to infinity, while the backtransformation is done with an
additional achromatic lens (Melles Griot LAO 677, focal length = 350 mm). The reason
why it is done in this way is easy to understand. As already mentioned, the objective
was designed for focusing a collimated beam with a flat wavefront. Exactly the same
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happens while imaging a point-like object with the method described above, just the
other way round. The objective transfers the spherical wavefront emerging from the
object into a flat one. When using the objective alone, the outgoing wavefront must also
be of spherical shape, but this will happen with a bigger amount of spherical aberration,
and there will be more light in the maxima of higher order in the PSF.
The distance of the achromat to the CCD-Camera (QImaging Retiga Exi) must equate
its focal length. To fix this distance a collimated beam with a wavelength of 780 nm
and a waist of 2.54 mm was focused on the camera by moving the lens with the help of
a manual translation stage and recording the waist of the fitted gaussian as a function
of position.
Illumination of test object was done with the same laser beam from behind. The distance
to the glass plate was 16 mm, which is approximately the distance of the atoms to the
wall of the vacuum cell in the actual experiment. The plate was fixed on a prism mount
in order to be able to tilt it with respect to the objective, which was mounted with the
help of an angle bracket on a motorized translation stage (Physical Instruments PI M111
2DG) and could be moved with a precision of 0.2 µm. Traveling distances are measured
in encoder counts, where 1000 counts correspond to (8.58 ± 0.02) µm. This allowed to
move the objective until a sharp image of the object was reached.

3.4.2 Magnification

The first measurement concerned the magnification, since this is a necessary factor for
evaluating the resolution. As test object a standard objective micrometer scale was
taken, since rather big structures are favourable for this measurement. The spacing of
the lines is 10 µm. The cut through the image was taken in a region where the spacing
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Figure 3.5: a) Image of the objective micrometer scale acquired with the setup described above. The
line spacing is 10 µm. As the pixelsize is known the magnification can be derived from
this picture b) Cut through the image along the dashed line shown in a)

of the lines is 50 µm. Comparing this to the spacing in pixels on the camera and taking
into account the pixelsize of 6.45× 6.45 µm2 yields a magnification of 11.18± 0.03. The
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slight tilt of the micrometer scale was also considered. Theoretically the magnification
is given by:

M =
fObj

fAchr

(3.2)

where fObj and fAchr are the focal lengths of the objective and the achromatic lens
respectively. Inserting fObj = 31.23 mm and fAchr = 350 mm in (3.2) results in a
theoretical magnification of 11.2, which is in very good agreement with the experimental
value.

3.4.3 Resolution

Resolution is a crucial feature of an imaging system, since it describes the ability to
reproduce fine structures of the sample in the imaging plane. It is commonly defined as
the minimum distance of two points at which they are still distinguishable in the image.
As described in section 2.3 the resolution is according to the Rayleigh criterion given as
the distance between the central maximum and the first minimum of an Airy function.
It is directly connected to the numerical aperture NA of the objective via [27]:

∆r = 0.61
λ

NA
(3.3)

The numerical aperture of our objective is specified as 0.45. Substituting this and the
used wavelength of λ = 780 nm in (3.3) gives a theoretically expected value for the
resolution of 1.1 µm.

A standard method to measure the resolution of an imaging system is to image a very
small, point-like object, whose size is smaller than the expected value of the resolution.
With this method the PSF of the imaging system is directly recordable. For estimating
the resolution of our objective a gold grating consisting of holes with a diameter of 650
nm and a relative distance of 20 µm was used. A scanning electron microscope (SEM)

Figure 3.6: a) SEM micrograph overview over a region including four holes on the gold grating, the
holes are separated by 20 µm b) Picture of a single hole with a diameter of ≈ 650 nm.
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micrograph of the grating is shown in Figure 3.6. These pictures have been done by
Martina Schürmann from the Institute of Physical Chemistry.

For determining the resolution one of the holes was chosen and the objective was focused
on it. The focusing procedure was done in the following way: The objective was moved
with respect to the grating in equally spaced steps, took pictures at each position and
fitted gaussian functions to the acquired intensity profile. The position of the focus is
then given as the position with the smallest waist. The result of such a measurement
can be seen in Figure 3.7 (see also section 3.4.5). From this figure it is also possible to
deduce the depth of field of the imaging setup. It is defined as twice the range in which
the fitted waist increases by a factor of

√
2. I get a value of about 6.8 µm.
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Figure 3.7: a) Width of the gaussian fits to the intensity distribution of a single hole vs. position
of the objective. The blue curve denotes the waist in x direction, while the red curve
represents the y direction. b) Typical cuts through the picture in x and y direction and
their gaussian fits in the focus.

The resolution was estimated doing a 2-d best fit analysis. The idea is to compare the
real image with the result of simulations. An overview over the fitting procedure is
shown in Figure 3.8 a). First of all the hole is approximated by a circle with a diameter
of 650 nm. For simulating the imaging process I assume a PSF of the following form 2

(see section 2.3)

PSF(r) =
2 J1

(
1.22π
∆r

r
)

1.22π
∆r

r
(3.4)

where ∆r denotes the resolution according to the Rayleigh criterion and J1 is the Bessel
function of first kind. The imaging is simulated by convolving the circle with the PSF
given above, and taking its absolute square. The absolute square is taken afterwards, as

2Strictly speaking, this PSF is only correct when the imaging system is diffraction limited, but we will
see that in our case this leads to a good agreement between experiment and simulation.
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in the experiment the illumination of the sample is done with a coherent laser beam (see
sections 2.4.1 and 2.4.2). In order to keep the numerical error small, the convolution is
done on a grating whose pixelsize is twelve times smaller than the pixels of the camera.
This is taken into account by covering the result of the convolution with a grating (’pixel
grating’ in the flow chart) whose pixelsize is the same as in the experimentally acquired
picture and summing over the pixels of this coarser grating.
There are two free parameters for the fit: on the one hand the position of the ’pixel
grating’ and on the other hand the resolution of the PSF. During the fitting procedure
the ’pixel grating’ is first moved to a certain position and then the convolution is done
for different resolutions varying between ∆r = 0.3 µm and ∆r = 3 µm in steps of
0.1 µm. The RMS deviation from the experimentally taken image is computed in each
step, but only the smallest value is saved together with the position of the grating.
Part b) of Figure 3.8 shows the minimal RMS deviation in dependence of the position
of the grating3. From this graph the optimal position of the grating can be deduced.
In part c) the RMS deviation for this optimal position, but different values for the
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Figure 3.8: a) Schematic overview over the fitting procedure b) Minimal RMS deviation for different
positions of the ’pixel grating’. c) RMS deviation vs. resolution for the best position of
the ’pixel grating’, The graph shows a clear minimum at a resolution of 1.1 µm.

