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Abstract
In this thesis, we analyze the formation of supersolids in a dilute, planar 164Dy

BECs with magnetic dipole-dipole interaction after instantaneous quenches of

the s-wave scattering length by solving the eGPE numerically with the split-

step Fourier method. Particularly, we extract the algebraic scaling coefficients

of the topological lattice defect number ND(t) ∝ (t − t∗)α as a function of time

in the late-time scaling regime in both the droplet and honeycomb phase with

a bootstrap fit in datasets with different condensate contrast. Additionally, we

quantify the increase in lattice bond angular order post quench and observe

algebraic scaling of the angular correlation function g6(r) ∝ r−η6 , indicative

of a hexatic system. Finally, the formation of vortices is investigated in the

droplet phase, where we find the vortex number to be described by a Gaussian

distribution throughout the time evolution of the condensate post quench. While

the interaction between vortices and droplets is significant on small length scales,

we find symmetries in the charge sensitive inter-vortex distance distributions

and they follow generalized Wigner-Dyson distributions in the limit of large

separations.

Zusammenfassung

In dieser Arbeit untersuchen wir die Entstehung von Suprasoliden in planaren 164Dy

BEKs mit magnetischer Dipol-Dipol Wechselwirkung nach sprunghafter Änderung

der s-Wellen Streulänge, indem die eGPE numerisch mit der split-step Fourier Meth-

ode gelöst wird. Insbesondere bestimmen wir die Skalierungsexponenten der Anzahl

der topologischen Defekte ND(t) ∝ (t− t∗)α als Funktion der Zeit im Regime später

Zeiten, sowohl in der Tröpfchen- als auch der Bienenwabenphase mit einem Boot-

strap Fit in Datensätzen mit unterschiedlichem Kontrast. Außerdem quantifizieren

wir die Zunahme der Gitterordnung nach der Änderung der s-Wellen Streulänge und

beobachten die algebraische Skalierung der Winkelkorrelationsfunktion g6(r) ∝ r−η6 ,

kennzeichnend für hexatische Systeme. Schließlich untersuchen wir die Entstehung

von Vortices in der Tröpfchenphase. Hier zeigt sich, dass die Verteilung der Vortexan-

zahl während der Zeitentwicklung nach der Änderung der s-Wellen Streulänge durch

eine Gauß-Verteilung gegeben ist. Auf kleinen Längenskalen gibt es signifikante Wech-

selwirkungen zwischen Tröpfchen und Vortices. Trotzdem finden wir Symmetrien in

den ladungssensitiven inter-Vortex Distanzverteilungen. Diese folgen generalisierten

Wigner-Dyson Verteilungen im Limit großer Abstände.
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Nota bene: Throughout this thesis, many integrals will appear, and integration

bounds are given only when absolutely necessary. For integrals without an integration

domain, the notation

∫
dnr is understood to include an appropriate integration domain,

which will become clear from the context.
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1 Introduction

1 Introduction

Ever since their first theoretical prediction a century ago [1–3], Bose-Einstein condensates

(BECs) have played a central role in the development of quantum many-body theory.

By condensing into the lowest energy state, all particles making up a BEC can be de-

scribed by a single wavefunction, which gives rise to interesting quantum phenomena at

macroscopic scales. Ranging from early descriptions of superfluidity in helium-4 (4He) [4]

and superconductivity [5] to modern applications in cosmology as a means to describe

dark matter and dark energy [6], BECs have found their way into many areas of modern

theoretical physics.

The advent of powerful laser cooling and trapping techniques [7–10] led to the first exper-

imental realizations of BEC in dilute atomic alkali metal gases of sodium, rubidium, and

lithium in 1995 [11–14]. Both the development of efficient trapping and cooling systems as

well as the realization of BEC in dilute atomic gases resulted in a Nobel Prize in Physics in

1997 and 2001, respectively [15, 16]. Today, BECs are routinely produced worldwide and

are a powerful tool in experimental physics. A review of experimental results concerning

BEC with additional dipole interaction may be found in [17].

Ever-increasing computational resources have also introduced the possibility to study

BEC by simulations [18–26]. Although computationally expensive, simulations avoid

costly and complex experimental infrastructure and provide excellent control over sys-

tem parameters. We will use numerical methods to simulate a trapped BEC of a dilute

dysprosium-164 (164Dy) gas with magnetic dipole interaction. We consider a trapping

potential such that the condensate assumes a two-dimensional (2D) shape and restrict

dynamics to this plane.

BEC often leads to superfluidity. Although neither phenomenon implies the other [27],

superfluidity is often associated with BEC. Apart from being able to flow without vis-

cosity, a peculiar property of superfluids is that their rotation is restricted to quantized

eddies called vortices [7, 28]. Superfluids have been observed as early as 1938 [4, 29,

30], with important theoretical framework established in the 1940s [31, 32]. Their first

realization in dilute gases followed in 1999 [33] and was verified by the observation of

vortices. A comprehensive review of superfluidity may be found in [34]. Vortices can arise

in a condensate when it is subjected to sudden changes in a control parameter. We will

instantaneously quench the so-called s-wave scattering length (see Sec. 2.2), and track

and count vortices throughout the simulated time evolution to obtain vortex number and

spacing distributions.

In the 2D geometry, the interplay of contact interactions and dipole-dipole interactions as

well as quantum fluctuations can lead to another striking phenomenon known as superso-

lidity. By breaking translational symmetry, a crystal-like, periodic lattice structure forms

in the condensate. The concept of supersolidity was pioneered well after the theoretical

establishment of superfluidity [35, 36]. Unlike BEC and superfluidity, the first unambigu-
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2 Modeling a 2D dipolar Bose gas

ous experimental confirmation of supersolidity did not take place in helium [37, 38], but

was first realized in condensates of dilute gases in 2017 [39, 40]. While supersolids display

solid-like properties through their crystal-like lattice structure, under the circumstances

we will consider in this work, they may still exhibit superfluid properties. A condensate in

the supersolid phase is still a superfluid, while realized in a dilute atomic gas, as recently

demonstrated [41]. Crucially, a condensate in a supersolid state can support the existence

of vortices, as we shall demonstrate later. The supersolid phase is special in the sense

that it requires the breaking of two symmetries. While the superfluid phase breaks phase

invariance, a supersolid additionally breaks continuous translational invariance. We an-

alyze, in the present work, the formation of supersolid lattice structures under different

initial conditions. Particularly, we quantify the increase of bond orientational order and

the decay of lattice defects in the time evolution of a condensate after forcing it from a

uniform state into a supersolid state by instantaneous quenches of the s-wave scattering

length.

After a brief introduction to Bose-Einstein condensation in general, we begin by intro-

ducing important concepts for modeling a 2D Bose gas with magnetic dipole interaction,

foremost the extended Gross-Pitaevskii equation (eGPE) in Sec. 2, and proceed by out-

lining how to numerically simulate such a system and extract observables of interest, i.e.

lattice defects and vortices, in Sec. 3. The results of our defect coarsening analysis are

presented in Sec. 4. Sec. 5 is concerned with vortex spacing and number distributions.

Supplementary material and mathematical derivations may be found in the Appendix.

Here, we also supply basic MATLAB code for numerically finding vortices and lattice

defects.

2 Modeling a 2D dipolar Bose gas

2.1 Introduction to Bose-Einstein condensation - a primer

Bose-Einstein condensates have found their way into standard textbook knowledge. None-

theless, we want to set the stage for our later discussion of 2D planar Bose-Einstein

condensates by briefly introducing the concept in general, following closely the derivations

presented in [2, 28].

Consider a non-interacting ideal gas of Ntot Bosons with mass m, confined to a Volume

V . The phase space accessible to a particle with energy E in this system can be written

as

Φ(E) =

∫
V

d3r

∫
E(p)≤E

d3p = V · 4

3
π (2mE)3/2 , (2.1)

by integrating over the confining volume and all possible momenta and using that

E(p) = 1
2m

(p2x + p2y + p2z) in terms of momentum p = (px, py, pz)
⊤. Note that this

dispersion relation is distinctly non-relativistic as we operate in the low energy limit at

2



2 Modeling a 2D dipolar Bose gas

small temperatures. If we now quantize phase space in volumes of h3, we can introduce

the density of states g(E), i.e. the number of possible phase space states between E and

E + dE, as

g(E) =
1

h3
dΦ(E)

dE
= V

2π

h3
(2m)3/2E1/2. (2.2)

Since we are dealing with bosons, we know that the probability to find a Boson at a given

energy and temperature T follows a Bose-Einstein distribution,

fBE(E) =
1

e(E−µ)/kBT − 1
, (2.3)

for chemical potential µ and Boltzmann constant kB. With these distributions, we can

express the number of bosons at energy E as N(E) = fBE(E)g(E) such that the total

number of bosons in our system is given by

Ntot =

∫ ∞

0

dEN(E) = V
2π

h3
(2m)3/2

∫ ∞

0

dE
E1/2

e(E−µ)/kBT − 1
. (2.4)

Introducing z = eµ/kBT , we show in Sec. A that this integral is solved by a power series

in z,

Ntot = V
2π

h3
(2m)3/2 · (kBT )3/2 Γ (3/2)

∞∑
k=1

zk

k3/2
, (2.5)

with Γ(x) denoting the gamma function. As the Bose-Einstein distribution Eq. (2.3),

being a probability distribution, is required to be positive for all E by Kolmogorov‘s

axioms, z is subject to the boundary conditions 0 ≤ z ≤ 1. Surprisingly, this yields an

upper bound on the total boson number if we set z = 1,

Ntot ≤ Nmax
tot = V

2π

h3
(2mkBT )3/2Γ (3/2) ζ (3/2) (2.6)

if we recognize the Riemann zeta function ζ (α) =
∞∑
k=1

k−α [42]. Note that both

Γ(3/2) =
√
π/2 [7, 43] and ζ(3/2) ≈ 2.612 [7, 28] are finite numbers. Nmax

tot is also denoted

the critical particle number Nc. However, we do not make any assumptions on the total

number of Bosons initially, so there must be a flaw in the argument. The problem starts

in Eq. (2.4). Essentially, we assume a continuum of states in the large Ntot limit. While

this is true at finite energy1 in the large Ntot limit, replacing a sum over discrete energy

levels with an integral over a continuous energy spectrum fails to accurately capture the

behavior at E → µ. More rigorously, a system of bosons has a discrete excitation spectrum

corresponding to energy levels Ei such that we can write

Ntot =
∞∑
i=0

Ni(Ei) =
∞∑
i=0

gi(Ei)fBE(Ei), (2.7)

1By finite energy, we mean E − µ > 0.

3



2 Modeling a 2D dipolar Bose gas

where Ni(Ei) the occupancy of energy level Ei, gi(Ei) the degeneracy of energy level Ei

and fBE(Ei) the Bose-Einstein distribution evaluated at Ei. Here is where Einstein’s

realization comes in. There should be no reason as to why we cannot add single particles

to the system consecutively. As the total number of particles at finite energy is constrained

by above reasoning, the additional particles must ’condense’ into the lowest energy state.

This is possible as the Bose-Einstein distribution diverges at E → µ from above.

This argument may be reversed in the sense that we keep the total number of bosons fixed

and read Eq. (2.6) as a function of temperature. If we denote Tc the critical temperature

below which Ntot > Nc, then

Tc =
h2

2mπkB

(
Ntot

V ζ
(
3
2

))2/3

. (2.8)

Hence, if we cool a system of Bosons with constant particle number N in a constant volume

V below the critical temperature Tc, Bose-Einstein condensation sets in. At T < Tc, the

fraction of bosons in the lowest energy state is given by

N0

Ntot

=
Ntot −Nc

Ntot

= 1 −
(
T

Tc

)3/2

, (2.9)

since Nc particles will be excited to energy states unequal to the lowest possible energy

state. N0/Ntot is called the condensate fraction.

This condensation has profound consequences. Although we are dealing with macroscopic

ensembles, which in experimental realizations have O(105) particles [11, 17, 33, 39], we

can describe the entirety of condensed particles in such a system by a single wavefunction.

Denote the single-particle ground state, i.e. the state with minimal energy, as ϕ(r). Since

all particles in the condensed state assume this single-particle state, we have

Ψ(r1, · · · , rN0) =

N0∏
i=1

ϕ(ri) (2.10)

for the wavefunction Ψ describing the many-body system [7, 35]. This gives rise to

quantum properties on a macroscopic level.

2.2 Equation of motion - the eGPE

After these general observations, we will now proceed to describe Bose-Einstein conden-

sation in dilute atomic gases with magnetic dipole interaction. The time evolution of

a magnetic dipolar condensate with mean field wavefunction Ψ in an external trapping

4



2 Modeling a 2D dipolar Bose gas

potential V (r) is described by the eGPE [17, 18, 21, 41, 44]

iℏ
∂Ψ(r, t)

∂t
=

{
− ℏ2

2m
∇2 + V (r) + gs |Ψ(r, t)|2 + γQF |Ψ(r, t)|3

+

∫
d3r′ Udd(r− r′) |Ψ(r′, t)|2

}
Ψ(r, t),

(2.11)

for an atomic species with mass m. The strength of the contact interaction is quantified

by gs and is given by gs = 4πℏ2as/m, where as denotes the s-wave scattering length [7].

The corresponding scattering pseudo-potential reads2

Us(r− r′) = gsδ(r− r′), (2.12)

and the delta distribution δ(r) signifies that this potential describes contact interaction.

A 2D Bose gas, by definition, is strongly trapped along one direction, which we choose

to be aligned with the z-axis. We also consider the condensate to be untrapped in the

xy-plane and in a harmonic trap, so the external potential is given by V (r) = m
2
ω2
zz

2.

Contributions by beyond mean-field quantum fluctuations are captured by Lee-Huang-

Yang corrections, γQF = 32
3
gs
√
a3s/πQ5 (ϵdd) [21]. These stabilizing contributions were

first described in [46] and arise from expanding mean field results in first order of powers

of (ρa3s)
1/2, for ρ being the particle number volume density. Here, Q5 (ϵ) takes the form

Q5 (ϵ) = Re
{∫ 1

0
du [1 + (3u2 − 1) ϵ]

5/2
}

[18, 41], but we make use of the approximation

Q5 (ϵ) ≈ 1 + 3
2
ϵ2 [21, 22] instead and express ϵdd = add/as in terms of the s-wave scatter-

ing length and the magnetic dipole length add = mµ0µ
2
m/ (12πℏ2) [21]. Finally, since we

consider a dipolar gas, a dipole-dipole interaction (DDI) term is needed in the eGPE. It is

expressed in terms of a DDI potential Udd (r− r′) = µoµ
2
m (1 − 3 cos2 θ) /(4π |r− r′|3) [18,

21, 22, 41, 47]. The system analyzed in the present work is characterized by polarization

of all atomic dipoles in z-direction, µ⃗m ∥ ẑ, and θ denotes the angle between this polar-

ization and r − r′. Each atom carries the magnetic moment µm = |µ⃗m|, and µ0 denotes

the vacuum permeability. The DDI is discussed in more detail in Sec. 2.3.

Notably, we allow for interactions between atoms and therefore deviate from the assump-

tions made in Sec. 2.1. The mean field treatment of the eGPE is only valid in the dilute

limit. Furthermore, we also neglect thermal excitations of the condensate. This is justified

in the T ≪ Tc limit [28].

The eGPE as stated in Eq. (2.11) describes dynamics along all three spatial dimensions,

so it can be simplified by considering the 2D special case at hand. To this end, we make

an ansatz of factorization, i.e. Ψ(r) factorizes into a part ψ(x, y) in the xy-plane and a

2This expression is only valid at |r− r′| ̸= 0, and in distributional sense, the more rigorous
Us(r− r′) ∝ δ(r− r′) ∂

∂|r−r′| |r− r′| [45] holds as the differential operator ∂
∂|r−r′| |r− r′| is equal to unity

except at the origin. However, the pseudo-potential is exact when applied as an operator to wavefunc-
tions subject to Ψ(r− r′) ̸= 0 at the origin, and since we evaluate this potential only during numerical
simulations where this condition is met, we shall neglect this subtlety.

