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Landau-Zener Dynamik im Borosilikatglas BS 3.3 induziert durch

ein mechanisches Verzerrungsfeld

Die Eigenschaften amorpher Festkörper bei niedrigen Temperaturen unterschei-

den sich von denen von Kristallen aufgrund von atomaren Tunnelsystemen (TS).

Diese TS sind verantwortlich für niederenergetische Anregungen in amorphen

Festkörpern. Das Standard Tunnel Modell (STM) beschreibt diese Eigenschaften

phänomenologisch. Das STM beschreibt TS als zwei Niveau Systeme mit einer ho-

mogen verteilten Energieaufspaltung und Asymetrieenergie.

In dieser Arbeit werden die dielektrischen Eigenschaften der Probe BS 3.3, einem

amorphen Festkörper, untersucht. Dies geschieht indem wir unsere Probe einem

elektrischen Feld aussätzen, während wir die Energieaufspaltung mit einem mecha-

nischem Verzerrungsfeld modifizieren. Ein mikrostrukturierter LC-Resonator, wel-

cher auf unsere Probe gesputtered wird, wurde für diese Messungen benutzt. Das

mechanische Verzerrungsfeld wird durch Biegung der Probe mit einem piezoelektri-

schen Aktuator (PEA) erzeugt und koppelt an die TS aufgrund deren deformations

Potentials. Wir zeigen dass die für ein elektrisches Vorspannungsfeld entwickelte

Landau-Zener Theorie mit einem mechanischen Zerrungsfeld gemessene Daten be-

schreiben kann.

The properties of amorphous solids at low temperatures deviate in comparison to

their crystalline counterparts because of low energy excitations, occurring due to

atomic Tunneling Systems (TSs). The Standard Tunneling Model (STM) allows for

a phenomenological description of these properties. The STM expresses the TSs at

sufficiently low temperatures as two level systems with a flatly distributed energy

splitting.

In this thesis, the dielectric rf-response of BS 3.3 glass is studied by probing the

sample with an electric field while varying the energy splitting by applying a me-

chanical strain field. A microfabricated superconducting LC-resonator, sputtered

on the sample, was used for these measurements. The strain field is applied by

bending the sample with a piezoelectric actuator and couples the TSs to the field

via the deformation potential. We show that a framework based on Landau-Zener

transitions, originally developed for the description of electrically biasing, can also

describe our mechanical biasing measurements.
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1. Introduction

Crystals are solids with a periodic structure. At low temperatures, their thermal

properties can be predicted by the Debye model [Deb12]. It assumes only acoustic

phonons with long wavelengths are present. In contrast to crystals, the structure of

amorphous solids only has a short range, but no long range order and their bond

lengths and angles are statistically distributed. Due to the long phonon wavelengths

present at low temperatures, this should not affect the thermal properties and the

Debye model would again be sufficient to predict the thermal properties. Experi-

ments performed by Zeller and Pohl [Zel71] have shown that this is not the case and

that at low temperatures the specific heat capacity and thermal conductivity deviate

from the expected values. It was concluded that in contrast to crystals, additional

low-energy excitations have to take place in amorphous solids.

Thus, Anderson et al [And72] and Phillips [Phi72] developed the standard tunnel-

ing model (STM) independently as a way to describe these excitations. The model

assumes that, at low temperatures, a single atom or a group of atoms can have two

energetically similar equilibrium positions. They are separated by a potential barrier

and the available thermal energy at low temperatures is not sufficient to overcome

it, and changes are only possible because of the quantum mechanical tunneling ef-

fect. While small changes were made to the model, for example in the distribution

function of the tunneling systems [Dou80, Ens89], it remained solid in the predic-

tion of later experimental findings. Examples are acoustic [Cla94, Cla00], dielectric

[Rog97, Fro77] and ultrasonic absorption [Hun77, Hun72] measurements.

Amorphous solids in the form of amorphous oxide layers are used in microfabricated

quantum circuits. However they were found to be a source of noise [Bur14] and

decoherence [Ku05] and are thus a recent subject of investigations. In recent ex-

periments, the dielectric rf-response of an amorphous sample, while slowly varying

an electric bias field, was investigated, showing that the bias field can increase the

dielectric loss [Fre21] by inducing Landau-Zener dynamics. A microfabricated su-

perconducting LC-resonator was used for these measurements.

In this thesis, we want to repeat this phenomena, using the glass BS 3.3 as our

sample, but instead of electric bias fields, we slowly vary an acoustic bias field by

bending the sample, thus inducing a mechanical strain field. For this purpose a

piezoelectric actuator is used. The actuator already touches the sample and thus

bends the sample if its extended. As a result, parameters of our tunneling systems

are modified, as these couple to the strain field via deformation potential.

1



2 1. Introduction

This thesis is split into five parts. In chapter 2 we introduce the underlying theoretical

framework to understand the results of our measurements. We start by establishing

the dielectric function, which can be split into a real and an imaginary part and

will be the main indicator to measure the rf-response of our sample. Following this,

we explore the properties of amorphous solids at low temperatures and introduce

the standard tunneling model. We will use the model to explain how our sample

couples to applied electric fields and how the dielectric function responds to such

fields. In the last step we expand this by introducing Landau-Zener transitions

taking place while an additional bias field is applied. In chapter 3 we take a look

at the measurement principle. We will show how our sample is set up inside the

cryostat and how the RF-signal reaches the resonator. We then explain how to

extract the real part and loss of the dielectric function out of the resonance curves

of our resonator. We close this chapter by presenting how the piezoelectric actuator

works and how it induces a strain field within our sample. The fourth chapter focuses

on the results of our measurements. We start with equilibrium measurements with

no strain field applied followed by non-equilibrium measurements. There we will take

a look if expansion and contraction or an increased preload on the sample change

the dielectric response. Then we compare the dielectric function during biasing for

different input powers. The last chapter summarizes our findings and provides an

outlook on future measurements.