3One may expect in this figure a periodicity on the size of one pixel of the ’pixel grating’, as the
resultant pattern should be the same when the grating is shifted by one whole pixel. This is actually
true and was also checked, but the pattern is then shifted with respect to the real image. Hence,
there is only one optimal position.
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resolution is shown. The graph shows a clear minimum at ∆r = 1.1 µm according to
the Rayleigh criterion which is in very good agreement with the theoretical value. The
error is estimated by performing the fitting procedure for different pictures of the hole
which yields an uncertainty of 0.1 µm. So the resolution of this new imaging setup is
assumed to be 1.1(1) µm. In Figure 3.9 a picture of the hole, the best fit and cuts
through both are given, yielding a good agreement. This is one of the main results of
the thesis at hand, as it means the realization of a diffraction limited imaging system
with high resolution, opening up new avenues in the field of cold atoms.
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Figure 3.9: a) Real picture of the hole b) Best fit acquired with the method described above c) Cut
in x direction through maximum d) Cut in y direction through maximum. In c) and d)
the blue curve depicts the cut through the real and the red one through the simulated
picture. The agreement is good.

3.4.4 Talbot Effect

When thinking about diffraction, what usually comes to your mind are far-field effects,
as for example the diffraction pattern in the double slit experiment. The effects in the
near field are often not so familiar. One of these effects is the Talbot effect, which occurs
when a grating is illuminated with a plane coherent wave. The grating will reconstruct
itself after the so called Talbot distance Tl depending on the used wavelength λ and the
grating constant d

Tl =
2d2

λ
. (3.5)

This can be understood by application of the Fresnel diffraction formula (2.7). For
simplicity, we restrict ourselves to the one dimensional formulation, but there is no
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problem to transfer the formulas to two dimensions. Let T (x) be the transmission
function of the grating, the field distribution after the distance z is then given by

U(x′, z) =
exp(ikz)

iλz

∫
dxT (x) exp

[
i

π

λz
(x− x′)2

]
. (3.6)

Since T (x) is a periodic function in x, one can expand it in a Fourier series [41]

T (x) =
∑

j

Tje
ijkxx (3.7)

with kx = 2π
d

. Inserting (3.7) in (3.6) and sorting the terms yields

U(x′, z) =
exp

[
i
(
kz + π

λz
x′2
)]

iλz

∑
j

Tj

∫
dx exp

{
i

[
π

λz
x2 − x

(
2π

λz
x′ − kxj

)]}
(3.8)

evaluation of the integral [42] results in

U(x′, z) ∝
∑

j

Tj exp

(
−iπλ

j2

d2
z

)
exp (ijkxx

′) . (3.9)

From this equation one can derive the Talbot condition. Whenever

z = 2m
d2

λ
m ∈ Z+ (3.10)

the field distribution is proportional to the Fourier expansion of the transmission function
and therefore the diffraction pattern is a reconstruction of the grating itself. At distances
of z = (2m + 1)d2

λ
also self-images can be found, but they are shifted in x-direction by

half a period.

This effect was also demonstrated with the test setup for the new objective and the same
grating as I used for the determination of the resolution (see Figure 3.10). The grating
constant was d = 20 µm and the wavelength of the illuminating laser λ = 780 nm. This
accounts for a Talbot length of 1025 µm. The first reproduction of the grating was found
at a distance of (513 ± 4) µm, which corresponds to the first shifted self-image. The
second self-image was found at a distance of 1028 ± 4 µm, what is in good agreement
with the theoretical value.

At distances which are a fraction of half the Talbot distance also grating structures are
produced but with another period. At a distance of

z =
1

n

d2

λ
n ∈ Z+ (3.11)
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Figure 3.10: a) Picture of the grating b) Picture of the intensity distribution at a distance of half
the Talbot length after the grating. The grating is reproduced but with a shift of half a
period.

the grating constant amounts

d′ =
1

n
d. (3.12)

Theses patterns are composed of n real Talbot images, which are laterally shifted by the
fraction 1/n of the grating constant [43, 44].
This is understandable by inserting (3.11) into (3.9). It follows

U(x′,
1

n

d2

λ
) ∝

∑
j

Tj exp

(
−πi

n
j2

)
exp(ijkxx

′). (3.13)

The summation index j is rewritten as j = rn + s and the summations over r and s are
splitted

U(x′,
1

n

d2

λ
) ∝

n∑
s=1

exp

(
−πi

n
s2

) ∞∑
r=−∞

Trn+s exp

(
iπ

d
(rn + s)x′

)
. (3.14)

The substitution of Trn+s by its integral expression and some algebra yield our final
result

U(x′,
1

n

d2

λ
) ∝

n∑
r=1

T

(
x′ − d

n
r

)
1

n

n∑
s=1

exp

[
πi

n

(
s2 + sr

)]
︸ ︷︷ ︸

=C(r,n)

(3.15)