5



2 Modeling a 2D dipolar Bose gas

fixed wavefunction φ(z) in z-direction,

Ψ(r, t) = ψ(x, y, t)φ(z). (2.13)

Along the trapping direction, the wavefunction is that of a harmonic oscillator in its

ground state due to the harmonic trapping potential,

φ(z) =
1√
lzπ1/4

exp

{
−1

2

z2

l2z

}
, (2.14)

where lz corresponds to the 1/e width of the condensate to be determined using a varia-

tional approach. In Eq. (2.14), we make a choice of normalization,∫
dz |φ(z)|2 = 1, (2.15)

by choosing an appropriate prefactor for the exponential term. Since we are considering

a system of N atoms, it is convenient to normalize the wavefunction in the xy-plane to

this number, ∫
dxdy |ψ (x, y) |2 = N, (2.16)

such that the particle number area density is given by n(x, y) = |ψ(x, y)|2. Using the

factorization Eq. (2.13) and the normalization Eq. (2.15), we demonstrate in Sec. B that

the eGPE in the quasi 2D approach of this thesis reads

iℏ
∂ψ(x, y, t)

∂t
=

{
− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ Ez

+
gs√
2πlz

|ψ(x, y, t)|2 +

√
2

5

γQF

π3/4l
3/2
z

|ψ(x, y, t)|3

+

∫
d2r′⊥ U

2D
dd (r⊥ − r′⊥) |ψ(r′⊥, t)|

2

}
ψ(x, y, t),

(2.17)

where Ez = mω2
z l

2
z/4 + ℏ2/(4ml2z). Here, we introduce r = (r⊥, z)⊤ in cylindrical coordi-

nates and a 2D DDI potential where the z degrees of freedom have been integrated out.

It has a representation in Fourier space given by

Ũ2D
dd (k̃⊥) = µ0µ

2
m/(3 ·

√
2πlz)

[
2 − 3

√
π
∣∣∣k̃⊥

∣∣∣ erfcx
(
k̃⊥

)]
(2.18a)[

Erratum: Ũ2D
dd (k⊥) = µ0µ

2
m/(3 ·

√
2πlz)

[
2 − 3

√
π
∣∣∣k̃⊥

∣∣∣ erfcx
(
k̃⊥

)]]
(2.18b)

in terms of dimensionless scaled momentum k̃⊥ = k⊥lz/
√

2 in the radial momentum

space plane, i.e. k = (k⊥, kz)
⊤, and erfcx(x) = ex

2
erfc(x) denotes the exponentially

scaled complementary error function, where erfc(x) = 1 − erf(x) is the definition of the

6



2 Modeling a 2D dipolar Bose gas

Figure 2.1: Schematic illustration of DDI in the absence (a)) and presence (b)) of polar-
ization. If the dipoles are polarized, µ⃗1 ∥ µ⃗2, the DDI is fully described by the two scalar
quantities θ and r = |r|.

complementary error function, and erf(x) = 2/
√
π

∫ x

0

dt e−t2 .

2.3 A closer look at DDI

In the previous section, we introduced the eGPE formalism to analyze BECs realized in

a dilute atomic gas with natural magnetic dipoles. However, it is not straightforward

why it might be insightful to focus on quantum systems with these distinct properties,

especially compared to the purely contact interacting BEC.

Contact interaction, in particular the s-wave scattering we consider in this work, is

isotropic since the corresponding scattering pseudo-potential Eq. (2.12) depends only on

the modulus of the separation of two atoms. Additionally, contact interaction, by design,

is short-ranged, which manifests itself in Us(r) ∝ δ(r). The DDI, however, is funda-

mentally different. In general, the interaction of two magnetic dipoles µ⃗1 and µ⃗2 with

arbitrary, i.e. unpolarized alignment is characterized by the potential [44, 48]

Uunpolarized
dd (r) =

µ0

4π

(µ⃗1 · µ⃗2)|r|2 − 3 (µ⃗1 · r)(µ⃗2 · r)
|r|5

, (2.19)

with r the vector joining the two dipoles. Since we consider polarization of magnetic

dipoles along the trapping direction in our setup, µ⃗ ∥ ẑ, and since the modulus of the

magnetic moment is an universal atomic property, we have µ⃗1 = µ⃗2 ≡ µ⃗ such that the

general DDI potential reduces to

Upolarized
dd (r) =

µ0|µ⃗|2

4π

|r|2 − 3 |r|2
(

µ⃗
|µ⃗| ·

r
|r|

)2
|r|5

≡ µ0|µ⃗|2

4π

1 − 3 cos2 θ

|r|3
(2.20)

in the presence of polarization, as claimed in Sec. 2.2, with θ = ∢(µ⃗, r) being the angle

enclosed by the polarization direction and the separation vector by construction. Fig. 2.1

7



2 Modeling a 2D dipolar Bose gas

illustrates the interaction of dipoles with and without polarization.

The difference to the contact interaction is apparent. Not only is the DDI anisotropic, it

is also long-ranged as the pseudo-potential does not vanish at finite dipole separations.

With the suggestive notation in Eq. (2.20), we obtain Upolarized
dd (r) ∝ 1/|r|3. It is this

long-ranged interaction that is absent in contact interacting gases and ultimately leads to

supersolid properties in combination with the other interactions.

Another feature of DDI that is completely absent in case of contact interaction is the fact

that DDI is neither strictly attractive nor repulsive. While the sign of gs dictates, by

isotropy, whether or not the contact interaction is attractive or repulsive, the sign of the

DDI potential varies with θ. In the polarized case, we distinguish the three different cases
Upolarized
dd > 0 if [θ]π ∈ (θc, π − θc)

Upolarized
dd = 0 if [θ]π = arccos

(
1/
√

3
)
≡ θc ≈ 0.955

Upolarized
dd < 0 if [θ]π ∈ [0, θc) ∪ (π − θc, π)

(2.21)

with [θ]π the representative of the equivalence class of θ modulo π in the interval [0, π)

such that the DDI is both attractive and repulsive, depending on θ.

Finally, contact interaction preserves symmetries that are broken in the presence of DDI.

The contact interaction potential is invariant under SO(3) rotations since it only depends

on the modulus of r. Under SO(3) rotations, the scattering potential behaves as

Us(r) = gsδ(r)
R∈SO(3)−→ Us(r

′) = gsδ(Rr) = gs
1

| detR|
δ(r) = gsδ(r) = Us(r), (2.22)

in distributional sense. By Noether’s theorem, this implies conservation of angular mo-

mentum. The anisotropy of the DDI potential breaks this invariance. From a scattering

perspective, this leads to unconserved angular momentum in the collision of two atoms

in the condensate.

BEC in a strongly interacting dipolar gas was first achieved a decade after the pioneer-

ing realizations of BEC in weakly interacting dilute gases in chromium-52 (52Cr) [49].

Chromium provides a unique electronic structure, which leads to a large magnetic mo-

ment µm = 6µB. In the 7S3 ground state, the electronic configuration [Ar]3d54s1 yields

six electrons with aligned spins in the valence shell. Bosonic chromium isotopes have

vanishing nuclear spin I = 0, resulting in the total electronic spin quantum number of

3 and the large magnetic moment. Achieving BEC in 52Cr required the development of

novel cooling techniques as losses from two-body collisions with spin relaxation prevent

the condensate from reaching degeneracy with the previous cooling techniques as spin re-

laxation either leads to loss of atoms from the trap or heating of the condensate [50]. To

overcome these losses, atoms are transferred to the lowest energetic spin state mJ = −3

where energy conservation prevents spin relaxation-induced transitions.

Rare earth metals, specifically magnetic lanthanides, provide another excellent experimen-

8



2 Modeling a 2D dipolar Bose gas

tal platform for the realization of highly interacting magnetic BECs. The first lanthanide

to be Bose-Einstein condensed was ytterbium-174 in 2003 [51]. However, the ground state

electronic configuration [Xe]4f 146s2 does not yield a magnetic moment, so ytterbium is

not interesting in the context of dipolar BECs. Magnetic lanthanides that have been

Bose-Einstein condensed include dysprosium (Dy) in 2011 [52], erbium (Er) in 2012 [53],

thulium in 2020 [54] and europium in 2022 [55]. Out of these four magnetic lanthanide

species, Dy and Er are of particular interest, since their electronic ground state configura-

tions [Xe]4f 106s2 (5I8) and [Xe]4f 126s2 (3H6) with four and two unpaired electrons in the

partially filled 4f -orbital shell lead to large orbital angular momentum numbers L = 6

and L = 5. Those couple in the LS-scheme with the spin quantum numbers S = 2 and

S = 1 to large total angular momentum quantum numbers J = 8 and J = 6 as bosonic

dysprosium and erbium are subject to I = 0. This results in large magnetic moments,

µm = 10µB and µm = 7µB, respectively, and makes Dy the lanthanide with the largest

natural magnetic moment. Additionally, both Dy and Er possess multiple stable bosonic

isotopes, which opens the possibility to study highly magnetic dipolar BECs with great

variability in interaction properties such as scattering length and dipole length. They are

in general isotope dependent. As of the writing of this thesis, successful BEC has been

achieved in Dy isotopes 160Dy, 162Dy and 164Dy [52, 56–60], and in Er isotopes 166Er and
168Er [53, 61], among others, as well as in numerous two-component BECs including both

Dy and Er isotopes [62].

As a note, we add that alkali metals, which have been of great interest in the creation of

BEC, also feature dipolar properties, as their electronic configuration reads [·]ns1, where

[·] denotes the appropriate noble gas core and n = 2, 3, 4, 5, 6, 7. This leads to a sin-

gle unpaired electron in the valence shell, which yields a permanent magnetic moment.

Apart from the pioneering realization of BEC in sodium, rubidium and lithium in 1995

[11–14] condensation has also been achieved in cesium in 2003 [63] and in potassium in

2007 [64]. Therefore, BEC has been achieved in all stable alkali metals. However, the

single unpaired electron yields magnetic moments of at most 1µB [17]. Therefore, DDI

is negligible against contact interaction in alkali metals, i.e. ϵdd = add/as ≪ 1 is a small

parameter, e.g. in rubidium, we have ϵdd = 0.007 [48]. Since add ∝ µ2
m, ϵdd is much larger

in magnetic lanthanides, e.g. in Dy, we have ϵdd ∼ 1. It is ϵdd that governs whether or

not a dipolar condensate is considered strongly interacting. Since DDI is not negligible

against contact interaction in magnetic lanthanides, ϵdd ∼ 1, they are considered truly

dipolar quantum gases.

2.4 Phases in a 2D supersolid

Recent publications [21, 22, 40, 41, 58–60] reveal a rich spectrum of crystalline order

in 2D magnetic dipolar Bose gases in their ground state, enabled by the interplay of

short-ranged contact interaction, quantum fluctuations and long-ranged DDI. These su-
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2 Modeling a 2D dipolar Bose gas

Figure 2.2: Experimental realization of a seven droplet hexagon state in 164Dy in a har-
monic trap. The left panel shows an in-situ measurement of the density profile, while the
right panel displays a simulation of the same trap. Reproduced from [60] under CC BY
4.0.

persolid states exhibit properties of superfluidity as well as long-ranged crystal-like order.

A stationary solution to the eGPE with periodic modulation beyond a uniform state that

minimizes energy per particle for a given average particle area density n̄ is referred to as

the ground state. We employ a unit cell treatment to find the ground state for a given

set of parameters {n̄, as}, following closely the method described in [22]. This is possible

as we evaluate the kinetic operator and the DDI potential in momentum space. The unit

cell can interfere with fake Fourier copies of itself, accounting for the long-ranged nature

of the DDI. Periodic boundary conditions are implemented as a consequence.

There are several distinct supersolid phases. Most notably, we will consider the droplet

and honeycomb phases. In the droplet phase, the condensate clumps into droplets, ar-

ranging themselves into a hexagonal lattice. If the condensate is in the honeycomb phase,

it arranges itself in a honeycomb-like lattice. These two phases are dual, since the den-

sity minima in a honeycomb lattice form a hexagonal lattice. However, a condensate in

the honeycomb phase is much more connected, and particles can flow along the honey-

comb lattice. Droplets are characterized by a very low particle density between droplets,

therefore inhibiting particle flow. In Fig. 2.2, we report an experimental realization of a

supersolid in the droplet phase. Numerically obtained ground state density distributions

in both the droplet phase and the honeycomb phase may be found in Fig. 3.1.

Apart from these two phases with hexagonal discrete rotational symmetry, there exists a

third phase known as the stripe phase. Here, the condensate forms isolated stripes with

high particle density separated by parallel stripes with low particle density. The stripe

phase is distinct from the droplet and honeycomb phases. While the lattice structure

in the latter phases experiences discrete rotational symmetry by π/3, the lattice of the
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3 Numerical preliminaries

stripe phase is only invariant under rotations of π. Additionally, a condensate in the stripe

phase is invariant under continuous translations parallel to the stripes and under discrete

translations orthogonal to the stripes. Both the droplet and the honeycomb phase only

have invariance under discrete translations along the unit cell vectors. Numerically, it is

harder to extract lattice order in the stripe phase compared to the other two phases, so

we do not consider the stripe phase in the present work.

A common occurrence in all phases is that they lie below the uniform state in terms of

as, i.e. regardless of n̄, the condensate will assume a uniform ground state for high s-wave

scattering lengths as ≳ add. Reducing as will introduce supersolid properties, and smaller

s-wave scattering lengths will in general experience less superfluidity. A comprehensive

analysis of the superfluid-supersolid phase diagram can be found in [22], Fig. 2 and Fig.

3. In this thesis, we choose our system parameters, specifically the trap frequency ωz and

the atomic species 164Dy similarly, so the phase diagram applies to our system.

2.5 Contrast in a supersolid

An important concept in supersolids is the density contrast [22, 41, 65]

C =
|ψ|2max − |ψ|2min

|ψ|2max + |ψ|2min

. (2.23)

It serves as an order parameter quantifying crystalline order, and it is computed from the

ground state wavefunction over a single unit cell. This is possible due to the periodicity

of the ground state. A uniform state has C = 0 as the numerator of Eq. (2.23) vanishes

in this limit. The other extreme is represented by a state with vanishing density at some

points, |ψ|2min = 0. Here, the contrast tends to C = 1. In general, C > 0 is indicative

of crystalline order and therefore of supersolidity. We will use the contrast to compare

datasets obtained with different parameters {n̄, as}.

3 Numerical preliminaries

This section is concerned with numerical methods required to simulate the eGPE as

outlined in the previous section and extract observables of interest. We introduce compu-

tational units and the split-step Fourier method, as well as explain how we compute the

ground state for a given parameter combination {n̄, as}. Additionally, we outline how to

find vortices and lattice defects in numerical simulations. Finally, different initialization

schemes and the quench method are discussed.
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3 Numerical preliminaries

3.1 Computational units and split-step Fourier method

Since our ultimate goal is to put the eGPE on a lattice and simulate it numerically, it

is worth introducing computational units. To this end, we consider a harmonic oscillator

with oscillator length l0 = 1µm. Not only does this oscillator define a length scale, it also

provides an energy scale ℏω0 via l0 =
√

ℏ/(mω0) and a time scale ω−1
0 . Although this

method is universal and independent of the system, i.e. the choice for l0 is completely ar-

bitrary, it is motivated by the size of the simulated system. With this, it is possible to cast

Eq. (2.17) into a dimensionless differential equation suitable for numerical calculations,

i
∂ψ(x, y, t)

∂t
=

{
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ Eeff

z − µeff

+ geffs |ψ(x, y, t)|2 + γeffQF |ψ(x, y, t)|3

+

∫
d2r′⊥ U

2D,eff
dd (r⊥ − r′⊥) |ψ(r′⊥, t)|

2

}
ψ(x, y, t),

(3.1)

as demonstrated in Sec. C.1. Here, we add in the chemical potential in units of ℏω0,

µeff = µ/ℏω0
3. We avoid evaluating expressions with small numerical constants such as

ℏ by introducing computational units, where O(ℏ) = 10−34 in SI units.

At this point, the eGPE could be solved numerically. Further considerations are necessary

to obtain a feasible solving scheme. Note that computing the derivatives of the kinetic

term is computationally expensive, so we resort to evaluate the kinetic term in momentum

space where it is diagonal,(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y) = F−1

[
F
[(

∂2

∂x2
+

∂2

∂y2

)
ψ(x, y)

]]
= −F−1

[(
k2x + k2y

)
ψ̃(kx, ky)

]
,

(3.2)

and F the Fourier transform. This allows us to trade a second derivative in real space for a

simple multiplication in Fourier space at the cost of having to perform Fourier transforms.

However, computation of Fourier transforms (and their inverse) is fast on a discretized

space-grid using the Fast-Fourier-Transform (FFT) algorithm [23].