The constants C(r, n) are called Talbot coefficients. This expression clearly shows that
the interference pattern at the distance z = 1

n
d2

λ
consists of n copies of the grating shifted

by d/n with respect to each other. In Figure 3.11 different experimentally acquired
intensity distributions at a fraction of the Talbot length behind the grating are shown.
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Figure 3.11: a) Image of the intensity distribution at a distance of Tl/4 after the grating. The period
of the grating is diminished by a factor of two. b) Diffraction pattern at z = Tl/10.
The period is a factor of five smaller than on the original grating and amounts 4 µm c)
z = Tl/20 a grating structure is still clearly visible. On the right hand side a cut through
the image along the white line is shown. The maxima are equally spaced at a distance
of four pixels corresponding to 2.3 µm. Taking the pixelsize into account this is in good
agreement with the theoretical value of 2 µm. d) z = Tl/40: At this distance from the
grating the period of the diffraction pattern should be 1 µm. Although the image is
blurred due to the finite depth of field of the objective, a modulation on the length scale
of one pixel is obvious, confirming the resolution determined in the last chapter.
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Part a) and b) depict the images at 1/4 Tl and 1/10 Tl respectively. As expected the
grating constant amounts 10 and 4µm. Also at z = Tl/20 a grating structure is still
visible as shown in c). The right hand graph is a cut through the image along the yellow
line. The intensity maxima are equally spaced by 4 pixels, corresponding to 2.3 µm.
The theoretical value is 2 µ m. When considering the pixelsize of 0.58 µm this is in good
agreement. Part d) is an image of the interference pattern at a distance of Tl/40 behind
the grating. The period of the grating given by theory amounts 1 µm. Although the
structures are blurred due to the finite depth of field of the objective still a modulation
on the one pixel scale is visible, as the cuts clearly reveal. This is a confirmation of the
resolution measurement in the last section, since two points separated by approximately
one micrometer are still distinguishable. In fact, this is the best result that can be
reached, as the limiting factor is now the pixelsize of the camera and not the imaging
optics.

3.4.5 Astigmatism

As discussed in subsection 3.4.3 the focusing of the objective was done by fitting a
gaussian envelope to the intensity profile of a single hole in dependence of the position
of the objective. The focus is then given by the position where the waist in x and y
direction are smallest. Figure 3.7 shows a result of such a measurement. The dependence
of the waist in x and y direction is quite symmetric having both their minimum at the
same point. This is the ideal case, but is not true anymore when astigmatism plays a
role. Then the positions of the minima are shifted with respect to each other, the worse
the amount of aberration the bigger this astigmatic difference (see section 2.5). Also our
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Figure 3.12: Scan through the focus for different holes. On the y-axis the fitted waist is plotted in
µm. The blue curve denotes the waist in x-direction, while the red curve represents the
y-direction. The left handed graph corresponds to a hole centered on the optical axis.
The middle one and the right one are displaced 20 µm and 40 µm respectively.

new imaging setup turned out to suffer from astigmatism for objects not placed on the
optical axis. To test this, such scans were also performed with holes neighbouring the
one where the scan is symmetric. Figure 3.12 shows scans through the focus for different
holes. The error bars are statistical errors. During the measurement ten pictures of the
hole are made before the objective moves to the next position. One can see that already
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a shift of 20 µm away from the optical axis involves a splitting of the focus in x and y
direction what is an indication for astigmatism. With the test setup described above it
was not possible to improve this result. After building up the test setup the first time
absolutely no symmetric scans had been possible, only after a realignment of the imaging
lens the results shown above could be achieved. This leads us to the assumption, that
the position of this lens with respect to the objective is rather critical. Hence, in the
final setup both the objective and the additional lens should be mounted together in
one part, ideally machined in one clamping so that a nice centering of both parts is
guaranteed.

3.4.6 Field of View

An important feature of an imaging system is also the field of view. This is the region
around the optical axis in the object plane, in which a sharp picture of the object is
acquired. The field of view of our objective was estimated by analysing an image of the
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Figure 3.13: For estimating the field of view a picture of the whole grating was taken, and gaussian
envelopes were fitted to each hole a) Waist of the gaussian envelope in x-direction mea-
sured in pixels, for the region in which the waist increases from its minimum value by a
factor of

√
2. Below, cuts along the black lines are shown b) Same for the y-direction.

One pixel corresponds to 0.58 µm
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whole grating, the same that was used for the estimation of the resolution. To do this,
a gaussian envelope was fitted to the intensity profile in each lattice site. In many cases
the criteria for the field of view are rather subjective. Here it is defined as the region
in which the fitted waist increases from its minimum value by a factor of

√
2. In Figure

3.13 a) each circle stands for one hole of the grating. The color denotes the fitted waist
in pixels in x-direction for this region. Below, cuts along the black lines are shown. It
is possible to delimit a clear area in which the picture is sharp in the sense given above.
In part b) the same is shown for the y-direction. Here it is not possible to find such an
area. This is due to the astigmatism described in the last subsection. One can not find
a clear focus where the imaging is sharp in both directions except for one point on the
optical axis. From this picture it is not possible to deduce the field of view. It must
be mentioned that due to this imaging error a gaussian envelope in y-direction is not a
good model. Therefore this measurement can only give a rough estimation relying on
the results of the fit in x-direction yielding a value of about 400 µm in the object plane.
This shows again that great care has to be taken when installing the objective in the
setup, especially for the centering of the objective and the additional imaging lens.

3.4.7 Tilt of the Glass Plate

As already mentioned in the theory part, astigmatism is also introduced by imaging
through a tilted glass plate (see Figure 2.10). Since all of our experiments are performed
in an ultra high vacuum cell made of quartz glass, it is necessary to get an idea about
what happens when the objective is tilted with respect to the surface of the cell. This
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Figure 3.14: The influence of a tilt between objective and the vacuum glass cell was studied by tilting
the glass plate in the test setup. The graph shows cuts through the image of a single
hole and their gaussian fits for different tilt angles. Already at an angle of 0.2 degrees a
tail is clearly visible.
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was simulated by tilting the glass plate in the test setup described in section 3.4.1.
Therefore the plate was mounted on a standard kinematic prism mount, to allow for a
tilt in both directions. Since the pitch of the adjustment screws was known, it was easy
to convert turns into a tilt angle. Figure 3.14 shows cuts through images of one hole
of the grating for different tilts of the glass plate. While the cut is quite symmetric for
a well aligned plate, a tail appears when the plate is tilted. This tail is already clearly
apparent for a tilt of 0.2 degrees and enhances for bigger angles. From this we learn
that in the final setup a possibility to align the objective parallel to the surface of the
vacuum cell must be implemented.

3.5 Installing the Objective in the Experimental Setup

The new imaging system has not yet been installed into the experimental setup, so only
a suggestion for the installation can be given. As already mentioned great care has to
be taken that the additional imaging lens is as good as possible centered with respect to
the objective. Ideally the objective, the imaging lens and the camera are fixed on one
part, that can be tilted and moved as a whole. A possible solution is shown in Figure
3.15. All three parts are fixed to a tube with a length of approximately 35 cm. This
tube is mounted on a tilting stage, which itself is attached to a two axis translation stage
with a clearance hole of 57 mm (Newport M-406 ). Since no tilting stages fulfilling our
requirements are available from commercial manufacturers this part will be machined in
the workshop of the institute. In the upper part the diameter of the tube is restricted
by the clearance hole of the stages. Actually, the tube should be smaller in order to
have enough play for alignment of the vertical position and the angle with respect to the
glass cell. Below the stages, the diameter of the tube must be bigger and must contain
clearance holes, so that there is enough space for the MOT-Optics (see below). The
whole construction is carried by an angle bracket screwed onto a motorized translation
stage (Micos LS110 ). This translation stage can bear up to 8 kg in the vertical direction
and a torque of 30 Nm which is sufficient for our needs. The use of a motorized translation
stage is advisable as a fast realignment of the imaging is possible when time-of flight
pictures want to be taken.
As the distance between objective and glass cell is only 2 mm the MOT beam coming
from above must pass the lens system. In order to get a collimated beam additional
optics is needed. In Figure 3.16 a possible lens configuration and the resultant beam
path is shown. The incoming beam is first widened up by means of a plano-convex lens
and then focused with a bi-convex lens into the back-focal plane of the objective. This
results in a collimated beam with a maximum diameter of 2 cm which is restricted by the
aperture of the objective. For taking images of the atom distribution in the glass cell,
the space between the additional imaging lens and the camera must be free. Therefore,
the MOT optics must be removed during one cycle of the experiment. The time between
the MOT phase and taking the images is more than half a minute. Hence, it is possible
to move these parts out of the beam path with a second motorized translation stage
(Micos VT-80 ).
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Figure 3.15: Sketch of a possible way of mounting the objective in the experiment. The mechanics
for moving out the MOT optics is not shown.

The distance between the additional imaging lens and the chip of the camera must be
340.23±0.15 mm (measured from the lens’ surface). According to numerical simulations
the resolution is 1.1 µm in this range. The distance of the imaging lens with respect to
the objective is not that critical as the beam leaving the objective is collimated anyway.
As the distance between the glass cell and the objective is only 2 mm, a collision should
be mechanically impossible. The ideal case would be that the lowest position of the
motor stage is well above the cell, or a stop should be implemented preventing a crash.
This could be realized with a horizontal aluminum plate just below the angle bracket.
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Figure 3.16: The distance between objective and the vacuum glass cell is only 2 mm, so the MOT beam
coming from above must pass the objective. In order to get a collimated beam additional
optics is needed. The lens configuration shown in this figure results in a collimated beam
with a diameter of 2 cm restricted by the front aperture of the objective.

3.6 Characterization of the CCD Camera

For an imaging setup not only the optical components decide on its behaviour but also
the detector with which the images are taken plays a significant role. In our case the
detector is a CCD camera (QImaging Retiga Exi). Some Specifications given by the
manufacturer can be found in table 3.1.

Chip Size 1392× 1040 pixels
Pixel Size 6.45× 6.45 µm2

Exposure Control 10 µs to 10.9 min in 1 µs increments
Sensor Type Sony c© ICX285 progressive-scan interline CCD (monochrome)
Digital Output 12 bits
Readout Frequency 2.5, 5, 10, 20 MHz
Frame Rate 10 fps

Table 3.1: Camera specifications given by the manufacturer

Two tests have been performed with this camera. The first one concerning noise and
gain of the camera, the second one the quantum efficiency.

3.6.1 Noise and Gain

Very important for the quality of a CCD camera is to what extend the acquired images
are blurred by noise. Noise sources in the image are readout noise of the camera’s
electronic, thermal noise and the photon noise itself. The last source is inherent to the
particle character of photons. The probability to detect a certain number of photons
in a given time interval follows Poissonian statistics. If the mean number of photons
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amounts N the standard deviation of the photon distribution will be
√

N . The signal
to noise ration (SNR) is therefore

√
N and increases with increasing photon number,

while the other two noise sources are not dependent on the signal. Thermal Noise is
caused by noise in the dark current. Even when there is no light on the CCD chip some
electrons may have enough thermal energy to overcome the gap between the valence and
conduction band, consequently these electrons will be detected the same way as electrons
which have been excited by photons. They give rise to the so called dark current which
is extremely dependent on temperature [45]

Idark(T ) ∝ T
3
2 exp(−Eg/2kT ) (3.16)

The dark current is in good approximation independent on exposure time, therefore the
signal due to this current increases linearly with it. Readout noise is always present and
not dependent on the signal or the exposure time.

The light intensity falling onto a pixel of the CCD chip is transferred by the cameras
electronic into Counts, sometimes also called Analog Digital Units (ADU). A CCD works
in principle as follows. Photons impinging on the chip of the camera excite electrons from
the valence band to the conduction band. These electrons gather on the corresponding
pixel until the exposure time is finished. These electrons are then transferred to the
readout amplifier and the number of electrons will be converted into counts. In this
step also the readout noise is added to the signal. The conversion factor from electrons
into counts is called gain and is an important number for the estimation of the quantum
efficiency of the camera, see section 3.6.2. For our camera the gain can be adjusted in
the software in the range of 0.7 to 30, but care has to be taken, since this is not the real
conversion factor. For a measurement the gain factor in the camera software was set to
one. Information about the gain factor can be acquired by recording the cameras noise
in dependence of the signal. Let us first consider the noise of the number of electrons.
Since the different noise sources are independent of each other their squares have to be
added in order to get the total noise σtotal[46].

σ2
total = σ2

S + σ2
0 (3.17)

σS is that part of the noise which is directly connected to the photon noise, readout noise
and thermal noise have been absorbed in σ0, since they are not dependent on the signal.
Since the photon noise follows a poisonian statistic σ2

S is equal to the mean number of
electrons Ne− .