Let us, for the moment, interpret Eq. (3.1) as an operator equation,

i
∂ψ(x, y, t)

∂t
= Ĥψ(x, y, t), (3.3)

where the Hamiltonian Ĥ = D̂ + L̂ + N̂ + V̂dd decomposes nicely into a kinetic operator

D̂, a linear operator L̂ from the integration constants of the z integral and the chemical

potential, a non-linear operator N̂ from the contact interaction and quantum fluctuations,

3The eGPE is often written without the chemical potential. Since it represents a constant shift of
energy, and since only changes in energy are relevant for the dynamic time evolution of the condensate,
it may be neglected. However, when included in the eGPE, it sets the typical energy scale of the system.
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3 Numerical preliminaries

as well as a dipole interaction operator V̂dd. The formal solution to this equation reads4

ψ(x, y, t+ ∆t) = e−iĤ∆tψ(x, y, t). (3.4)

We have already seen that the dipole interaction potential is best expressed in Fourier

space as well5. Therefore,

V̂dd =

∫
d2r⊥F−1

[
Ũ2D,eff
dd (k⊥)F

[
|ψ(r⊥)|2

]]
. (3.5)

If we further split the kinetic operator D̂ = D̂/2 + D̂/2, we can express Eq. (3.4) as [23,

24, 28]

ψ(x, y, t+ ∆t) = e
−i

(
D̂
2
+L̂+N̂+V̂dd+

D̂
2

)
∆t
ψ(x, y, t). (3.6)

Finally, we obtain

ψ(x, y, t+ ∆t) = F−1

[
e−i D̂

2
∆tF

[
e−i(L̂+N̂+V̂dd)∆tF−1

[
e−i D̂

2
∆tF [ψ(x, y, t)]

]]]

= F−1

[
e−

i
2

1
2
k2
⊥∆tF

[
e
−i

N̂+L̂+

∫
d2r⊥F−1

[
Ũ2D,eff
dd (k⊥)F

[
|ψ(r⊥)|2

]]∆t

× F−1
[
e−

i
2

1
2
k2
⊥∆tF [ψ(x, y, t)]

]]]
(3.7)

by exploiting that the kinetic operator is evaluated best in Fourier space. This is the

well-established split-step Fourier method in full glory [23, 44]. This expression is exact

in O(∆t2) as we show in Sec. C.2. The O(∆t3) error is computed on top.

3.2 Ground state calculations in Wick-rotated time

We have already seen that determining the ground state for a given set of parameters

is important in our discussion of supersolid phases, see Sec. 2.4. To find it numerically,

we make use of the definition that it is a stationary state, i.e. ∂ψ/∂t = 0. Now, after

4Since the Hamiltonian in our case depends on ψ(t) and therefore on t, we do not deal with a generic
Schrödinger equation for a time-independent Hamiltonian. The resulting error of neglecting the time
dependence of Ĥ does not increase the O(∆t3) error from the non-commuting of the operators making
up the Hamiltonian if we always use the latest ψ(t) in the non-linear potential terms when numerically
advancing by a time-step ∆t [24, 28].

5Note that there are fast methods to evaluate erfcx(x) = ex
2

erfc(x) that avoid underflow (from

erfc(x) = 1− erf(x)) and overflow problems (from ex
2

) when x is large, e.g. as outlined in [66].
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dropping the explicit time dependence of ψ due to stationarity, we can write Eq. (3.1) as

µeffψ(x, y) =

{
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ Eeff

z + geffs |ψ(x, y)|2 + γeffQF |ψ(x, y)|3

+

∫
d2r′⊥U

2D,eff
dd (r⊥ − r′⊥)|ψ(r′⊥)|2

}
ψ(x, y),

(3.8)

which is an eigenvalue problem in operator formalism,

µeffψ = Leff
eGPE[ψ]ψ, (3.9)

for the effective eGPE operator in computational units

Leff
eGPE[ψ] =

{
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ Eeff

z + geffs |ψ(x, y)|2 + γeffQF |ψ(x, y)|3

+

∫
d2r′⊥U

2D,eff
dd (r⊥ − r′⊥)|ψ(r′⊥)|2

}
.

(3.10)

The ground state as well as all stationary metastable states at higher energies will, by

definition, fulfill

|Leff
eGPE[ψ]ψ − µeffψ| = 0, (3.11)

so we have to verify that a solution to Eq. (3.9) actually minimizes energy. Numerically,

we start by minimizing the residuals r[ψ] of Eq. (3.11),

r[ψ] =

∫
d2r⊥|Leff

eGPE[ψ]ψ − µeffψ|∫
d2r⊥|µeffψ|

, (3.12)

and compute the effective chemical potential by means of integrating Eq. (3.9) after mul-

tiplying with ψ∗ and using the normalization Eq. (2.16),

µeff =
1

N

∫
d2r⊥ ψ

∗(r⊥)Leff
eGPE[ψ]ψ(r⊥). (3.13)

Throughout our quest to find the ground state, we employ the standard method of imag-

inary time evolution [24]. Considering a system ϕ described by a generic Hamiltonian Ĥ,

we can express the time evolution

ϕ(r, t+ ∆t) = e−iĤ∆t
∑
k

ck(t)ϕk(r) =
∑
k

ck(t)e−i(Ek−µ)∆tϕk(r) (3.14)

in terms of the eigenfunctions ϕk of Ĥ and time dependent coefficients ck(t) if we drop

factors of ℏ. Note that we assume time independence of Ĥ, which for the eGPE is

not realized in general, but holds within O(∆t2) as discussed above. Given that Ĥ is

hermitian, we have real eigenvalues Ek and span the entire Hilbert space accessible to

ϕ with ϕk. If we exploit that the eigenvalues are in fact the eigenenergies that satisfy
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Ĥϕk = (Ek − µ)ϕk and 0 ≤ Ek − µ < Ek+1 − µ, we can Wick rotate our time axis

t→ τ = −it [43] to obtain6

ϕ(r, τ + ∆τ) =
∑
k

ck(τ)e−(Ek−µ)∆τϕk(r). (3.15)

Therefore, modes with higher k will decay quickly, and, with a slight abuse of notation,

we can write

lim
τ→∞

ϕ(τ) = ϕµ, (3.16)

where the limit is understood to include a renormalization of the wavefunction amplitude

after each computational timestep since otherwise ϕ → 0. It is also applied in the sense

r[ϕ] < ϵ for the residuals of Eq. (3.12) and some numerical cutoff ϵ. In essence, we

compute the lowest energy state, i.e. the ground state by solving the stationary eGPE in

Wick-rotated time. As we include the chemical potential in the eGPE, the ground state

corresponds to the eigenstate with eigenenergy µ, hence the notation ϕµ = ϕ0. Every

initial wavefunction will eventually decay to the ground state, so we can start with a

wavefunction sampled from a uniform distribution in the interval (0, 1) normalized to

match a given average density n̄.

Again following closely the approach outlined in [22], we compute the ground state on

a rhombic unit cell defined by the lattice vectors a1 and a2, with |a1| = |a2| = lx, and,

matching the anticipated discrete, hexagonal rotational symmetry in both the droplet and

honeycomb phase, we choose the angle enclosed by a1 and a2 to be π/3. Since we evaluate

the long-ranged DDI operator and the kinetic operator in Fourier space, the unit cell will

interfere with fake Fourier-copies of itself during ground state simulations. This results in

periodic boundary conditions, but as the system is untrapped in the xy-plane, the ensuing

interference does not corrupt the results. Once we have found a ground state wavefunction

with above method for a unit cell, we still have to enforce actual minimization of energy

[21],

E[Ψ(r) = ψ(r⊥)ϕ(z)] =

∫
d3rΨ∗(r)

[
− ℏ2

2m
∇2 +

1

2
mω2

zz
2 +

2

5
γQF |Ψ(r)|3

+
1

2

∫
d3r′U(r− r′)|Ψ(r′)|2

]
Ψ(r),

(3.17)

for the combined potential

U(r− r′) = Us(r− r′) + Udd(r− r′), (3.18)

to distinguish metastable excited states from the true ground state with minimum energy.

To this end, we extract the energy per particle for different ground state wavefunctions

6Dropping factors of ℏ, Wick-rotating the time axis yields i ∂
∂tϕ(t) = Ĥϕ(t) → i∂τ∂t

∂
∂τ ϕ(τ) =

− ∂
∂τ ϕ(τ) = Ĥϕ(τ), effectively removing the i from the Schrödinger equation.
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Figure 3.1: Numerically obtained condensate density distributions in the ground state
for the droplet phase, n̄ · a2dd = 0.075, as/add = 0.745 (left panel) and honeycomb phase,
n̄ · a2dd = 0.2, as/add = 0.78 (right panel). A rhombic unit cell is highlighted in red.

computed for a range of trial values of lx and lz within predefined windows, i.e. we allow

different unit cell sizes (lx) and harmonic oscillator length (lz) for the wavefunction in

trapping direction. We use an iterative approach to find lx, where we progressively shrink

the window size based on previous computations of energy per particle. For each trial

value lx, energy per particle is minimized with respect to lz. Once we find the set {lx, lz}
with minimal energy per particle, these ground state parameters are fixed for a specific

parameter combination {n̄, as}. In general, the ground state depends on {n̄, as}. This

forces us to recompute the ground state for every single parameter combination.

Fig. 3.1 shows two numerically obtained ground state density distributions in both the

droplet and honeycomb phase. Note the similarity to Fig. 2.2. As outlined above, we

compute the ground state only on a rhombic unit cell, which is highlighted in red in Fig.

3.1. Subsequent periodic tiling of 2D space yields the ground states over a larger domain.

The duality between the droplet and the honeycomb phase discussed in Sec. 2.4 is clearly

visible, i.e both the density maxima in the droplet phase as well as the density minima in

the honeycomb phase form a hexagonal lattice with discrete rotational invariance under

rotations of π/3 and discrete translational invariance under translations along the unit

cell lattice vectors.

3.3 Vortices in a superfluid

Superfluids are subject to a set of hydrodynamic equations describing their behavior. In

particular, the velocity field may be written as v = ℏ
m
∇ϕ, for some scalar phase ϕ [7, 28,
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34, 35]. As a consequence, a quantized phase-winding δϕ exists for any closed contour γ,

δϕ =

∮
γ

∇ϕ · ds = 2π l, (3.19)

for some integer l, since the condensate wavefunction must assume the same phase after

integer loops of a closed contour. However, any regular function h over a simply connected

domain D fulfills ∮
γ

∇h · ds = 0 (3.20)

for all closed contours γ ∈ D. Hence, a superfluid is irrotational except for phase winding

around singular points called vortices, i.e. the circulation along any closed contour van-

ishes if the contour does not enclose a vortex.

For the quasi 2D special case at hand, we have invariance of the trapping potential under

azimuthal rotations. Phase winding will also occur solely within the radial plane as the

separated wavefunction Eq. (2.13) only allows for dynamics in the xy-plane.

It is possible to assign topological charge to each vortex, where the absolute value is

given by |l|, i.e. the multiplicity of full 2π phase windings. To distinguish clockwise from

counter-clockwise rotation, we introduce a relative sign between these two possibilities.

The absolute sign is arbitrary and a matter of convention. It is highly unlikely to find

vortices with |l| ̸= 1 under conditions as in the present work. We shall henceforth treat

all vortices to have unit charge.

Vortices can be identified with a tiling algorithm. Consider all possible 2 × 2 tiles of the

wavefunction, and for each tile, compute the phase-winding. If it exceeds 2π− ϵ, for some

numerical tolerance ϵ, a vortex is said to be at the center of the tile. Refer to Sec. C.3 for

a MATLAB implementation of this algorithm.

3.4 Lattice defects in droplet the phase

Quenching into the droplet phase does not result in a perfect crystal lattice. Different

domains of the condensate show different crystal orientations, as depicted in Fig. 3.2.

Inevitably, this leads to defects in the crystal lattice. The relaxation of these defects will

be analyzed in the next section. We identify the positions of droplets in the xy-plane

at first to extract the lattice structure from numerical data. These correspond to local

density maxima. However, the condensate will also have fluctuations on sub droplet-size

scales, so we have to impose several criteria to accurately capture droplet positions. In

general, the set of droplets will form a subset of the local density maxima. Fluctuations

on small length scales correspond to high momentum modes in the Fourier transform

of the condensate’s density. We can remove these local density maxima by convolving

a Gaussian kernel with the Fourier transform of the density, exponentially suppressing

fluctuations on sub droplet-size scales. Additionally, local density maxima are required

17



3 Numerical preliminaries

Figure 3.2: Lattice defects in the droplet phase 1500 ms post quench for n̄ = 0.075 · a−2
dd ,

as/add = 0.75. The left Panel shows the particle area density in the xy-plane. Right Panel:
Voronoi tesselation of the xy-plane. Blue Voronoi cells signify neutral density maxima,
whereas green cells distinguish negatively charged density maxima from positively charged
density maxima in red cells. The Delaunay triangulation and the extracted positions of
the density maxima are plotted atop the Voronoi tesselation in black. Both panels show
the same 60 × 60 µm2 patch of condensate.

to exceed a minimum density, and they must have a minimum separation from the next

maximum. We extract droplet positions by matching the density maxima positions to

the underlying space grid after retaining only those local density maxima that meet these

filtering conditions. For an exact description of the used algorithm, see Sec. C.4. To get a

lattice structure from droplet positions, we perform a Delaunay triangulation. This results

in a graph whose adjacency matrix describes the lattice bonds. A Delaunay triangulation

may be viewed as the dual graph to a Voronoi tessellation. In a Voronoi tesselation, we

associate the Voronoi cell Ri to droplet i at position ri, where a Voronoi cell consists of

all the points of the condensate support D that are closer to ri than to any other droplet,

Ri = {r ∈ D | d(r, ri) ≤ d(r, rj) ∀j ̸= i}, (3.21)

using the Euclidean metric d(r1, r2) = ∥r1 − r2∥ [67]. We assign topological charge to

each droplet via Q = (#bonds − 6), where #bonds is the number of bonds associated

with a given droplet. In a Voronoi tessellation with Euclidean metric, a droplet with

#bonds outgoing bonds is associated with a Voronoi cell with #bonds edges, so we also

have Q = #edges − 6 for the edges of the Voronoi cells. This definition of topological

charge is useful as droplets in a perfect hexagonal lattice will have exactly 6 outgoing

bonds connecting to the neighboring droplets. Similar to the vortex charge, defects with

|Q| > 1 are extremely sparse, so we will consider all defects to have unit charge and only

distinguish the sign of the charge.
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As discussed in Sec. 2.4, the honeycomb phase is dual to the droplet phase. Therefore,

these methods can easily be modified to analyze quenches in the honeycomb phase by

replacing maxima with minima and inverting constraints such as a minimum density to

a maximum density.

3.5 System setup and quench method

The present work considers a rectangular system with aspect ratio
√

3 since this matches

the ideal aspect ratio when tiling 2D space with regular hexagons. We will refer to the

shorter dimension as x-direction, and we choose it to be 16 unit-cell lengths lx in size.

Each unit-cell length is assigned 32 grid points.

We consider a dilute gas of 164Dy atoms due to their large natural dipole, µm = 9.93µB,

with µB the Bohr magneton [17, 18, 41]. This results in a dipole length of add = 130.8 a0

in terms of the Bohr radius a0, making this specific atomic species interesting for research

[17–19, 41, 52, 59, 60]. To obtain the pancake shape of the trapped cloud, we set

ωz = 2π ·72.4 Hz, in accordance with [22]. We explore supersolid formation in the droplet

phase in the parameter region given in Tab. 3.1. For the honeycomb phase, we consider

n̄ · a2dd = {0.17, 0.2, 0.22} and as/add = 0.78 with uniform initialization. To observe the

formation of supersolids, we prepare a condensate in either of two different initial states.

Firstly, we consider a uniform state normalized to a given average density,

ψuniform
initial (x, y) ∝ 1(x, y), (3.22)

where 1(x, y) denotes assigning unity to each grid point. In this case, the wavefunction

is purely real. In the droplet phase, we also analyze the time evolution of systems with

different parameters {n̄, as} when seeded with droplets initially, arranged in a square

lattice. As we analyze the formation of lattice structures, seeding the condensate with

droplets immediately eradicates the need to form individual droplets initially, but by

arranging the droplets without hexagonal symmetry in a square lattice, the time evolution

towards the ground state still involves the formation of the characteristic hexagonal lattice.

To achieve this biasing of the initial state towards the droplet phase, we start with a

uniform wavefunction normalized to unity at each grid point. We add a single droplet per

unit cell, where the radial density distribution of a droplet is assumed to be of Gaussian

form. Additional noise is added by shifting the positions of the droplets around the centers

n̄ · a2dd
as/add 0.745 0.75 0.755 0.76 0.765 0.77 0.775 0.78

0.075 u, l u, l u, l u, l u, l u, l u, l
0.085 u u u u u u u

Table 3.1: Parameter combinations and initialization schemes used in the droplet phase.
We denote uniform initialization with u and square lattice initialization with l.
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Figure 3.3: Single realizations of different initial states after adding noise in the Truncated-
Wigner-approximation. Panels a) and b) show density fluctuations n/n̄ and phase fluc-
tuations ϕ(x, y) = arg(ψ(x, y)) in the uniform initialization scheme, respectively. Panels
c) and d) visualize the square lattice initial state.

of the unit cells. Denote the central coordinates of the unit cell i as cxi and cyi in x and

y direction, respectively. Shifting the central coordinates is done by adding an offset δxi

and δyi to these central coordinates. The offsets themselves are sampled from a standard

normal distribution and scaled to match the length scale of the system. Then, the initial

wavefunction reads

ψlattice
initial (x, y) ∝

[
1(x, y) +

∑
i

exp

{
−(x− cxi − δxi)

2 + (y − syi − δyi)
2

2σ2

}]1/2
, (3.23)

where σ controls the width of a droplet. The sum
∑
i

runs over all unit cells, and the

square root ensures that we seed the square lattice pattern into the density.