This can also be expressed in terms of counts by using the gain factor

(gσcountstot)
2 = gNc + σ2

0 (3.18)

Nc equals the number of counts. It follows σ2
countstot

= 1
g
Nc + 1

g
σ2

0. Consequently, the
gain is given by the inverse slope when plotting the variance of the counts versus the
mean value.
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Such an analysis was performed with our camera by shining a laser beam continuously
on the chip of the camera. The exposure time was chosen to be 20 ms and 100 pictures
have been taken under these conditions. The laser intensity was adjusted that the
maximum count number was high but not saturating the camera. Afterwards the laser
was switched off and 100 pictures were made, from which an average background was
deduced. For the evaluation two adjacent pictures were taken and the mean and variance
were calculated

x̄ =
x1 + x2

2
σ2 =

(x1 − x2)
2

2
(3.19)

for each pixel. This was repeated for all pictures. Figure 3.17 shows a plot of the variance
versus the mean count number. The data fits well to a linear function as predicted by
theory.
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Figure 3.17: Variance versus mean count number. The data fits well to the function f(x) = ax + b
with a = 0.1371 ± 0.0003 and b = 8.621 ± 0.516. This results in a gain of g = 1/a =
7.294± 0.016.

The gain is, as mentioned above, given by the inverse slope of the linear function. The
fit results in a gain of

g =
1

a
= (7.294± 0.016)

electrons
count

. (3.20)

The fact that the data is well described by a linear function tells us even more. It
means that the camera is limited by the photon noise and not by internal noise sources.
Therefore this camera can be called shotnoise limited.
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3.6.2 Quantum efficiency

Another number characterizing a CCD camera is the quantum efficiency. It describes
the probability that an incident photon excites an electron from the valence into the
conduction band. This feature is of utmost importance in the field of cold atoms, es-
pecially for single atom detection, since low photon numbers must be detected. The
higher the quantum efficiency the better the camera is suited for this application. This
value was measured for our camera by illuminating the chip with light pulses of well
defined duration and power. A sketch of the setup for this measurement can be found
in Figure 3.18. Central element of this setup is a computer, which is connected to a

Diode Laser

AOM

CCD

Photo Diode

Iris

PC
Oscilloscope10.000 kHz

Frequency Generator

0.1-5V

5V TTL trigger pulse

Figure 3.18: Setup for measuring the quantum efficiency of the CCD camera

frequency generator via a GPIB (General Purpose Interface Bus) interface. When the
frequency generator gets the start signal from the computer, it sends a TTL triggering
signal to the camera. The duration of the pulse determines the exposure time. For
this measurement the pulse length was 100 µs. At the same time a second pulse with
variable voltage is being sent to the AOM driver. The length of this pulse was 50 µs and
its phase was adjusted in a way that the signal lay within the pulse for the camera. The
zeroth diffraction order of the AOM was shielded by an iris so that only the first order
impinged onto the camera. The intensity of the light pulse is dependent on the voltage
of the signal going to the AOM driver.
It is necessary to know how many photons reached the CCD during such a pulse. For
this reason a part of the light propagating into the direction of the camera was coupled
out with a non polarizing beamsplitter. With the help of a powermeter it is then pos-
sible to convert the voltage on the photodiode into power. A calibration of the relation
between power in the beam and voltage on the photo diode was done before and after
the experiment by changing the voltage going to the AOM driver and measuring the
power impinging on the camera. This was done in continuous operation of the AOM,
but this is justified as the splitting of the beam at the beamsplitter is the same whether
the AOM is pulsed or not. Within the errors the two calibrations yielded the same
results. Figure 3.19 a) shows a calibration curve.
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The oscilloscope was also connected to the computer via GPIB and the voltage on the
photodiode was saved for each pulse. The voltage on the AOM driver was changed be-
tween 0.1 V and 5 V in steps of 0.1 V, repeating the ramp for five times.
The evaluation was done in the following way. For each image the total number of counts
was calculated by summing over the picture. A mean background picture as mentioned
in the previous subsection was subtracted beforehand. With the help of the calibration
curve it is possible to convert the voltage on the photodiode into power on the camera.
The number of photons is then given by

Nphot =
P∆tλ

hc
(3.21)

where ∆t is the length of the light pulse, in our case this was 50 µs. The wavelength λ of
the laser was 780 nm. h is Planck’s constant and c the speed of the light. The number
of counts and the number of photons is connected via

Ncounts =
η

g
Nphot ⇒ η = g

Ncounts

Nphot

(3.22)

where g is the gain determined in the last subsection.

Figure 3.19 b) depicts the number of counts Ncounts plotted versus the number of photons
Nphot.
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Figure 3.19: a) Typical calibration curve voltage on photodiode - power incident on the camera b)
Number of counts versus number of photons. The data fits well to a linear function with
a slope of 0.0523± 0.0017.

The data points can be very well described by a linear fit with a slope of

(0.0523± 0.0017)
counts
photons

. (3.23)
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The error takes also the imprecision of the powermeter into account, which is specified as
±3%. The accumulation of points at higher photon numbers is due to a saturation effect
of the AOM. Above a certain voltage the diffraction efficiency does not increase anymore
but stays constant. The negative offset in Figure 3.19 b) is reasoned by rounding errors
while computing the averaged background picture, however this offset is not important
the solely interesting figure is the slope. Using (3.22) and the result for the gain in the
last subsection yields a quantum efficiency of

η = (38.15± 1.25) % (3.24)
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4 Generation of Dark Soliton Fans - A
preliminary Experiment

In this part an experiment observing dark soliton fans in a trapped Bose-Einstein Con-
densate is presented. The BEC is prepared in a double-well potential and after switching
off the barrier the two modes localized in the left and right well expand and interfere.
Due to the repulsive interaction between the atoms the minima in the interference pat-
tern are emerge into to dark solitons. First a short introduction into the theoretical
description of BEC dynamics and the phenomenon of dark solitons will be given. Af-
terwards the results of the experiment on this topic are presented and compared to
numerical simulations.