In the end, we normalize the wavefunction to a given average density such that

n̄ =

∫
d̃xd̃y |ψuniform

initial (x, y)|2 =

∫
d̃xd̃y |ψlattice

initial (x, y)|2, (3.24)

for a normalized measure d̃xd̃y = dxdy ·
(∫

dxdy

)−1

, in accordance with Eq. (2.16). We

add noise to either of these initial states in the Truncated-Wigner-approximation before

starting a simulation. Fig. 3.3 shows two realizations of these initial states. Note that

while the phase fluctuations are of the same magnitude across both initialization schemes

since they stem solely from the added Truncated-Wigner-noise, density fluctuations are

dominated by droplets in the square lattice scheme.

In a uniform state, variations of the wavefunction are of order of the coherence length ξ,
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which can be expressed in terms of as, ξ
−2 = 8πn̄as [7]. This length scale can be used

to define a typical energy scale of the uniform system. We use ξ to set an upper energy

limit when adding noise to the initial state in the Truncated-Wigner-approximation [68].

At the beginning of a simulation, we set the s-wave scattering length such that the ground

state is within the droplet or honeycomb phase, depending on the average density. This

corresponds to an instantaneous quench of the s-wave scattering length. Afterwards, the

system evolves according to the eGPE towards a supersolid state. For each parameter

combination, we consider 3000 independent realizations, i.e. 3000 quenches with noise

sampled as above. We let the condensate evolve up to a maximum time

tmax = 1.5 · 103 ms and numerically advance the eGPE in time steps of ∆t = 10−2 ms.

3.6 Periodic boundary conditions and distance measure on a

finite grid

Solving the eGPE with the split-step Fourier method implements periodic boundary con-

ditions. This has important consequences when computing the lattice structure with a

Delaunay triangulation. On a finite space-grid, all droplets close to the grid boundary

will be identified as lattice defects since the droplets existing beyond the boundary of the

grid are absent in simulations. To correct for this error, we pad the simulated patch of

condensate with itself. More precisely, we extend the simulated grid by about two unit

cell lengths in each dimension before identifying density maxima (minima) in the droplet

(honeycomb) phase and performing the Delaunay triangulation to obtain the lattice struc-

ture. This is done by computing the density n(x, y) = |ψ(x, y)|2 over the original grid

and subsequent padding of n with itself, where we choose the size of the padding to be

70 grid points. Since a unit cell is assigned 32 grid points, this corresponds to more than

two unit cell lengths. Effectively, this enforces

n(x, y) = n(x+ Lx, y) (3.25)

and

n(x, y) = n(x, y + Ly). (3.26)

Lx (Ly) denotes the size of the simulated system in x (y) direction, i.e. in our case

Lx = 16 lx (Ly =
√

3 × 16lx). Then we compute the lattice structure from this padded,

i.e. spatially extended density and restrict the subsequent analysis to lattice points within

the originally simulated domain. This approach ensures that we accurately account for

the lattice structure at the boundaries of the simulated system.

Periodic boundary conditions also impact how to calculate distances in the simulated

system. The distance measure has to be wrapped around the boundary of the space-grid.

Consider two points in the system with coordinates ri = (xi, yi), i = 1, 2. Then the näıve
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Euclidean metric yields the distance

d =
√

(x1 − x2)2 + (y1 − y2)2 ≡
√

(∆x)2 + (∆y)2 (3.27)

between these points. If we are mindful of periodic boundary conditions, we have to

replace

∆x→ ∆̃x = min(|∆x|, Lx − |∆x|) (3.28)

and

∆y → ∆̃y = min(|∆y|, Ly − |∆y|), (3.29)

respectively. All distances reported in the subsequent analysis are understood in this

periodic Euclidean metric.

3.7 Numerical simulation and evaluation environment

We outline our numerical procedures used to generate the results presented in this thesis

to conclude our numerical discussions and demonstrate the key data generation, reduc-

tion, and analysis methods to the reader.

After setting the important parameters {n̄, as} and choosing an initialization scheme, a

simulation run starts by computing the ground state within the unit cell treatment. Then,

we simulate 3000 independent time evolutions after quenching the s-wave scattering length

using the ground state parameters {lx, ly} and the split-step Fourier method. We extract

and store the vortex positions and vortex charge as well as the density maxima (minima)

positions in the droplet (honeycomb) phase and the results of the Delaunay triangulation

in millisecond intervals during the simulations. Extracting vortex and defect positions

directly during the simulation greatly reduces the amount of generated data. Otherwise,

we would have to store the condensate wavefunction at each evaluation time step and

compute the observables of interest in a later step. A pair of vortex or defect coordinates

consists of two floating point numbers, so even storing several hundred coordinates is more

memory efficient than storing arrays the size of our system, i.e. 512×886 complex floating

point numbers. All simulations are independent since they represent independent noise

realizations. This allows us to compute the simulations in parallel on the CPU cluster

Helix within the bwHPC environment, see also the Acknowledgments section.

In a next step, we abstract from the physical properties of the simulated condensate and

compute all observables such as inter-defect distances or correlation functions necessary

for our analysis in Sec. 4 and Sec. 5 for each quench individually. Again exploiting their

independence, we developed highly parallelized algorithms that run on the CPU cluster

on 64 CPUs in parallel. Executing this intermediate analysis for each simulation individ-

ually on the CPU cluster has two advantages.

Firstly, the cluster offers enough memory to execute the evaluation of the individual sim-

ulations in parallel, thus greatly reducing the computational time needed for this analysis
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step.

Secondly, by splitting the simulation and the analysis step into two sets of programs,

we obtain a highly flexible software architecture that can easily be modified to compute

further observables from the fundamental vortex and defect properties, i.e. positions and

charge.

For this thesis, we accumulated over 250 years of CPU time on the Helix cluster during

the data generation and analysis process.

Finally, we have reduced the need for computational resources and memory to a level

manageable with a standalone computer. In the last data reduction step, we collect the

data from individual quenches and compute ensemble averages, probability distributions,

and statistical fluctuations across all simulations with a given parameter combination

{n̄, as}. Now the data is in a form that allows us to compute fits and generate the figures

we report in our analysis.

This data generation and reduction process is repeated for every parameter combination

{n̄, as} and initialization scheme.

We have implemented all of the above in MATLAB. In the following, we give an overview

of the software development necessary to obtain the results outlined in this thesis. We ex-

panded the eGPE solver provided by W. Kirkby to include the square lattice initialization

scheme and the vortex and lattice defect finding algorithms. The parallelized intermediate

data analysis step consists of nine programs totaling about 450 lines of code. We wrote

about 50 programs for the data aggregation, evaluation, and plotting step of the analysis,

with well over 5000 lines of code.

4 Topological lattice defects and bond-order correla-

tions

This section presents the analysis of the decay of lattice defects during supersolid forma-

tion, for both the droplet phase in Sec. 4.2 and the honeycomb phase in Sec. 4.6. We also

analyze the increase in bond-order correlation in the droplet phase in Sec. 4.4 and in the

honeycomb phase in Sec. 4.7.

4.1 Algebraic scaling regimes of the lattice defect coarsening

Fig. 4.1 shows the time evolution of the lattice defect number ND(t) obtained for the

specific parameter combination n̄ · a2dd = 0.075, as/add = 0.76. Further parameter com-

binations are discussed in more detail in Sec. D.1. Initially, the lattice defect number

increases rapidly in time. This is due to the applied filtering criteria discussed in Sec.

3.4 as they prevent tracking of vortices with limited density contrast. Additionally, the

displayed data stems from quenches within the uniform initialization scheme such that
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Figure 4.1: Time evolution of the lattice defect number ND(t) in the droplet phase for
n̄ · a2dd = 0.075, as/add = 0.76 and uniform initialization. Shading in red shows the
statistical fluctuation of the defect number across 3000 quenches with independent noise
realizations. Dashed lines in black indicate the approximate temporal boundaries of the
two distinct algebraic scaling regimes.

the condensate has to form droplets and a lattice structure does not exist immediately

post quench. The log-log plot clearly shows two different algebraic scaling regimes where

the defect number exhibits algebraic scaling with different scaling exponents. A steeper

slope and subsequently a faster lattice defect decay is observable in the late-time scaling

regime. We focus the following analysis and discussion on this regime as the lattice defect

number has larger numerical support in the late-time scaling regime owing to the fact that

we extract the lattice defect number over a linearly spaced temporal grid. We observe

that the late-time scaling regime does not extend to the latest simulated times, which can

be linked to the formation of long-lived global grain boundaries, as discussed in Sec. 4.3.

4.2 Late-time scaling exponents of the lattice defect coarsening

in the droplet phase

Our analysis begins by extracting the scaling exponents of the time evolution of the defect

number ND(t) in the late-time scaling regime discussed in the previous section Sec. 4.1,

using the ansatz

ND(t) = A · (t− t∗)α , (4.1)

where A denotes a normalization constant and t∗ a time shift included in the algebraic

decay fit. Scaling with (t − t∗)α is understood in the following sense: a system with

arbitrary initial state at t = 0 will evolve until t = t1 according to some non-algebraic

prescaling. At this time the system reaches the same state as if it had evolved for some

t2 ̸= t1 according to the algebraic decay. At times t > t1, scaling according to Eq. (4.1)

applies, and t∗ = t1 − t2. This gives rise to both positive and negative t∗.

To extract the algebraic decay constant α and t∗ from data, we observe that ND(t)1/β

24



4 Topological lattice defects and bond-order correlations

will form a linear function only for the right value of β = α. t∗ is then easily extracted

as the intercept of ND(t)1/β with the t-axis. This method is described in [69]. We detect

defect numbers ranging from O(102) at the beginning of a quench to O(101) at the end of a

quench due to our system size. Since t∗ and α are independent of the overall normalization,

it is numerically beneficial to reduce the normalization by an order of magnitude to get

O(1) numbers. This improves numerical stability when computing ND(t)1/β over a range

of possible β, especially if β is negative and close to zero. That leads to(
ND(t)

10

)1/β

=

(
A

10

)1/β

· (t− t∗)α/β, (4.2)

such that if we divide by the prefactor of the right hand side of Eq. (4.2), denote the

corresponding left hand side as Ñ(t), and for α = β, we get a linear function with unit

slope,

Ñ(t) = t− t∗. (4.3)

The optimum β is found by computing the left hand side of Eq. (4.2) over a range of

possible β and minimizing the squares of the residuals of a linear fit to the transformed

defect number Ñ . The results are plotted in Fig. 4.2. In our fit, we exclude early time

steps, where the supersolid is still forming and exhibiting algebraic scaling in the early-

time scaling regime, and late time steps, where most of the defects have already decayed.

Once we compute α and t∗, it is possible to compare them across datasets by considering

them to be a function of the density contrast. For each parameter combination, the

contrast is computed from the numerically obtained ground state wavefunction using Eq.

(2.23).

4.2.1 Bootstrap fit with non-Gaussian errors

The errors of the transformed defect number Ñ(t) shown in Fig. 4.2, panels a) through

c), are obtained by taking the standard deviation across all 3000 quenches for every

timestep. However, as we shall see in Sec. 4.3, the defect number does not scatter around

its mean in a Gaussian fashion. Therefore, we cannot apply a näıve χ2 minimization

scheme. Instead, we resort to a method known as bootstrapping [70]. This technique

does not require Gaussian errors since it resamples the original dataset with replacement

and fits the best α for all generated bootstrap datasets. Each bootstrap sample yields an

individual α and t∗. Contrary to the defect number, their distribution scatters uniformly

around a mean, as we confirmed in Fig. D.2 in Sec. D.2. It is justified to estimate the

error of α and t∗ by taking the standard deviation across these distributions. This yields

the errors reported in Fig. 4.2, panels d) and e).

Although the bootstrap method is a powerful method in theory, it comes with its own

drawbacks when implemented on a real-world computer. Consider the data presented in

Fig. 4.2. We report the time evolution of the defect number for 21 different parameter
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Figure 4.2: Lattice defect decay in the droplet phase for different initial states. Panel
a) shows the defect coarsening for n̄ · a2dd = 0.075 and at different scattering length with
uniform initial state. Panel b) holds data recorded with the same parameters as in a),
but with a square lattice initial state. In c), we report defect coarsening at a higher
average density n̄ · a2dd = 0.085. Color distinguishes different as, while data shown in gray
corresponds to early and late times excluded from the fit. Dashed-lines represent the best
linear fit obtained by the bootstrap method and shading indicates error regions for data
considered in fitting. Note that the χ2-fit for n̄ · a2dd = 0.075, as/add = 0.745 has not
converged, so we shall exclude this parameter combination from further analysis. Panel
d) shows the extracted scaling exponents, and the corresponding t-axis intercepts are
depicted in panel e) as a function of contrast C. For better readability, errors in d) and
e) are scaled by factor of 5 and 20, respectively. Results are obtained for 500 bootstrap
resamplings.

combinations {n̄, as} and initialization schemes. For every parameter combination, we

generate 500 bootstrap resamplings. For each resampling, we fit a linear function in the

minimum χ2 scheme to the transformed defect number Ñ(t) computed over a range of

200 β. In total, this amounts to 2.1 million linear fits. This situation quickly deteriorates

and consumes more than reasonable amounts of computational resources unless some

numerical methods are applied to save computational resources and make the bootstrap

applicable. Firstly, fits to different bootstrap samples are independent, so we can run them

in parallel efficiently without the need to feed back information across fits. Additionally,

we do not explicitly compute χ2 and minimize this quantity with a standard minimizer.

Instead we make use of the fact that we fit a linear function of the form

Ñ(t) = θ1 · t+ θ0, (4.4)
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Figure 4.3: Time evolution of defect number distributions for as/add = 0.76. Top panels
a) through c) show the time evolution of the defect number distributions for n̄·a2dd = 0.075
with uniform initialization, n̄ · a2dd = 0.075 with square lattice initialization and
n̄·a2dd = 0.085 with uniform initialization, respectively, when standardized according to Eq.
(4.7). In the lower panels d) through f), we report Poissonian distributions standardized
in the same fashion, and sampled 105 times with means according to the corresponding
distribution from the panels above.

where the fit parameter θ1 denotes the slope of Eq. (4.2). t∗ is given by −θ0/θ1. If we

introduce the weight matrix

W = diag
(
σ2
Ñ(t1)

, · · · , σ2
Ñ(tn)

)−1

= diag
(

1/σ2
Ñ(t1)

, · · · , 1/σ2
Ñ(tn)

)
(4.5)

for the resampled time indices t1, · · · , tn and the variance σ2
Ñ(ti)

of Ñ at time index ti taken

across all 3000 quenches under the assumption of vanishing covariance, we can compute

the optimum fit parameters θ = (θ0, θ1)
⊤ that minimize χ2 using computationally cheap

matrix multiplication [71],

θ =
(
X⊤WX

)−1 ·
(
X⊤W Ñ

)
. (4.6)

Here, Ñ is a column vector where the i-th entry is given by Ñ(ti), and X =


t1 1
...

...

tn 1

 a

n× 2 matrix.
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4.3 Defect types and their unbinding modes

The evaluation of the previous section is purely concerned with the time evolution of the

defect number. We proceed by investigating different defect types and unbinding modes

in the droplet phase. To analyze the decay modes of defects, we report the time evolution

of the defect number distributions post quench in Fig. 4.3. Here, we plot the probability

density P (z) instead of P (ND(t)). It is insightful to consider a Poissonian standardization,

z(t) =
ND(t) − ⟨ND(t)⟩√

⟨ND(t)⟩
, (4.7)

as the number of defects decays over time, with ⟨·⟩ denoting the mean over all 3000

quenches. This approach allows us to compare distributions with time-shifting means in

a single plot.

While the defect number is distributed according to a Poissonian immediately post quench

(t = 50 ms), distributions quickly spread. At the end of the simulated time period (t =

1500 ms), the defect number distributions no longer have a single maximum. Instead,

they show a local minimum at the mean defect number z = 0, with one maximum to

either side. This indicates that the system evolves towards two different final states with

different decay modes. It also justifies the exclusion of late time steps in the fitting proce-

dure as in the previous section because the decay mode with lower defect number might

simply run out of defects to decay.

In a 2D solid, one may distinguish the different lattice defect types disclinations, disloca-

tions and grain boundaries [72].

Disclinations are point-like lattice defects that destroy both translational order as well as

angular order. They are defined as lattice points with non-zero charge. We have periodic

boundary conditions as we evaluated the kinetic operator and the long-ranged DDI in

momentum space. This implies that on a finite domain, disclinations must be generated

as pairs, thus not contributing a total charge. We find these pairs to be tightly bound (c.f.

Sec. 4.5). Fig. 4.4 illustrates the two fundamental disclinations in a lattice with otherwise

hexagonal symmetry with positive and negative unit charge.

Dislocations form another type of point-like lattice defect. In 2D, they terminate an ad-

ditional layer of lattice points, in our case droplets, stuck partway into the crystal. They

preserve angular order, but destroy translational order. Due to periodic boundary con-

ditions, dislocations will always appear as pairs with opposing Burgers-vectors, and each

dislocation consists of a pair of defects with opposing charge. Thus, a dislocation may be

viewed as a bound pair of disclinations.

Grain boundaries constitute topological line defects. They correspond to the boundaries

of domains rotated with respect to each other and may be viewed as a string of disloca-

tions. Again due to periodic boundary conditions, grain boundaries are always closed.

All of the above leads to a vanishing total charge, which we observe in our system (c.f.
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Figure 4.4: Fundamental disclinations in a hexagonal lattice. Panel a) shows a disclination
where the central lattice point has seven neighbors, hence it is a defect with positive unit
charge. A disclination with negative unit charge is shown in panel b).

Sec. D.3).

These different types of defects are closely related to the observed defect number dis-

tributions. Dislocations can move along the additional layer of droplets they terminate,

and two pairs of dislocations can annihilate. The relaxation is more nuanced with grain

boundaries. Domains with different crystal orientation will grow in time, but since we

simulate a finite system, this process cannot continue indefinitely. A common occurrence

is the appearance of a pair of grain boundaries running in parallel along the shorter x-

dimension. Due to periodicity, the simulated grid is effectively the surface of a torus,

so those closed grain boundaries are especially hard to relax. A growing of one crystal

domain necessitates shrinking of the remaining crystal domain. If these kind of grain

boundaries appear, they are usually long-lived and cause the peak with high defect num-

ber observed in the defect number distributions Fig. 4.3.

In Fig. 4.5, we visualize two different final states after 1500 ms time evolution for in-

dependent noise realizations within the uniform initialization scheme. Panels a) and b)

show the appearance of a pair of dislocations that terminate an additional droplet crys-

tal layer. Panels c) and d) report the formation of a pair of parallel grain boundaries

along the x-dimension. While the two crystal domains between these grain boundaries

with different crystal orientations are completely devoid of any lattice defects, these grain

boundaries constitute of the order of 2Lx/lx = 32 long-lived lattice defects. The former

final state corresponds to a final state with lower than average defect number, while the

latter constitutes a final state within the peak with higher than average defect number

visible in the defect number distributions Fig. 4.3.
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4 Topological lattice defects and bond-order correlations

Figure 4.5: Final states after 1500 ms time evolution for independent uniform initializa-
tions in the droplet phase, n̄·a2dd = 0.075, as/add = 0.77. Panels a) and c) show the density
distributions of the different final states while the corresponding Voronoi tesselations are
reported in panels b) and d). Blue Voronoi cells signify neutral density maxima, whereas
green cells distinguish negatively charged maxima from positively charged maxima in red
cells. The Delaunay triangulation and the extracted positions of the density maxima are
plotted in black atop the Voronoi tesselation. The red rectangles in b) and d) visualize
the simulated space-grid corresponding to the support of the density distributions shown
in a) and c), respectively, while Voronoi cells and density maxima beyond these rectangles
are a result of the padding discussed in Sec. 3.6. Density maxima plotted in yellow in b)
highlight the additional droplet crystal layer terminated by the pair of dislocations.

4.4 Angular correlation function g6 - a hexatic system

Another way to quantify order in a lattice is given by the angular correlation function,

which measures correlation of bond orientational order and is given by [73, 74]

g6(r) = ⟨Ψ∗
6(ri)Ψ6(rj)⟩|ri−rj |∈[r,r+dr], (4.8)

for some numerically important bin size dr, with the local bond orientational order pa-

rameter

Ψ6(ri) =
1

Ni

∑
k

e6iθik . (4.9)

Here, the sum
∑
k

runs over the Ni lattice neighbors of lattice point i at position ri. θik

denotes the angle enclosed by the bond-vector connecting lattice point i to lattice point

k and an arbitrary reference axis we take to be ŷ =
(

0, 1
)⊤

, and ⟨·⟩ refers to the average

over all pairs i, j such that |ri − rj| ∈ [r, r + dr]. By symmetry, imaginary parts cancel

out and g6 is real.

Although it might appear lucrative to extract g6 over as large radii as possible, we have
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4 Topological lattice defects and bond-order correlations

Figure 4.6: Panels on the left side show the time evolution of η6(t) for n̄ · a2dd = 0.075
with uniform initialization (a)), n̄ · a2dd = 0.075 with square lattice initialization (b)), and
n̄ · a2dd = 0.085 with uniform initialization (c)), respectively. Color distinguishes different
as/add, and the dashed lines serve to trace t−1 scaling. Insets report the local slope β, with
black lines signaling β = −1. Panel d) conveys a single recorded time evolution of g6(r),
for n̄ · a2dd = 0.075, as/add = 0.76, and with square lattice initialization. Color indicates
different times. We omit errors for readability purposes and only report the average g6
value, taken over 3000 quenches. The results of the bootstrap fit to this data at t = 300
ms for 105 resamplings are shown in panel e), with a gaussian distribution in black for
comparison.

to be mindful of periodic boundary conditions. They require ’wrapping’ of the distance

measure across the boundaries of the grid, i.e. two lattice points on opposite sides of the

grid might actually be close when taking periodicity into account. Thus, since we want

to avoid autocorrelation and double counting of lattice parts at different radii, we restrict

our analysis of g6 to distances r < 8 lx. It is also useful not to evaluate g6 on length

scales smaller than lx. If there are droplets at these scales, they will induce a defect, thus

causing a sudden decrease in g6 when approaching radii comparable to the unit cell length

from above (see Fig. 4.6, panel d)).

A perfect crystal lattice experiences bond orientational order correlation over an infinite

range, and therefore g6(r) ∝ const.. In a fluid, bond orientational order is short-ranged

and decays as g6(r) ∝ e−r/ξ6 for some characteristic correlation length ξ6, while

g6(r) ∝ r−η6 in the intermediate hexatic phase [72]. Thus, orientational order is only

quasi long-ranged.

We observe that our system is best described by g6(r) ∝ r−η6(t), with the spatial decay

constant η6(t) decaying algebraically in time itself. For every time step, we extract η6 with

a bootstrap approach similar to the bootstrap in Sec. 4.2, and the approach is validated
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4 Topological lattice defects and bond-order correlations

by the obtained η6 distributions shown in Fig. 4.6, panel e). Although η6 is not distributed

in a strictly gaussian fashion, this panel still justifies to get an estimator of the true η6

value by taking the mean across all resamplings, and estimate an error based on the width

of the distribution. The time behavior of η6 is given by power law scaling η6(t) ∝ tβ, as

shown in Fig. 4.6, panels a) through c). β can be computed as the slope in log-log space,

β = d log η/d log t. Since g6 has been computed at times ti with finite separation, we show

the finite distance instantaneous slope

βinst(ti) =
log η(ti−1) − log η(ti+1)

log ti−1 − log ti+1

(4.10)

in the insets of Fig. 4.6, panels a) through c).

At late times, η6 decreases in absolute value, which signals a slower increase in correlation.

As discussed in Sec. 4.3, this can be traced back to the formation of grain boundaries

spanning the entire system, i.e. a quasi-stable state where a uniform increase in domain

size is no longer possible.

4.4.1 χ6 - another approach to bond orientational order

The analysis in the previous section relies heavily on the supersolid experiencing a hexatic

phase, i.e. g6(r, t) ∝ r−η6(t). As g6(r) is subject to extensive influence of finite size effects

in the range accessible to the present work7, we test the hexatic assumption by computing

the angular susceptibility

χ6 = ⟨|Ψsub
6 |2⟩, (4.11)

as suggested in [75]. We redefine the local bond orientational order parameter Eq. (4.9)

to span a subsystem,

Ψsub
6 =

1

Nsub

∑
i

1

Ni

∑
k

e6iθik , (4.12)

where the sum
∑
i

runs over the Nsub lattice points in a given subsystem,
∑
k

sums the

Ni nearest neighbors of a given lattice point, θik as defined before, and ⟨·⟩ denotes the

average over different subsystems with the same size. Since our system is rectangular with

aspect ratio
√

3, we compute χ6 for subsystems with the same aspect ratio. To this end,

we simply tile the entire system with rectangles of size l ×
√

3 · l, and l/lx ∈ {1, 2, 4, 8}.

χ6 serves to distinguish different phases. A perfect, infinite solid is subject to χ6 = 1 due

to long-ranged order, and the lack of this order prompts a fluid to behave as χ6 ∝ 1/Nsub.

A uniform hexatic phase with quasi long-ranged order can be distinguished from the two

7We expect neighboring lattice points to be separated by the unit cell length lx in a periodic hexagonal
lattice. If we observe the next lattice point at more than unit cell length separation, it likely constitutes
a defect and hence decreases g6. Generalizations hold for the k-th nearest lattice point, causing an
oscillatory behavior of g6. This leads to the sudden decrease of gg at r/lx ∼ 1.5 clearly visible in Fig. 4.6.
As the number of lattice points enclosed in a spherical shell of thickness dr in d = 2 dimensions increases
as 2πrdr, the magnitude of this effect decreases and g6 is less oscillatory at larger radii.
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4 Topological lattice defects and bond-order correlations

Figure 4.7: Time evolution of χ6 distributions for n̄ · a2dd = 0.075, as/add = 0.760 and
uniform initialization. Panels a) through d) show χ6 distributions recorded for increasing
subsystems of size l ×

√
3 · l, where l/lx ∈ {1, 2, 4, 8} in panel {a), b), c), d)}.

extremes if the χ6 distributions are qualitatively irrespective of the subsystem size [75].

We observe the latter to be the case in our system, as demonstrated in Sec. 4.5.

4.4.2 Defect pair formation and inter-defect distance

Another approach to distinguishing a fluid from a hexatic phase is presented by the inter-

defect distance. In the hexatic phase, disclinations are bound by a logarithmic potential

while being free in a fluid [72]. Therefore, if we observe clustering of defects into pairs, i.e.

if the inter-defect distance is one lattice bond, the system is in a hexatic phase. We find

overwhelming evidence for this clustering (Sec. 4.5). This also rules out the possibility to

estimate the growing of the length scale ξ(t) from the inter-defect distance, as has been

done for vortices in a uniform superfluid [19].

Together with the χ6 analysis, we conclude that the hexatic assumption is reasonable

despite prominent finite size effects.

4.5 Substantiation of the hexatic assumption

In Sec. 4.4, we claim to analyze a system in a hexatic phase, and outline two approaches

to validate this assumption beyond the shape of g6(r), namely the angular susceptibility

and the inter-defect distance. Here, we supply aforementioned evidence justifying the

hexatic assumption.
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4.5.1 Hexatic properties of χ6

Fig. 4.7 holds several important conclusions. In general, and irrespective of subsystem

size, χ6 increases as a function of time. This indicates an increase in bond orientational

correlation, which matches closely with the g6(r) analysis. A second key observation is

that for a given time, the overall shape of the χ6 distributions is similar for different

subsystem sizes. There is only a minor shift towards lower values of χ6 and a broadening

of the distribution with increasing subsystem size. Larger subsystems are more likely to

include grain boundaries, which destroy angular order and decrease χ6. The broadening is

a result of averaging as there are less subsystems with increasing subsystem size. A single

grain boundary therefore has a major impact on the χ6 distribution in large subsystem,

but influences only a minor number of subsystems if the size of the subsystem is small.

Crucially, the χ6 distributions cannot be viewed as the sum of a solid-like and a fluid-like

distribution, which would be the case in an inhomogeneous two-phase system.

We find this pattern across the entirety of the explored parameter space, and validate the

hexatic assumption.

For the sake of completeness and to avoid ambiguities, we want to add that there is

another conflicting definition of the angular susceptibility [72] including the square of the

mean Ψsub
6 ,

χ6 = ⟨|Ψsub
6 |2⟩ − ⟨|Ψsub

6 |⟩2, (4.13)

with the modified local bond orientational order parameter as in Eq. (4.12). However,

we make use of the simpler definition Eq. (4.11) because we are only interested in the

qualitative interpretation of χ6 presented above. Using the square of the mean instead of

the variance has the benefit that it allows to distinguish solid-like (χ6 ≈ 1) from fluid-like

(χ6 ≈ 0) phases directly, and it is straightforward to spot a superposition of a solid-like

and a fluid-like distribution indicative of an inhomogeneous two-phase system.

4.5.2 Inter-defect distance across the parameter space

We observe strong clustering of lattice defects (see Fig. 4.8) across the entirety of the

traversed parameter space. As a crystal is by definition subject to periodicity, it can be

insightful not to measure the distance to the nearest defect in harmonic oscillator units or

even µm. Instead, we report the graph distance d. To this end, we construct a graph out

of the lattice structure, with droplets corresponding to vertices, and inter-droplet bonds

defining the adjacency in that fully connected, planar, undirected, unit-weighted graph.

For any lattice defect, i.e. for each vertex with adjacency unequal to six, we compute the

number of edges separating this lattice defect from the next. By quoting the distance in

the number of edges, we account for the inherent discreteness of the problem.

Almost the entire probability weight is concentrated in the first bin, i.e. at one edge

separation corresponding to clustered defects. Finding a separation of more than one
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4 Topological lattice defects and bond-order correlations

Figure 4.8: Time evolution of graph distance distribution to the nearest lattice defect.
Panels left to right show different initial conditions: n̄ · a2dd = 0.075 with uniform initial-
ization (a), d)), n̄ ·a2dd = 0.075 with square lattice initialization (b), e)) and n̄ ·a2dd = 0.085
with uniform initialization (c), f)). Upper panels hold data recorded at the lowest re-
spective scattering length (as/add = 0.745 in a), b) and as/add = 0.75 in c)), while the
lower panels represent the largest analyzed scattering length (as/add = 0.775 in d), e) and
as/add = 0.78 in f)), and color serves to distinguish different times.

edge is increasingly unlikely, with the probability density decreasing by about two orders

of magnitude for any additional edge, and we find this observation to hold true irrespective

of initial conditions.

Although this result is far more indirect than the shape of the χ6 distributions, it still

serves as a cross-check to validate the hexatic assumption and rules out a fluid phase with

free disclinations.

4.6 Late-time scaling exponents of the lattice defect coarsening

in the honeycomb phase

We largely employ the same methods as in the droplet phase to analyze the defect coars-

ening in the honeycomb phase. Similar to Fig. 4.2, we report the time evolution of the

transformed defect number for different states in the honeycomb phase in Fig. 4.9, panels

a) through c), where we extract the scaling exponent α and t∗ with a bootstrap fit in

panels d) and e), respectively.

Irrespective of average particle area density, we find the same time evolution of the de-

fect number distribution as in Fig. 4.3. The condensate evolves towards two distinct final

states. One final state is devoid of defects, representing the true supersolid ground state.

On the other hand, there is a second final state with finite defect number, corresponding
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Figure 4.9: Lattice defect decay in the honeycomb phase for different average densities.
Panels {a), b), c)} show the defect coarsening for n̄ · a2dd = {0.17, 0.2, 0.22} and as/add =
0.78. Data shown in gray corresponds to early and late times excluded from the fit.
Dashed lines represent the best linear fit obtained by the bootstrap method and shading
indicates error regions for data considered in fitting. Panel d) shows the extracted scaling
exponents, and the corresponding t-axis intercepts are depicted in panel e) as a function
of density contrast C. For better readability, errors in d) and e) are scaled by a factor of
5. Results after 5000 bootstrap resamplings.

to a final state with global grain boundaries. This shows that the honeycomb experiences

the same defect decay modes as the droplet phase.

4.7 Angular correlation in the honeycomb phase

In analogy to the droplet phase, we find the different states in the honeycomb phase to

behave as a hexatic system as well, as verified in Sec. D.4. Fig. 4.10 shows the algebraic

decay of both g6(r) ∝ r−η6 with notable finite-size effects (panel d)) and η6(t) ∝ t−β

(panels a) through c)). The bootstrap approach is validated in panel e).