4.1 Gross-Pitaevskii Equation and Dark Solitons

The phenomenon of Bose-Einstein Condensation corresponds to the macroscopic oc-
cupation of the ground state below a certain critical temperature Tc. For a detailed
description of this topic please refer to textbooks as [18, 15, 35] or to the original pub-
lications of Bose [6] and Einstein [5]. Here I will concentrate on the dynamics of the
condensed state which is described by the Gross-Pitaevskii Equation (GPE) that was
first developed by Gross [47, 48] and Pitaevskii [49]. An accurate formulation of the tem-
poral evolution of a BEC must take into account the interaction between single atoms.
This is fulfilled in the GPE by a mean-field-approach comparable to the Hartree-Fock
calculation in the theory of many-electron atoms. The time dependent GPE is given by

i~
∂

∂t
Ψ(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g|Ψ(r, t)|2

)
Ψ(r, t) (4.1)

where g = 4π~2a/m is the coupling constant determined by the s-wave scattering length
a whose sign determines whether the interaction is attractive (-) or repulsive (+). This
is a Schrödinger equation of a particle in a potential being the sum of the external
potential Vext and an additional contribution due to interaction which is proportional
to the particle density n(r, t) = |Ψ(r, t)|2. This nonlinear term gives rise to many new
effects, (dark) solitons being one of the paradigm examples.
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In the stationary case, one can separate the spatial and the time dependence by the
following ansatz:

Ψ(r, t) = Ψ(r)e−iµt/~. (4.2)

Inserting this into (4.1) one gets

µΨ(r, t) =

(
−~2∇2

2m
+ Vext(r, t) + g|Ψ(r, t)|2

)
Ψ(r, t). (4.3)

It is important to note that the phase evolution of a stationary state is not governed by
the energy, but by the chemical potential.

One-dimensional Gross-Pitaevskii Equation

To understand the basic principles of dark soliton theory it is sufficient to consider the
one dimensional case. Therefore I will first discuss the reduction of the GPE from three
to one dimension. One assumes a potential which is harmonic in the transverse and of
arbitrary shape in x-direction. Hence, the potential has the following form

Vext(r, t) = Vext(x, t) +
1

2
mω2

⊥(y2 + z2). (4.4)

The wave function is assumed to be of gaussian shape in the transverse direction. Hence,
one makes the following ansatz

Ψ(r, t) =
1√
πσ2

⊥
Ψ(x, t) exp

(
−y2 + z2

2σ2
⊥

)
. (4.5)

The transverse width σ⊥ is assumed to be constant and equal to the groundstate width
of a harmonic oscillator

σ⊥ =

√
~

mω⊥
. (4.6)

.

Inserting this ansatz into the 3D-GPE (4.1) and integrating over the y and z-direction
yields

i~
∂

∂t
Ψ(x, t) =

(
− ~2

2m

∂2

∂x2
+ Vext(x, t) + g1d|Ψ(x, t)|2

)
Ψ(x, t) (4.7)

where g1d is an effective one-dimensional interaction constant, given by g1d = 2a~ω⊥.

The interaction couples the dynamics of the condensate in all three spatial directions,
leading to a restriction on the validity of equation (4.7). It is only applicable when the
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interaction energy is small compared to the energy of the transverse energy of the ground
state. In terms of the s-wave scattering this can be expressed as a|Ψ(x, t)|2 � 1.

Dark Solitons

In the case of a uniform Bose gas the One-dimensional Gross-Pitaevskii Equation (4.7)
has analytical solutions in form of solitary waves. The character of solitons is that their
shape does not change in time. 1 There are two types of solitons, namely bright and dark
solitons. Bright solitons correspond to a wave packet not dispersing while propagating.
From a first point of view they are expected for particles with attractive interaction which
can compensate the effects of dispersion. They can also be generated in the presence of
repulsive interaction as shown in [50]. On the other hand, dark solitons correspond to
a suppression of the atom density with respect to its bulk value n0. Here the repulsive
interaction trying to decrease the minimum is compensated for by the phase gradient
enhancing the minimum. The solution of (4.7) in a uniform Bose Gas involving a dark
soliton has the form [51]

Ψ(x− vt) =
√

n0

[
i
v

c
−
√

1− v2

c2
tanh

(
x− vt√

2ξ

√
1− v2

c2

)]
(4.8)

where c =
√

4πan0~/m is the velocity of sound and ξ = (4πano)
−1/2 the healing length.

Figure 4.1 shows the density profile for two different velocities. The density profile
n = |Ψ|2 has a minimum in the middle n(0) = n0(v

2/c2) and the phase of the wave
function undergoes a finite change ∆Φ as x varies from −∞ to +∞ of

∆Φ = 2 arccos
(v

c

)
(4.9)

For a black (stationary) soliton the wave function is real having a zero crossing at the
position of the soliton, accompanied by a sharp phase jump of π.

4.2 A preliminary Experiment

We performed a preliminary experiment concerning the generation of dark soliton fans
[22]. Since our experimental setup has been described in previous works [29, 30], I will
only consider these parts which are important for this measurement. The first step is
the preparation of a Bose-Einstein Condensate consisting of about 2000 atoms in an
optical dipole trap, established by two crossing laser beams provided by a Nd-Yag Laser
running on a wavelength of 1064 nm. The trapping frequencies are ωx = 2π × 35(1)

1Actually, the strict definition of solitons concerns collisions between them. Only when the number of
degrees of freedom is equal to the number of conserved quantities the structures are the same before
and after the collision and one speaks about solitons.
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Figure 4.1: Density and phase profile for dark solitons with two different velocities a) v = 0.5c grey
soliton b) v = 0 black soliton

Hz, ωy = 2π × 77(1) Hz and ωz = 2π × 77(1) Hz. Then a 1d-optical lattice in x-
direction is ramped up which is produced by interference of two additional laser beams
crossing under an angle of approximately ten degrees. The wavelength of these beams
is 829.739 nm resulting in a lattice spacing of 4.8 µm. By addition of the parabolic
potential in x-direction and the optical lattice we get an effective double well potential
with a well distance of 4.46 µm, (see Figure 4.2). The mathematical expression for the