4.8 Interpretation of topological defect coarsening

While we have already discussed the different defect decay modes in Sec. 4.3, we have

yet to discuss the scaling exponents of the algebraic decay of both the defect number

and the angular correlation function. In the droplet phase, the defect decay is faster at

larger contrast. This matches closely with a faster increase in bond orientational order,

i.e. larger |βinst|. This result seems counterintuitive at first. At lower contrasts, there is

a larger superfluid background promoting particle flow between droplets, which should
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Figure 4.10: Panels {a), b), c)} show the time evolution of η6(t) for n̄ · a2dd =
{0.17, 0.2, 0.22} and as/add = 0.78. Insets report the local slope β, with black solid and
dashed lines signaling β = {−0.845± 0.010, −0.729± 0.006, −0.734± 0.008} in {a), b),
c)}. Panel d) conveys a single recorded time evolution of g6(r), for n̄ · a2dd = 0.2, as/add =
0.78. Color indicates different times. We omit errors for readability purposes and only
report the average g6 value, taken over 3000 quenches. The η6 results of the bootstrap fits
to g6(r) ∝ r−η6 at t = 300 ms for 106 resamplings are shown in panel e), with a gaussian
distribution in black for comparison.

increase the relaxation speed. However, particles can also be redistributed in the system

by moving droplets themselves, thus keeping the particles within the same droplet. This

is to be expected in the large contrast regime. Additionally, a lattice defect presents less

of a disturbance of the condensate’s density in the low contrast regime as the modulation

around the average particle area density is small. This is in opposition to the high density

regime, where the condensate density vanishes between droplets. Thus, a lattice defect

is a large deviation from the energetically favorable ground state. Finally, an increase in

contrast is associated with an increase of the relative strength of the DDI compared to

contact interaction in the quenches considered in the present work. As the long-ranged

DDI is responsible for the appearance of supersolid properties, the faster defect decay

in the large contrast regime might be a result of this relative increase in DDI strength.

Ultimately, the exact decay mechanism remains elusive within the scope of this work,

and we will discuss possible methods to distinguish particle exchange between droplets

vs. redistribution of droplets in Sec. 6.

We also observe that the time shift t∗ in the algebraic scaling decreases with increasing

contrast in the droplet phase. The decrease in t∗ = t1 − t2 has a simple interpretation. In

the high contrast regime, the transition time between the early-time and late-time scaling

regimes shifts towards later times (as discussed in Sec. D.1) such that at the onset time t1
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of the algebraic scaling in the late-time scaling regime, many lattice defects have already

decayed and we have t2 > t1. A smaller defect number at the beginning of the algebraic

late-time scaling corresponds to a larger t2 since t2 denotes the time needed for the defect

number to decay to its initial value at the onset of the late-time algebraic scaling regime.

Remarkably, initializing the system with droplets in a square lattice has no major impact,

neither on the scaling exponent α nor on t∗. This emphasizes that the ground state

contrast is an appropriate measure to compare datasets with different initial conditions.

In the honeycomb phase, it is harder to interpret the decay coefficients. As we consider

quenches to the same s-wave scattering length with different average densities, an increase

in contrast does not correspond to an increase in relative DDI strength. Additionally,

we analyze only three different parameter combinations in the honeycomb phase with

similar contrast, which limits the ability to give general conclusions. Nonetheless, we

make several observations that allow first conclusions. At constant scattering length,

increasing the average density reduces contrast as the honeycomb lattice is forced to

expand and broaden into the low density regions by added particles. This increases the

minimum density and therefore reduces contrast. Additionally, t∗ increases with contrast.

This shows that prescaling is faster at greater average densities, indicating a promotion

of particle flow in a broadened lattice. The scaling exponents, however, do not reveal

a clear pattern because we only analyze the defect decay with three different parameter

combinations, as discussed above.

5 Vortex statistics

Vortices constitute another type of defect, albeit not to the supersolid crystal structure

itself, but rather to the condensate, as the local density vanishes at the core of a vortex

[7]. Instantaneous quenches of the s-wave scattering length represent a violent disruption

to a BEC, especially since we quench across the superfluid-supersolid phase boundary.

This leads to the formation of vortices. We find a non-universal dependence of the vortex

number Nv on initial conditions. In particular, we observe wildly varying Nv as a function

of as/add. The deeper the quench, i.e. the smaller as/add, the larger Nv. Fig. 5.1 shows

the initial vortex number N0
v at the first recorded timestep t0 = 50 ms post quench

for quenches in the droplet phase. The initial vortex number varies by 3 (!) orders of

magnitude in the range 0.745 ≤ as/add ≤ 0.765. For greater scattering length, we do not

observe vortices at t ≥ 50 ms. The honeycomb phase is completely devoid of vortices

in the parameter space explored by the present work. Therefore, we restrict our vortex

statistics analysis to quenches with {n̄ · a2dd, as/add} = {0.075, 0.745}. Here, we operate in

the large N limit where the mean vortex number stays sufficiently large throughout the

quench to get statistically meaningful results.
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Figure 5.1: Vortex number 50 ms post quench in the droplet phase for different average
densities and initialization schemes.

5.1 Vortex spacing distribution

Quenches of the chemical potential lead to vortices distributed according to a Wigner-

Dyson distribution in a uniform condensate [25, 67], where the distance s between vortices

obeys

P (S = s/⟨s⟩) =
π

2
S exp

(
−π

4
S2
)
, (5.1)

immediately post quench, and S = s/⟨s⟩ in terms of the mean vortex spacing ⟨s⟩. Specif-

ically, P (S)dS yields the probability to find the nearest vortex at a normalized distance

between S and S + dS, and Nv − 1 vortices at greater distances. This can be generalized

to the k-th nearest neighbor spacing distribution [67]8,

P (k)(S) =
2

(k − 1)!
r2kS2k−1 exp

(
−r2S2

)
, (5.2)

with r = Γ(1
2

+ k)/Γ(k), and Γ(x) the gamma function. Analogously to Eq. (5.1), the

distribution in Eq. (5.2) describes the probability to find the k-th nearest vortex at a

normalized distance between S and S + dS, with k − 1 vortices at a smaller distance

8Note that Eq. (17) of [67] erroneously uses r2k−1 instead of r2k, whereas the correct r2k

is used in Eq. (A5). The correct exponent of r is a result of the normalization condition∫ ∞

0

dS P (k)(S) = 1. We obtain

∫ ∞

0

dS P (k)(S) =
2

(k − 1)!
r2k
∫ ∞

0

dS S2k−1 exp
(
−r2S2

) u=r2S2

=

2

(k − 1)!
r2k
∫ ∞

0

du
1

2r2

( u
r2

)k−1

exp(−u) =
Γ(k)

(k − 1)!
= 1 using the definition of the gamma function

and Γ(k) = (k − 1)! ∀ k ∈ N+, as required.
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Figure 5.2: Time evolution of vortex spacing distributions for n̄ · a2dd = 0.075 and
as/add = 0.745 with uniform initialization. Panels left to right distinguish increas-
ing k, while panels top to bottom display vortex spacing distributions under differ-
ent charge constraints. Color indicates different times. Plotted in black are general-
ized Wigner-Dyson distributions P̃ (k)(S). We show P̃ (1)(S) in the row corresponding

to P (k)(S), P̃ (1)(S) and P̃ (2)(S) in the rows corresponding to P
(k)
+−(S) and P

(k)
−+(S), and

P̃ (1)(S), P̃ (2)(S), and P̃ (3)(S) in the rows corresponding to P
(k)
++(S) and P

(k)
−−(S), from left

to right. Logarithmic y-axis serve to highlight deviations in the tails of the distributions
where probability weight is low.
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and Nv − k − 1 vortices at a greater distance. These distributions are independent of

the vortex charge and refer to a generic vortex. We will also analyze these spacing

distributions considering topological vortex charge, and use the notation P
(k)
QQ′ to refer to

the conditioned k-th nearest vortex spacing distribution, given that the reference vortex

at s = 0 has charge Q, and the k-th nearest vortex at distance s has charge Q′. Note that

also the mean vortex spacing ⟨s⟩ used in the normalization S = s/⟨s⟩ is calculated with

charge constraints applied to the inter-vortex distances, i.e. in the calculation of a charge

constrained inter-vortex distance distribution, the distances are normalized to an average

separation calculated from inter-vortex distances obtained from vortices fulfilling the given

constraints. Additionally, we will henceforth denote the theoretical prediction Eq. (5.2)

as P̃ (k)(s) to distinguish measured quantities from theoretical predictions. Note that we

consider all vortices to carry unit charge as discussed in Sec. 3.3 and only distinguish the

signs of their respective charges. As we treat these distributions as an ensemble average,

P
(k)
QQ′(S) = P

(k)
QQ′

(
sij
⟨sij⟩

)
sij∈[s,s+ds]; i,j=1...Nv

, (5.3)

where sij denotes the distance from the i’th vortex to the j’th vortex, i.e we do not con-

sider a single vortex as the origin, we expect the symmetries P
(k)
+− = P

(k)
−+ and P

(k)
++ = P

(k)
−−

in the conditioned vortex spacing distributions.

In our data presented in Fig. 5.2, we observe several symmetries. Firstly, we observe

P
(k)
+−(S) = P

(k)
−+(S) and P

(k)
++(S) = P

(k)
−−(S) for all k = 1, 2, 3, 4, as expected. However,

there are the additional symmetries P (1)(S) = P
(1)
+−(S), P (2)(S) = P (3)(S),

P (4)(S) = P
(3)
+−(S) and P

(k+1)
+− (S) = P

(k)
++(S) for k = 2, 3, 4. These symmetries reveal

clustering of vortices into pairs, where a pair consists of two vortices with opposing

topological charge. Suppose all vortices cluster into pairs with opposing charge, then

P (1)(S) = P
(1)
+−(S). Also, since the second and third nearest vortices constitute a pair, we

have P (2)(S) = P (3)(S) if the pair separation distance is much larger than the binding

length of a vortex pair. Finally, since every reference vortex is bound to a vortex with

opposing charge, we have P
(k+1)
+− (S) = P

(k)
++(S) for k = 2, 3, 4. Quantitatively, we observe

convergence of the vortex spacing distributions to generalized Wigner-Dyson distribu-

tions with increasing k. While the shape of distributions at small k remains elusive, we

have P
(3)
++(S) = P̃ (2)(S) and P

(4)
++(S) = P̃ (3)(S). The symmetries given above also imply

P
(4)
+−(S) = P̃ (2)(S).

The fact that the vortex spacing distributions in the supersolid phase differ significantly

from vortex spacing distributions in a uniform phase is expected, for two reasons.

Firstly, the Wigner-Dyson distribution arises from the assumption that the vortex spac-

ing follows Poisson arrivals on a plane, i.e. the vortex distances to a reference point

obey Poissonian statistics [76]. This, in turn, assumes translational invariance since the

reference point is arbitrary, and no position is favored with respect to another location.

However, translational invariance of the condensate density is broken in the supersolid
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phase by construction. As vortices in a supersolid concentrate in regions with low parti-

cle area densities [41], translational invariance is also broken for vortex distribution. In

particular, vortices nest in the low density regions between droplets.

Secondly, vortices themselves interact with a logarithmic potential where vortices with

opposing charge attract each other [25, 67]. As we allow for dynamics, i.e. we do not

extract vortex spacing distributions immediately post quench, the vortex spacing dis-

tributions are significantly altered by inter-vortex interactions and interactions between

vortices and droplets. On large scales, i.e. at vortex spacing distances larger than lx,

however, the vortex-droplet interaction is negligible. The vortex-vortex interaction is

also short-ranged due to the logarithmic potential. Consequently, we expect to recover

generalized Wigner-Dyson distributions on large scales and correspondingly in the large

k regime, which is realized in our data. This shows that the vortex spacings initially

obey Poissonian statistics, but vortex-droplet and inter-vortex interactions quickly alter

spacing distributions on small length scales.

5.2 Vortex number distribution

Another important distribution is the vortex number distribution P (Nv), which describes

the probability density distribution to find a given vortex number Nv in a single quench.

The formation of vortices can be modeled by a binomial distribution [67],

P (Nv) =

(
Nd

Nv

)
pNv(1 − p)Nd−Nv , (5.4)

where Nd = A/ξ2v denotes the number of expected domains for vortex formation in a

BEC of size A, and p describes the probability to form a vortex in a given domain. ξv is

the typical length scale of vortex formation. A binomial distribution tends to a Gaussian

distribution in the large Nv limit,

P (Nv) ∝ exp

{
−(Nv − ⟨Nv⟩)2

⟨Nv⟩

}
, (5.5)

with ⟨Nv⟩ the average vortex number at a given timestep taken across all 3000 quenches.

Eq. (5.4) only makes assumptions on the formation process of vortices, and, a priori, must

not be assumed to hold throughout the time evolution post quench. However, we find

this to be the case in our data shown in Fig. 5.3. The vortex number distribution remains

Gaussian throughout the quench, albeit with a time-dependent mean. Unlike the lattice

defect unbinding mechanism (see Fig. 4.3), this indicates uniform annihilation of vortex

anti-vortex pairs, i.e. pairs of vortices with opposing topological charge.
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5 Vortex statistics

Figure 5.3: Time evolution of the vortex number distribution for {n̄ · a2dd, as/add} =
{0.075, 0.745} and uniform initialization. Red histograms show the data from all 3000
quenches, and plotted in black is a Gaussian according to Eq. (5.5). Panels {a), b), c),
d), e), f)} correspond to times {1, 2, 3, 4, 5, 6} · 250 ms post quench.

5.3 Supersolid influence on vortices

The presence of vortices in the supersolid phase highlights that a condensate in this phase

still exhibits superfluid properties. However, it is striking to observe more vortices at

small scattering lengths, corresponding to supersolid states with large contrast C → 1.

Superfluidity can be quantified using the superfluid fraction fs. At nonzero temperature,

Landau’s two component theory of superfluidity [31] predicts that the superfluid density

does not coincide with the total density. There is a ’normal’ component that lacks su-

perfluid properties, and fs describes the fraction of a system with superfluid properties.

In our setup, we do not consider thermal occupation and thus, in a state lacking super-

solidity, i.e. C → 0, we have fs = 1. However, by breaking continuous translational

invariance in a supersolid state, fs can deviate from unity even at zero temperature, and

the phase diagram [22] shows that states with larger contrast will in general experience

lower fs. From this, we conclude that supersolidity protects vortices from annihilating

quickly via the droplet-vortex interaction. By nesting in the low density regions between

droplets, vortices are not free to move like in a uniform state, so supersolidity influences

vortex annihilation beyond the inter-vortex interaction with logarithmic potential. This

matches closely with the deviations of the vortex spacing distributions from generalized

Wigner-Dyson distributions observed in Sec. 5.1.

We note that contrast also has an influence on the generation of vortices. In the low con-

trast regime, the background density remains high, and, as the density must vanish at the
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core of a vortex, this inhibits the generation of vortices. On the other hand, supersolids in

the high contrast regime are already subject to very low minimum densities by definition

of the contrast Eq. (2.23), which promotes the creation of vortices.

6 Conclusion and outreach

In this thesis, we have analyzed the formation process of 2D supersolids after quenches of

the s-wave scattering length. We showed that the number of lattice defects experiences

two algebraic scaling regimes with different scaling exponents in the droplet phase. In

the late-time scaling regime, the defect decay is faster if the condensate is subject to

large contrasts. However, the exact defect decay mechanism remains elusive. In both the

droplet and the honeycomb phase, the forming supersolid is found to experience the quasi

long-ranged bond angular order typical for a hexatic system, prompting the algebraic de-

cay of the angular bond-order correlation function g6(r) ∝ r−η6 . Again, matching closely

the defect of lattice defects, bond order is increasing faster in the large contrast regime.

Additionally, investigating vortices, their spacing distributions and their number distri-

butions, we have observed a hallmark property of superfluids. Apart from vortex droplet

interactions on small length scales, we find that the distribution of vortices in a super-

solid can be modeled by Poissonian arrivals on a plane. This manifests itself in the

emergence of Wigner-Dyson-like vortex spacing distributions. We conclude that the vor-

tex anti-vortex annihilation process is unimodal as the defect number distribution remains

Gaussian throughout the time evolution of the condensate post quench.

Finally, we remark on a systematic error we committed in the analysis of both ÑD(t) and

g6(r). With the benefit of hindsight, and acknowledging the observed algebraic scaling,

these quantities should be extracted over logarithmically spaced domains. In our analysis,

they were extracted over linear domains, which leads to unequal sensitivity, i.e. fits are

dominated by properties in the large t and large r regime, respectively.

Concluding, we want to point out several possible continuations to this thesis.

The analysis of the lattice defect decay process has been restricted to the late-time scaling

regime. However, the presented methods could also be applied to the early-time algebraic

scaling regime. Additionally, the influence of initial conditions on the transition time

between the different scaling regimes may be analyzed in more detail.

Beyond the reuse of the discussed methods, we propose five additional methods to further

the understanding of the supersolid formation process.

Firstly, in the droplet phase, it would be beneficial to analyze the systems for global phase

coherence. Especially for deep quenches, i.e. quenches with low as, it cannot be ruled

out that the system transitions to an isolated droplet regime lacking phase coherence and

therefore losing supersolid properties. A global measure for phase coherence is given by
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P(t) = 1 − 2

π

∫
d2r⊥ |ϕ(r⊥, t) − ⟨ϕ(t)⟩|n(r⊥, t)∫

d2r⊥ n(r⊥, t)
, (6.1)

which measures the local deviation of the condensate phase ϕ from the average phase

⟨ϕ(t)⟩ = 1/N ·
∫

d2r⊥ n(r⊥, t)ϕ(r⊥, t), with an appropriate branch choice for ϕ [26]. A

lack of phase coherence is indicated by P → 0, whereas a supersolid is subject to P ∼ 1.

Secondly, to further the understanding of the defect relaxation process in the droplet

phase, it is insightful to identify if the relaxation process is driven by the movement

of droplets or by inter-droplet particle exchange. The former case is characterized by

correlation of droplet positions and positions of large phase gradients, as the velocity field

in a superfluid is given by the gradient of the phase, see Sec. 3.3. In the latter case,

phase gradients will be high in regions of low density between the droplets. Therefore, we

propose the measure

M(t) =

∫
d2r⊥ |∇ϕ(r⊥, t)|n(r⊥, t)(∫

d2r⊥ |∇ϕ(r⊥, t)|
)
·
(∫

d2r⊥ n(r⊥, t)
) . (6.2)

This measure has the following clear interpretation. If condensate flow is on average

the same in high-density regions as elsewhere, then M = 1. However, if particle flow is

enhanced in droplets, i.e. the relaxation process is driven by the redistribution of droplets,

then M > 1, whereas inter-droplet particle exchange is characterized by M < 1.

Thirdly, another aspect of hexatic systems can be analyzed. This thesis has focused on

angular correlations. However, hexatic systems also display short-ranged orientational

order, i.e. gG(r = |ri − rj|) = ⟨eiG[u(ri)−u(rj)]⟩ ∝ e−r/ξG [72, 74]. Here, G denotes a

reciprocal lattice vector, ξG the translational correlation length and u(r) the displacement

field, i.e. the deviation of droplet positions from their expected positions in a perfect

lattice in the droplet phase and analogously the deviation of density minima positions from

their expected positions in the honeycomb phase. Extracting the translational correlation

function will help to further understand the hexatic nature of the systems at hand.

Fourthly, it might be insightful to redo above analysis under variations of the system size.

Although periodic boundary conditions minimize finite size effects, some features of the

defect decay still depend on the system size. Increasing the simulated grid yields access

to g6(r) over a larger domain, decreasing the influence of short-ranged fluctuations to the

g6 ∝ r−η6 fit. The influence of finite size effects may also be suppressed by decreasing the

bin size dr in the computation of g6, thus increasing the number of data points included

in the fit. Additionally, the total number of initial lattice defects is proportional to the

area of the condensate, whereas global grain boundaries result in a number of defects

proportional to the number of unit cells along the shorter dimension, thus scaling linearly

with Lx. Simulating the condensate over larger domains could therefore help to determine

the decay coefficients more easily in the ND(t) ∝ (t− t∗)α fits.

Finally, should experiments ever realize 2D supersolids in the droplet or honeycomb phase
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over as large domains as analyzed in this thesis and investigate the lattice formation

process, they will not be able to reproduce the quasi 2D approach of this thesis exactly.

In nature, the underlying physics described by the eGPE is realized in three dimensions.

Although computationally expensive, it might thus be useful to compare the results of this

thesis to results of full three-dimensional (3D) simulations and redo the lattice formation

analysis on particle area densities obtained by either integrating the 3D particle volume

densities along the trapping direction or considering 2D slices of the particle volume

density perpendicular to the trapping direction. This will show whether or not reducing

the effective dimensionality of the system influences the scaling coefficients and could

serve to validate the obtained results.
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A A standard integral in statistical physics

Appendix

A A standard integral in statistical physics

Here, we want to present an evaluation of the integral

I =

∫ ∞

0

dE
E1/2

e(E−µ)/kBT − 1
. (A.1)

If we introduce x = E/kBT and z = eµ/kBT , then

I = (kBT )3/2
∫ ∞

0

dx
x1/2

ex/z − 1
. (A.2)

Now we recognize the geometric series,

1

ex/z − 1
=

ze−x

1 − ze−x
=

1 + ze−x − 1

1 − ze−x
= −1+

1

1 − ze−x
= −1+

∞∑
k=0

(
ze−x

)k
=

∞∑
k=1

(
ze−x

)k
,

(A.3)

where convergence at finite energy is ensured by |ze−x| =
∣∣e(µ−E)/kBT

∣∣ ≤ 1 as µ ≤ 0.

Otherwise, the Bose-Einstein distribution Eq. (2.3) would not be positive, as required.

This casts I into the form

I = (kBT )3/2
∫ ∞

0

dx x1/2
∞∑
k=1

(ze−x)k, (A.4)

which, by using the Fubini-Tonelli theorem [78], may be written as9

I = (kBT )3/2
∞∑
k=1

zk
∫ ∞

0

dx x1/2e−kx. (A.5)

Finally, by means of partial integration and substitution, we can express I as

I = (kBT )3/2
∞∑
k=1

zk


√
x

−k
e−kx

∣∣∣∣∣
∞

0︸ ︷︷ ︸
=0

−
∫ ∞

0

dx
1

−2k

1√
x
e−kx


u=

√
kx

= (kBT )3/2
∞∑
k=1

zk
∫ ∞

0

du

k3/2
e−u2

= (kBT )3/2
∞∑
k=1

zk
√
π

2k3/2
.

(A.6)

9We have I ∝
∫ ∞

0

dx

∞∑
k=1

x1/2
(
ze−x

)k ≡
∫ ∞

0

dx

∞∑
k=1

fk(x). Since all fk(x) are non-negative functions

for all x, k in the relevant domain, x ≥ 0, k > 0, and since all fk are smooth measurable functions

dominated by the integrable function |fk(x)| ≤ g(x) = x1/2e−x, which obeys

∫ ∞

0

dxx1/2e−x = Γ (3/2) =
√
π/2 <∞, the theorem applies.
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B Derivation of the 2D eGPE

This integral (dropping factors of kBT from the x = E/kBT substitution) is a special case

of the more general

I(α) =

∫ ∞

0

dx
xα

ex/z − 1
, (A.7)

which, by the same calculation as above, may be brought into the form

I(α) =
∞∑
k=1

zk
∫ ∞

0

dx xαe−kx. (A.8)

Introducing the substitution t = kx, we have

I(α) =
∞∑
k=1

zk
∫ ∞

0

dt

k

(
t

k

)α

e−t =
∞∑
k=1

zk

kα+1
Γ(α + 1) (A.9)

by definition of the gamma function [43]. If we set α = 1/2, and recognize Γ (3/2) =
√
π/2,

we recover the result of Eq. (A.6).

B Derivation of the 2D eGPE

In this section, we want to explicitly show the steps necessary to arrive at the 2D eGPE

Eq. (2.17). Starting from Eq. (2.11) and inserting the separated spatial wavefunction Eq.

(2.13), we arrive at

iℏ
∂ψ(x, y, t)

∂t
φ(z) =

{
− ℏ2

2m
∇2 +

m

2
ω2
zz

2 + gs |ψ(x, y, t)φ(z)|2 + γQF |ψ(x, y, t)φ(z)|3

+

∫
d3r′Udd(r− r′) |ψ(x′, y′, t)φ(z′)|2

}
ψ(x, y, t)φ(z),

(B.1)

assuming a constant wavefunction in z-direction, ∂φ(z, t)/∂t = 0, i.e. φ(z, t) = φ(z). We

proceed by multiplying this equation by φ∗(z) and integrating over z term by term. Then

the LHS reads

iℏ
∂ψ(x, y, t)

∂t

∫
dz |φ(z)|2 Eq. (2.15)

= iℏ
∂ψ(x, y, t)

∂t
. (B.2)

For the kinetic term, we have

− ℏ2

2m

∫
dz φ∗(z)∇2 [ψ(x, y, t)φ(z)]

= − ℏ2

2m

∫
dz

[(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y, t) |φ(z)|2 + ψ(x, y, t)φ∗(z)

∂2

∂z2
φ(z)

]
,

(B.3)
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B Derivation of the 2D eGPE

and using Eq. (2.14), the second derivative of φ(z) can be evaluated explicitly

∂2

∂z2
φ(z) =

1√
lzπ1/4

∂2

∂z2
exp

{
−1

2

z2

l2z

}
= − ∂

∂z

[
z

l2z
φ(z)

]
=

[
− 1

l2z
+
z2

l4z

]
φ(z),

(B.4)

so the kinetic term can be expressed as

− ℏ2

2m

∫
dz φ∗(z)∇2 [ψ(x, y, t)φ(z)]

= − ℏ2

2m

{(
∂2

∂x2
+

∂2

∂y2

)
− 1

l2z
+

1

lz
√
π

∫
dz
z2

l4z
exp

{
−z

2

l2z

}}
ψ(x, y, t)

= − ℏ2

2m

{(
∂2

∂x2
+

∂2

∂y2

)
− 1

2l2z

}
ψ(x, y, t)

(B.5)

by evaluating the standard second moment Gaussian integral10 and using the normaliza-

tion condition Eq. (2.15). The same integral appears in the potential term,

m

2
ω2
z

{∫
dz z2 |φ(z)|2

}
ψ(x, y, t) =

m

2
ω2
z

l2z
2
ψ(x, y, t). (B.6)

The contact interaction and quantum fluctuation terms involve integrals over powers of

the absolute value of φ(z),∫
dz |φ(z)|n =

(
1√
lzπ1/4

)n ∫
dz exp

{
−n

2

z2

l2z

}
u=

√
nz

=

(
1√
lzπ1/4

)n
1√
n

∫
du exp

{
−1

2

u2

l2z

}
=

(
1√
lzπ1/4

)n
√

2π

n
lz.

(B.7)

This yields

gs

{∫
dz |φ(z)|4

}
|ψ(x, y, t)|2 ψ(x, y, t) =

gs√
2πlz

|ψ(x, y, t)|2 ψ(x, y, t) (B.8)

and

γQF

{∫
dz |φ(z)|5

}
|ψ(x, y, t)|3 ψ(x, y, t) =

√
2

5

γQF

π3/4l
3/2
z

|ψ(x, y, t)|3 ψ(x, y, t), (B.9)

10 1

lz
√
π

∫ ∞

−∞
dz

z2

l4z
e
− z2

l2z
u=z/lx
=

1

l2z
√
π

∫ ∞

−∞
duu·ue−u2 P. I.

=
1

l2z
√
π

−1

2
ue−u2

∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞

−∞
du

(
−1

2
e−u2

)
=

1

2l2z
· 1√

π

∫ ∞

−∞
du e−u2

=
1

2l2z
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B Derivation of the 2D eGPE

respectively. Finally, we have to consider the DDI term. Inserting

(x− x′)2 + (y − y′)2 ≡ |r⊥ − r′⊥|
2

(B.10)

and

cos θ =
z − z′√

|r⊥ − r′⊥|
2 + (z − z′)2

(B.11)

into the expression for the DDI potential, it reads

Udd (r− r′) =
µ0µ

2
m

4π

|r⊥ − r′⊥|
2 − 2(z − z′)2[

|r⊥ − r′⊥|
2 + (z − z′)2

]5/2 . (B.12)

After multiplying the eGPE with φ∗(z) and integrating along z, the DDI can be described

by ∫
d2r′⊥

∫
dz′dz

µ0µ
2
m

4π

|r⊥ − r′⊥|
2 − 2(z − z′)2[

|r⊥ − r′⊥|
2 + (z − z′)2

]5/2 |ψ(r′⊥, t)|
2 |φ(z′)|2 |φ(z)|2 ψ(r⊥, t)

=

∫
d2r′⊥

∫
duUdd(r⊥ − r′⊥, u)

(
|φ|2 ∗ |φ|2

)
(u) |ψ(r′⊥, t)|

2
ψ(r⊥, t).

(B.13)

Here we have shifted the z′ integral by u = z− z′. The appearing convolution is straight-

forward to evaluate using the explicit form of φ(z) as in Eq. (2.14),

(
|φ|2 ∗ |φ|2

)
(u) =

1

πl2z

∫
dw e

−w2

l2z e
− (w−u)2

l2z =
e
−u2

l2z

πl2z

∫
dw exp

{
−2

w2

l2z
+ 2

uw

l2z

}
=
e
− 1

2
u2

l2z

√
2πlz

,

(B.14)

so the dipolar interaction term reads∫
d2r′⊥

∫
duU(r⊥ − r′⊥, u)

(
|φ|2 ∗ |φ|2

)
(u) |ψ(r′⊥, t)|

2
ψ(r⊥, t)

=

∫
d2r′⊥U

2D
dd (r⊥ − r′⊥) |ψ(r′⊥, t)|

2
ψ(r⊥, t).

(B.15)

In real space, we can express the 2D DDI potential as

U2D
dd (r⊥ − r′⊥) =

∫
du

µ0µ
2
m

4π

1√
2πlz

|r⊥ − r′⊥|
2 − 2u2[

|r⊥ − r′⊥|
2 + u2

]5/2 exp

{
−1

2

u2

l2z

}
. (B.16)

Since this expression still involves an integral, which is numerically expensive to evaluate

at every iteration, we further analyze above expression in Fourier space. Here, the DDI

potential after integrating out the z degree of freedom reads

Ũ2D
dd (k⊥) =

∫
dkz
2π

Ũdd(k⊥, kz)e
− 1

2
k2z l

2
z , (B.17)
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C Numerical prerequisites

and we can use the well-known Fourier transform of the DDI potential in three dimensions

[47],

Udd(r⊥, z) =
µ0µ

2
m

4π

1 − 3z2/ |r|2

|r|3
F→ Ũdd(k⊥, kz) =

µ0µ
2
m

3

(
3k2z
|k|2

− 1

)
, (B.18)

to explicitly evaluate the kz integral. We find

Ũ2D
dd (k⊥) =

∫
dkz
2π

µ0µ
2
m

3

(
3k2z
|k|2

− 1

)
e−

1
2
k2z l

2
z =

µ0µ
2
m

3

∫
dkz
2π

2k2z − |k⊥|2

k2z + |k⊥|2
e−

1
2
k2z l

2
z . (B.19)

The appearing fraction of sums of squared momenta can be split using polynomial long

division,
2k2z − |k⊥|2

k2z + |k⊥|2
= 2 − 3

|k⊥|2

k2z + |k⊥|2
, (B.20)

and the integration bounds can be changed by symmetry of integration,∫ ∞

−∞
dkz → 2

∫ ∞

0

dkz, to obtain

∫
dkz

2k2z − |k⊥|2

k2z + |k⊥|2
e−

1
2
k2z l

2
z = 2

∫
dkz e

− 1
2
k2z l

2
z − 6 |k⊥|2

∫ ∞

0

dkz
e−

1
2
k2z l

2
z

k2z + |k⊥|2

= 2

√
2π

lz
− 6 |k⊥|2

π

2 |k⊥|2
erfc

(
|k⊥| lz√

2

)
e

1
2
|k⊥|2l2z

=

√
2π

lz

[
2 − 3

√
π
|k⊥| lz√

2
erfcx

(
|k⊥| lz√

2

)]
.