Figure 4.2: a) dipole potential resulting from the addition of the parabolic potential and the 1d-lattice
b) magnification of the central region in a) revealing the effective double-well

resulting potential in x-direction is given by

V (x) =
1

2
mω2

xx
2 +

V0

2
(1 + cos(2πx/q)) . (4.10)
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In the experiment the standing light wave was ramped up to a value of V0 = 610 Hz
leading to the occupation of only two wells. When the double-well is prepared the stand-
ing light wave is switched off as fast as possible and at the same time the confinement
in x-direction is lowered to 2π× 12(1) Hz within a ramp of 14 ms. This is done in order
to prevent quadrupole oscillations of the cloud. The two matterwave packets collide
and interfere. The minima of the interference pattern are then formed into dark soli-
tons due to the interaction between the particles and start to oscillate in the trapped
Bose-Einstein Condensate.
Figure 4.3 shows the result of a full 3d simulation of the Gross-Pitaeevski Equation for
the experimental protocol given above. The simulation was done by applying a split-
step Fourier method. Part a) shows the spatialtemporal evolution of the atom density.

a)

b)

Figure 4.3: a) Spatialtemporal plot of the atomic density obtained from a numerical solution of the
three-dimensional Gross-Pitaevskii Equation b) Phase of the wavefunction, the phase jump
confirms the generation of dark solitons

Obviously two density minima oscillate in the trap. In b) the phase of the wave function
is plotted, revealing a phase jump at the position of the density minima, what is an
indication for the generation of dark solitons.
In Figure 4.4 our experimental results are compared with the simulation for three dif-
ferent evolution times. The first row shows the experimentally achieved density profile.
This profile is acquired by summing over three central lines of the 2d picture of the atom
distribution. The second row shows the simulated density profile, while the third one de-
picts the phase of the wavefunction also resulting from the simulation. For T=72 ms the
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phase jump of nearly π at the position of the soliton is obvious. The accordance between
simulation and experiment is not perfect, but when taking our resolution of 3.5(2) µm
into account and considering the fact that our imaging beam is not perpendicular to
the x-direction but tilted by 12.3◦, this is at least an indication for the creation of dark
solitons oscillating in the trap.
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Figure 4.4: First row: measured density profile, second row: density distribution according to the

simulation, third row: simulated phase of the wavefunction

Figure 4.5 shows the distance of the experimentally observed density minima in depen-
dence of time. A sinusoidal fit yields a period of 109±4 ms, what is a factor of 1.31±0.05
bigger than the period of dipolar motion, which is 83.3 ms. The result of the simulation
shown before, yields a period of 104±2 ms. Within the errors this is in agreement with
the experimentally acquired value.

The deviation of the oscillation time of the solitons from the trapping frequency is
theoretically expected. As shown in [52] the oscillation period of a single dark soliton in
a trapped 1d-Bose-Einstein Condensate should be a factor of

√
2 bigger than the dipolar

motion of the condensates. In our experiment we have at least two solitons in the trap
oscillating against each other so that also a possible interaction of the solitons must be
considered [53]. Two dark solitons interact through a short-range repulsive, but finite
potential depending on velocity. Therefore two solitons can, depending on their energy,
perform crossings or avoided crossings which leads to a deviation from the factor of

√
2

to lower values [54]. It must also be stated that the geometry of our trap is not 1d and
that therefore different results are expected.

The reason why the results presented here can only be called preliminary is that the
spatial extend of the solitons is on the order of the healing length requiring an imaging
system with a high spatial resolution. At the time when this measurement was performed
our resolution was 3.2(2) µm which is on the edge of the requirements. Another problem
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Figure 4.5: Distance of the density minima in dependence of time. The points denote the experimental
results, the curve is a fit of the form f(x) = a| sin(2π/T + c)|+ d, yielding an oscillation
time of 109± 4 ms

inherent to this method of generating dark solitons is the interference itself more precisely
its dependence on the relative phase of the two wave packets. As shown in [55] and
experimentally confirmed in [11, 12, 13] the relative phase underlies fluctuations due
to finite temperature. These fluctuations increase with temperature and decrease with
tunneling coupling. As the relative position of the interference fringes with respect to the
envelope depend on the relative phase accurate parameters for the barrierheight must be
found in order to get symmetric interference patterns not too much varying from shot
to shot. In Figure 4.4 the atom density at T=72 ms is not symmetric due to this effect.
A detailed discussion of thermal fluctuations in a double-well potential can be found in
[12].
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5 Conclusion and Outlook