(B.21)

Here, erfcx(k) = ek
2

erfc(k) denotes the exponentially scaled complementary error func-

tion. The non-trivial kz-integral is of known form and may be found e.g. in [79]. Collecting

all terms results in

Ũ2D
dd (k⊥) =

µ0µ
2
m

3

1√
2πlz

[
2 − 3

√
π
|k⊥| lz√

2
erfcx

(
|k⊥| lz√

2

)]
. (B.22)
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C.1 Variable transformation to computational units

We introduce the dimensionless computational units t̃ = ω0t, l̃ = l/l0 to make the eGPE

dimensionless and divide Eq. (2.17) by ℏω0. Then, term by term, we have

1

ℏω0

iℏ
∂ψ

∂t
= i

∂ψ

∂ (ωot)
= i

ψ

∂t̃
, (C.1)
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1

ℏω0

(
− ℏ2

2m

)[
∂2

∂x2
+

∂2

∂y2

]
= − l

2
0

2

[
∂2

∂x2
+

∂2

∂y2

]
= −1

2

[
∂2

∂x̃2
+

∂2

∂ỹ2
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]5/2 exp

{
−1

2

ũ2
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After dropping the tildes and collecting all terms, this yields the dimensionless 2D eGPE

quoted in Eq. (3.1) after adding in the chemical potential. Note that numerical coefficients

in the terms describing contact interactions and dipolar interactions and quantum fluc-

tuations carry additional powers of l0, e.g. [geffs ] = [l20] = 2, where [·] denotes the length

dimension. They are needed to cancel dimension-full normalization constants of ψ(x, y, t).

Since

∫
dxdy |ψ(x, y, t)|2 = N and [N ] = 0, we conclude [|ψ(x, y, t)|] =

[
l−1
0

]
= −1 as
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[dx] = [dy] = [l0] = 1, so each power of |ψ(x, y, t)| requires a power of l0 to get a dimen-

sionless equation, such that e.g. [geffs |ψ|2] = 2 − 2 = 0.

C.2 Numerical error of the split-step Fourier method

To exploit numerical advantages by evaluating the kinetic operator in Fourier space, the

time evolution operator Û(∆t) = e−iĤ∆t has to be factorized into the components of

the Hamiltonian. Denoting iX̂ = D̂∆t and iŶ =
(
L̂+ N̂ + V̂dd

)
∆t, the time evolution

operator reads

Û(∆t) = exp
{
X̂ + Ŷ

}
. (C.7)

However, in Eq. (3.7), we claim the time evolution operator to take the form

Û(∆t) = exp

{
1

2
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}
· exp

{
Ŷ

}
· exp

{
1

2
X̂

}
(C.8)

up to second order in ∆t. Since in general the appearing operators do not commute, the

Baker-Campbell-Hausdorff-Dynkin formula [80]
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Â, B̂

]
+

1

12

[
Â,
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} (C.9)

has to be applied to show the equivalence of these expressions at relevant order. Since

both X̂ and Ŷ are conveniently of order ∆t, we obtain
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= exp
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]]
︸ ︷︷ ︸

=[[X̂,Ŷ ],Ŷ ]
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Â =

[
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for generic operators Â, B̂, Ĉ and scalar a. This concludes the equivalence of Eq. (C.7)

and Eq. (C.8) up to and including O(∆t2), with leading deviation given by

1/12 ·
[[
X̂, Ŷ

]
, X̂/2 + Ŷ

]
. Putting back in the definition of X̂ and Ŷ , we find
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so the time evolution operator can be expressed as Û(∆t) = e−
i
2
D̂∆te−i(L̂+N̂+V̂dd)∆te−

i
2
D̂∆t

in O(∆t2). Applying Fourier transforms after the appropriate steps yields the split-step

Fourier method equation Eq. (3.7).

C.3 Finding vortices in MATLAB

To analyze the number and distance distributions of vortices in a supersolid, it is integral

to accurately find vortices and their positions first. This is done numerically by the

algorithm presented below. It is implemented on MATLAB, release R2023a, and it finds

vortices and the sign of their topological charge by periodically subtracting shifted copies

of the phase of the wavefunction psi. A phase defect is identified if the modulus of the

resulting phase-winding exceeds 2π within the numerical tolerance ϵ = 2π − 6.2 ≈ 0.083

for a 2× 2 patch of condensate. In the end, vortex positions are expressed in terms of the

space grid X and Y, and grid spacing dx, dy, in harmonic oscillator units. Important parts
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of this algorithm are courtesy of W. Kirkby.

1 %% find vortex positions and signs of vortex charge

2 % compute phase and set tolerance

3 argpsi = angle(psi);

4 tolerance = 6.2;

5 % circshift phase array

6 argshift_1 = circshift(argpsi ,-1,1);

7 argshift_2 = circshift(argpsi ,-1,2);

8 argshift_3 = circshift(argpsi ,[-1,-1]);

9 % periodically subtract shifted phase

10 Subs_1 = mod(argpsi - argshift_2 + pi, 2*pi) - pi;

11 Subs_2 = mod(argshift_2 - argshift_3 + pi, 2*pi) - pi;

12 Subs_3 = mod(argshift_3 - argshift_1 + pi, 2*pi) - pi;

13 Subs_4 = mod(argshift_1 - argpsi + pi, 2*pi) - pi;

14 % accumulate phase winding

15 phasesum = Subs_1 + Subs_2 + Subs_3 + Subs_4;

16 % check if phasewinding excceds 2pi within tolerance

17 vortexarray = double(abs(phasesum) > tolerance);

18 % compute sign of vortices

19 signarray = sign(phasesum) .* vortexarray;

20 % find vortex indices

21 vortex_indx = find(vortexarray);

22 % relate vortex indices to grid coordinates

23 x_positions = (2*X(vortex_indx)+dx)/2;

24 y_positions = (2*Y(vortex_indx)+dy)/2;

C.4 Extracting lattice structures in MATLAB

This subsection outlines the algorithm used to detect lattice defects in the droplet crystal

lattice. It has been implemented on MATLAB, release R2023a. Given a wavefunction

psi, all local density maxima are identified and filtering constraints are applied. We en-

force a minimum density maxima_treshold, and dominance within minsep after filtering

out high momentum modes using a Gaussian convolution filter with width sigma. sigma,

maxima_threshold and minsep are parameters to be determined by extensive testing. We

use sigma = 2, maxima_treshold = 1.2 and minsep = 2 µm. Fig. C.1 illustrates the ef-

fect of enforcing a minimum separation between vortices. Without applying this filtering

criterion, single droplets are frequently identified as two droplets, which induces multiple

fake lattice defects. However, overconstraining the droplet identification algorithm by

enforcing too large minimum separations leads to fake lattice defects as well, as some

existing droplets are no longer identified.

In the honeycomb phase, we enforce a maximum density minima_threshold = 0.75, i.e.
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local density minima are only considered to be lattice points if their density does not

exceed 75% of the average density.

1 %% Identify lattice structure in droplet phase

2 % compute density from wavefunction

3 density = psi .^2;

4 % filter high momentum modes

5 smoothed_density = imgaussfilt(density , sigma);

6 % pad smoothed density to account for periodic boundary

conditions

7 smoothed_density = padarray(smoothed_density , [70 70], ’circular ’

);

8 % enforce minimum density

9 maxima = imregionalmax(smoothed_density , 8) & (smoothed_density >

maxima_threshold);

10 % enforce minimum separation

11 % get row and colums index of maxima

12 [rows , cols] = find(maxima);

13 % combine maxima positions and values and sort by value

14 maxima_tensor = sortrows ([rows , cols , smoothed_density(maxima)],

-3);

15 % compute pairwise distance

16 maxima_dist = squareform(pdist(maxima_tensor (:, 1:2)));

17 % mask all maxima to be valid

18 valid_maxima = true(size(maxima_tensor , 1), 1);

19 % find maxima closer than a minimum separation and exploit

symmetry

20 % of distance metric through triu()

21 [~, colIdx] = find(triu(maxima_dist < minsep , 1));

22 % mask maximum with lower density as false

23 valid_maxima(colIdx) = false;

24 % retain only valid maxima

25 maxima = maxima_tensor(valid_maxima , 1:2);
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Figure C.1: Influence of the minimum separation filtering criterion on the calculation of

the lattice structure. Panel a) shows the particle area density distribution of a droplet

phase condensate 150 ms post quench in a 30 × 30µm2 subdomain of the simulated

grid. Panels {b), c), d)} display the corresponding Voronoi tesselations with different

enforced minimum droplet separations minsep = {0, 2, 4}µm. Blue Voronoi cells signify

neutral density maxima, whereas green cells distinguish negatively charged maxima from

positively charged maxima in red cells. The Delaunay triangulation and the extracted

positions of the density maxima are plotted in black atop the Voronoi tesselation.

D Extended perspective on the lattice defect decay

This section holds supplementary material regarding the defect decay and bond-order

correlation analysis.

D.1 Scaling regimes of the algebraic decay of ND(t) across the

parameter space

In Fig. D.1, we report the decay of the lattice defect number for all parameter combi-

nations {n̄, as} considered in this thesis in both the droplet and honeycomb phase. We

make the following observations:

Firstly, all states in the droplet phase experience two different algebraic scaling regimes.

However, the transition time between the scaling regimes increases with a decrease in

s-wave scattering length.

Secondly, the smaller the s-wave scattering length, the earlier our droplet finding algo-

rithm tracks the formation of the lattice structure in quenches with uniform initialization.

This implies that the condensate reaches the necessary density modulation for the droplet

identification constraints faster if the ground state contrast is high as the ground state

contrast is close to unity in these deep quenches (see also Fig. 4.2, panels d) and e)).

Systems with large ground state contrasts are far out of equilibrium if they are initialized

with a nearly unmodulated density distribution. A faster increase in density modulation
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Figure D.1: Decay of the lattice defect number for different initial states and parameter
combinations. Data shown in panels a) and b) corresponds to initial states with an average
density of n̄ ·a2dd = 0.075 and uniform and square lattice initialization, respectively. Panel
c) shows the decay of the defect number at the average density n̄ ·a2dd = 0.085 and uniform
initialization. As panels a) through c) show the decay of the lattice defect number in
the droplet phase, we use color to distinguish quenches with different s-wave scattering
lengths. In panel d) we show the defect decay in the honeycomb phase at as/add = 0.78 and
with uniform initialization. Here, color serves to distinguish initial states with different
average densities. Statistical errors are omitted for the purpose of readability.

is thus expected.

Thirdly, if systems are initialized in the square lattice initialization scheme, the lattice

formation process can be tracked immediately post quench as the density modulation ful-

fills the filtering constraints of the droplet finding algorithm by construction of the initial

state. Here, we seed droplets directly into the initial state. By arranging the droplets in a

square lattice, these initial states have a non-vanishing lattice defect number post quench.

The lattice defect number shows an oscillatory behavior initially, and then transitions to

the same two-regime algebraic scaling observable for droplet states with uniform initial-

ization.

Fourthly, in the honeycomb phase, the data does not clearly show two distinct scaling

regimes but a mostly uniform algebraic scaling of the lattice defect number. However,

this does not decisively rule out a two-regime scaling behavior. The second scaling regime
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might be obscured either by transition times larger than the latest simulated time or by

the initial lattice formation process, i.e. the first algebraic scaling regime might be too

short to reliably observe in quenches with the considered average densities and under the

density constraints enforced in the tracking of density minima.

Note that the appearance of two different scaling regimes is commonplace in Bose gases.

The mean inter-vortex distance lv(t) is found to scale as lv(t) ∝ tβ, where the scaling ex-

ponent transitions from β = 1/5 to β = 1/2 in dilute Bose gases in the uniform superfluid

regime. Additionally, the vortex number in these systems scales as Nv(t) ∝ t−2β, with the

same transition of β from an early-time to a late-time scaling regime. In these systems,

the transition of the scaling exponent between the two scaling regimes can be traced back

to the existence of two different fixed points, c.f. [19, 20].

D.2 Bootstrapping

The idea of bootstrapping is to get an estimator for a fitting parameter and its error

by doing repeated fits over resampled versions of the original dataset. This approach

does not make assumptions on the underlying probability distribution, and specifically, it

does not require Gaussian errors. We validate this approach for our defect decay data in

Fig. D.2 by reporting the probability density distributions to find a given α and t∗ in an

individual bootstrap fit to a resampled dataset. Their distributions closely follow normal

distributions. This justifies determining estimators for the true values of α and t∗ by

taking their respective means over all bootstrap fits, and estimating their error by taking

the standard deviation of their respective distributions.

Since we consider fitting ranges of O(103) ms with millisecond time steps, it is impossible

to consider all possible unordered resamplings with replacements when keeping the sample

size constant. Their number is given by
(
2n−1
n

)
11, which for O(n) = 103 grows beyond

all numerically reasonable bounds. Using Stirling’s formula [81], we can approximate the

total number of possible resamplings with replacement as

log10

(
2n− 1

n

)
= log10

(2n− 1)!

n!(n− 1)!
≈ log10

√
2π (2n− 1)

(
2n−1

e

)2n−1

√
2πn

(
n
e

)n√
2π (n− 1)

(
n−1
e

)n−1

= (2n− 1) log10 (2n− 1) − n log10 n− (n− 1) log10 (n− 1)

+
1

2
log10

(
2n− 1

2πn (n− 1)

)
n=103

≈ 600.

(D.1)

Therefore, we resort to an approach known as Monte Carlo sampling bootstrap, where we

generate a random subset of all possible resamplings and compute α and t∗ from these.

This is a tradeoff between computational time and accuracy. Results presented in the

present work have been obtained by generating at least 500 resamplings, with deviations

11The problem condenses to drawing n time indices from N = n possible time indices, so there are(
N+n−1

n

)
=
(
2n−1

n

)
possibilities.
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Figure D.2: Probability density distributions to find a given α (panel a)) and t∗ (panel b))
in the bootstrap results. Black lines represent normal distributions fitted to the results.
Data taken for n̄ · a2dd = 0.075, as = 0.755add and a square lattice initial state. Results for
500 resamplings.

from this minimum pointed out in the respective figures.

D.3 Time evolution of topological lattice defect charge

The total topological charge is given by Qtot =
∑
i

Qi, where the sum runs over all lattice

points i. As discussed in Sec. 4.3, Qtot is expected to vanish due to periodicity. This

matches closely our observations depicted in Fig. D.3, panels a), c) and e). The only

notable exception to this can be observed at early times when using the square lattice

initialization scheme. However, the topological charge is not expected to vanish in this

limit since in a square lattice, all lattice points carry the charge Qi = −2. Our initial

state is still neutral due to the Gaussian shifts we apply to the true droplet positions

around the unit cell centers. Charge is briefly generated as the condensate evolves, but it

vanishes after approximately 100 ms. A vanishing total charge still leaves the possibility

for asymmetric charge generation as a topological defect with Q = 2 could be compensated

for by two lattice defects with Q = −1. To rule out this possibility, we also show the

evolution of signed squared charge,

Q2
+ −Q2

− =
∑+

i
Q2

i −
∑−

j
Q2

j . (D.2)

Here, the sum
∑+

i
runs over all defects with Qi > 0, and

∑−

j
sums all defects subject to

Qj < 0. Since we add squares of charges but keep their sign, we can rule out asymmetric
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Figure D.3: Time evolution of topological charge for as/add = 0.76. Panels on the left side
show the time evolution of total charge, while panels on the right side present the evolution
of signed squared charge. Panels top to bottom show data recorded for n̄ · a2dd = 0.075
with uniform initialization, n̄ = 0.075 with lattice initialization and n̄ = 0.085 with
uniform initialization, respectively. Solid lines represent the means and shaded regions
the standard deviations taken across all 3000 quenches.

charge generation as the total signed squared charge vanishes with the same exceptions

as above (see Fig. D.3, panels b), d) and f)). This empirical result closely follows our

observation that defects with more than unit charge are sparse.

D.4 Hexatic systems take II - the honeycomb phase

D.4.1 Angular susceptibility in the honeycomb phase

The honeycomb phase also represents a hexatic system, matching closely our observations

in the droplet phase (Sec. 4.5). Fig. D.4 shows χ6 distributions in the honeycomb phase

for different subsystem sizes. We observe an increase of bond orientational order with

time. Regardless of the size of the subsystem, the different χ6 distributions indicate a

homogeneous system as they are not the superposition of a fluid-like component and a

solid-like component as expected for an inhomogeneous system. An increase in subsystem

size causes an overall spread of the χ6 distributions.
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D Extended perspective on the lattice defect decay

Figure D.4: Time evolution of χ6 distributions for n̄ · a2dd = 0.2, as/add = 0.780 and

uniform initialization in the honeycomb phase. Panels a) through d) show χ6 distributions

recorded for increasing subsystems of size l ×
√

3 · l, where l/lx ∈ {1, 2, 4, 8}.

D.4.2 Inter-defect distance in the honeycomb phase

We observe strong clustering of defects into pairs in the honeycomb phase as in the droplet

phase. Similar to Fig. 4.8, we report the graph distance distribution to the nearest defect

in Fig. D.5. The probability weight is concentrated in the bin representing separation by

one edge, and the probability to find the next defect at more than one edge separation

decreases rapidly.

Figure D.5: Time evolution of graph distance distributions to the closest defect. Panels

{a), b), c)} show data obtained with n̄ · a2dd = {0.17, 0.2, 0.22} and as/add = 0.78 with

uniform initialization. Color distinguishes different times.
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