The main aim of this thesis was the development and test of an objective for high reso-
lution imaging of Bose-Einstein Condensates (BEC). As described in the theory part, a
characterizing property of an imaging system is its Point Spread Function (PSF). This
function describes what the image of a single point (δ-excitation) in the object plane
looks like. For a diffraction limited system this function is given by the Airy diffrac-
tion pattern of the lens aperture. The resolution is commonly defined by the minimal
distance which two points in the object plane may have, so that they are still distinguish-
able in the image. According to the Rayleigh criterion this is the distance between the
central maximum and the first minimum of the Airy diffraction pattern. This distance
increases proportional to the wavelength of the light used for illumination of the sample
and decreases proportional to the inverse of the numerical aperture NA of the imaging
optics, which is basically determined by the focal length and the front diameter of the
lens system. The numerical aperture of our new objective, which was designed in collab-
oration with Carl Zeiss Laser Systems is specified as 0.45, accounting for a theoretical
resolution of 1.1 µm for the used wavelength of 780 nm.
Experimentally, the resolution was estimated with a simple test setup. Since the objec-
tive was actually designed for focusing a collimated beam, the sample is placed in the
focal plane of the objective corresponding to a transformation of the object to infinity.
The backtransformation is done with an additional achromatic lens that projects the
image on a CCD camera. Since the experiments concerning Bose-Einstein Condensation
are performed in an ultra high vacuum glass cell, a glass plate made of the same material
as the cell and with the same thickness was placed between the sample and the objective.
The magnification of the system is determined by the ratio of the focal lengths of the
objective and the additional achromat. Using a standard objective micrometer scale
with a line spacing of 10 µm, a value of 11.18±0.03 was acquired, which is in very good
agreement with the theoretical value.
For an evaluation of the resolving power, a gold grating consisting of holes with a diam-
eter of 650 nm separated by 20 µm was used. This data was acquired by examination
of the grating with a scanning electron microscope. The resolution was then estimated
by doing a 2-d best fit analysis, comparing real images of one hole with the result of
a numerical simulation. In this simulation the hole was approximated by a circle with
the same diameter as the hole. The imaging process was simulated by convolving this
circle with point spread functions of Airy form, varying the resolution, and computing
the root mean square deviation from the real picture. This deviation turned out to
be minimal for a resolution of 1.1(1) µm, which means the realization of a diffraction
limited imaging system with high resolution.
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This result was confirmed in a more direct way by making use of the so-called Talbot Ef-
fect. This effect corresponds to the production of self-images of a grating by diffraction.
At certain distances behind the grating, which are an integer multiple of the so-called
Talbot length the intensity distribution is a reproduction of the grating. At fractional
multiples of this distance also grating structures are produced but with a grating con-
stant being only a fraction of the original one. This was utilized to generate a grating
structure of 1 µm. An image of this pattern revealed clear modulations on the scale of
1 µm, confirming the result of the best fit analysis.
Additional measurements concerning astigmatism, field of view and a possible tilt be-
tween the objective and the glass cell have been performed. The amount of astigmatism
was estimated by moving the objective with the help of a motorized translation stage
with respect to the grating and fitting gaussian envelopes in x- and y-direction to the
recorded intensity distribution. When no astigmatism is present the focus is well de-
fined and the waists for both directions are minimal at the same point. In the case of
astigmatic aberration the position of minimal waist is different for both directions. This
effect was also observed with our test setup, 20 µm away from the optical axis a splitting
of the focus position was apparent. This result could not be improved with the simple
test setup. Most likely this aberration is due to an off-centering or tilt of the additional
achromat with respect to the objective. For the final setup both the objective and the
achromat should be mounted in the same part, ideally machined in one clamping in
order to reach a nice centering.
The field of view (FOV) is defined as the region in the object plane, in which the imag-
ing system produces a sharp picture. The grating is an ideal test object for such an
evaluation, as it provides a large area with equally spaced small holes. To get an idea
about the FOV gaussian envelopes were fitted to a picture of the whole grating. Due
to the astigmatism mentioned above only a rough estimation was possible based on the
fitted waists in x-direction, yielding field of view with a diameter of about 400 µm.
The influence of a tilt of the objective with respect to the glass cell was studied by tilting
the glass plate in the test setup. Already a tilt of 0.2 degrees lead to a tail in the image
of the holes on the grating. Hence, in the final setup it must be possible to align the
angle between the objective and the glass cell.
A feasible solution for the final installation of the objective in the experimental setup
has been given. All commercially available parts for the setup have been ordered, but
have not yet arrived. The other parts will be machined in the workshop of the institute,
as soon as possible.

The second part of this thesis deals with a preliminary experiment for the generation
of dark soliton fans. The first step in the experimental procedure is the preparation of
a Bose-Einstein Condensate in a double-well potential, leading to two localized modes
in the two wells. After switching off the barrier, the two matterwave packets collide
and form interference fringes whose minima are transformed to dark solitons due to the
interaction between the atoms. These solitons then start to oscillate in the trap. A
numerical simulation of the experiment has been done by solving the three dimensional
Gross-Pitaevskii Equation with a split-step Fourier method. This simulation revealed at
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least two oscillating density minima, accompanied by a phase jump, what is an indication
for the generation of dark solitons. The observation of these density minima in the
real experiment with the current setup is difficult as our optical resolution is at the
moment only 3.5(2) µm, but oscillating density minima have been observed, although
the structures are smeared out due to the imaging. An analysis of the dip distance
in dependence of time, yielded a deviation from the trapping frequency by a factor of
1.31(5). Theoretical considerations [52] lead to a factor of

√
2, but this is only valid in

a 1-d situation and for a single soliton in the trap. This is not true for our experiment.
Our trapping geometry does not allow a one dimensional description and the interaction
between the two generated solitons can lead to a deviation from this factor of

√
2.

These are only first results and the experiment should be repeated when the new imaging
system is installed. The higher resolution will make quantitative measurements possible.

Outlook

The high resolution of the imaging system developed during this thesis enables the
observation of structures in a BEC which occur on the order of the healing length,
which is the typical length scale on which density variations in the BEC occur. Among
these structures are, as already mentioned, dark solitons or vortices. The new lens system
enables to observe the oscillation of the solitons in the trap in more detail. A more precise
measurement of the oscillation period and the amplitude in dependence of time will be
possible. The amplitude should increase as the solitons lose energy by the emission
of soundwaves and become shallower. Another possible application is the detection of
single atoms. Hence, the observation of density fluctuations and the measurement of the
density correlation function with high precision will be feasible. Such a measurement has
already been performed [40], but with poorer optical resolution. Also Laughlin states of
atoms in optical lattices [56] could be observable. These states are also known from the
fractional quantum Hall effect in solid state physics.

The lens system can also be used for the generation of arbitrary potentials that are
superimposed to the current potential. Due to the small focus each well in the double-well
potential can be addressed separately. Thus, it is possible to imprint arbitrary phases
onto one mode of the BEC. This enables to observe so-called π-oscillations [57], which
have not been observed so far. Also ring dark solitons [58] can be created which require
a circular phase imprinting pattern. Using this phase imprinting device for creating a
thin, quickly removable barrier in an otherwise harmonic confinement, represents another
method to study the collision of two Bose-Einstein Condensates and the observation of
dark soliton fans that is less sensitive on phase fluctuations.
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A Technical Drawings

In this Appendix the technical drawings of all objective components are presented.

p. 64: Components in objective configuration

p. 65: First part accomodating lenses two and three

p. 66: Plastic tube for clamping lens three

p. 67: Retaining ring for plastic tube

p. 68: Second part for mounting lens 1

p. 69: Retaining ring for lens 2
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Figure A.1: All components in their objective configuration
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Figure A.2: Technical drawing of the first part of the lens mount accommodating lenses two and three
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