2. Theory

In this chapter we introduce the theoretical background behind the measurements we

carried out. We start of by introducing the dielectric function of amorphous solids.

This is followed by a discussion of the properties of glass, introducing the standard

tunneling model, discussing the dynamics of the glass with an applied electric field

and changing temperature. In the end we discuss how this response changes if we

induce a strain field.

2.1 Dielectric Function

If an electric field F⃗ is applied and a dielectric material is placed within it, the

field acts upon the dielectric and local charges are redistributed. This leads to the

formation of electric dipoles or already existing dipoles are rotated in accordance to

the electric field. The sum of those smaller dipoles adds up to form the macroscopic

polarization P⃗ proportional to the electric field

P⃗ = ε0χF⃗ (2.1)

with the dielectric constant ε0 and the dielectric susceptibility χ. Inserting P⃗ into

the definition of the displacement field D⃗ results in

D⃗ = ε0F⃗ + P⃗ = ε0(1 + χ)F⃗ = ε0εF⃗ , (2.2)

were we defined the dielectric function as ε = 1 + χ. It measures the ability of our

material to store energy. If an alternating electric field is applied the polarization

follows with a delay adding an imaginary part to our equation

ε(ω) = ε′(ω) + iε′′(ω) (2.3)

and is mainly frequency dependent. The real part ε′ contains the processes that are

in phase with the driving field and thus gives us information about the energy stored

in the dielectric, while the imaginary part ε′′ contains dissipation processes that are

out of phase with the driving field. One of the main measurement variable we will

use in the description of dielectric materials is the dielectric loss tangent

tan(δ) =
ε′′

ε′
(2.4)

3



4 2. Theory

with the loss angle δ. It is used to describe energy that is lost because of dissipation

and will in the following be called loss.

2.2 Low Temperature Properties of Amorphous Solids

We will use glass, an amorphous solid, as our dielectric medium for our experiments.

Here only a brief discussion of the difference between amorphous solids and crystal

solids will be presented, a more detailed discussion can be found in [Ens05]. Cooling

down a melt can result in two different outcomes. Typically if one cools it slowly,

the result is a crystal with a periodic structure. Rapid cooling however results in

an amorphous solid, with a short range, but no long range order. This changes the

properties of the solid, resulting in a different thermal conductivity κ and specific

heat capacity CV. For crystals the Debye model predicts that both are proportional

to T 3 in the low temperature limit. For amorphous solids this deviates to a near

linear temperature dependency CV ∝ T 1.3 for the heat capacity [Zel71] and quadratic

temperature dependency for thermal conductivity. This leads to the assumption that

additional low-energy excitations take place at low temperatures.

Figure 2.1: Representation of a cross section of a crystalline (left) and an amorphous
(right) SiO2 solid. The contorted structure of the amorphous solid allows for multiple
energetically stable equilibrium positions of a single atom or a group of atoms. For the
sake of clarity adapted from [Zac32, Hun74].

Due to the lack of a regular lattice in amorphous solids atoms or groups of atoms

can have more than one energetically favored position, as can be seen in Figure 2.1

(marked by red and blue colored atoms). On a microscopic level a stable position

is described with the harmonic oscillator as a well potential, with particles of mass

m having a ground state energy ℏΩ/2 above the low point of the well. The poten-

tial barrier is defined by the barrier height V which the particle has to overcome
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Figure 2.2: Illustration of the two
equilibrium positions of a single par-
ticle represented by the double well.
The wells are separated with the
distance d, the potential barrier of
height V and difference in asym-
metry energy ∆. The particle of
mass m has a ground state energy
ℏΩ
2 above the low point of each well.
Adapted from [Phi81].

to change positions, the asymmetry energy ∆ describes the difference between the

minima of the equilibrium states and d is the distance between the wells. At low tem-

peratures T < 1K TLS can reside in the ground state or the first excited state with

a difference in energy E, fully introduced in Equation 2.21, called energy splitting.

The population difference ∆N is given by [Ens05]

∆N = N tanh

(
E

2kBT

)
(2.5)

with N the number of systems and the latter term describing the probability of a

single system residing in the ground state. This shows that the state a systems reside

in is directly linked to the available thermal energy kBT and at low temperatures

kBT ≪ E most systems are in the ground state, but a phonon with energy equal

to the energy splitting of a particular system can be absorbed raising it to the

excited state. If we externally introduce more phonons to our sample, we increase

the intensity J and thus raise more systems in the excited state. If a phonon hits a

system that is already in the excited state a phonon is emitted from the tunneling

system lowering its energy to the ground state again. If the intensity is high enough

∆N approaches zero with the result that the number of phonons absorbed and

emitted is equal and our system is saturated. This can be quantified with the loss

introduced in Equation 2.4

tan(δ) =
tan(δ0)√
1 + J

Jc

(2.6)
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with Jc the critical intensity, describing the moment at which saturation starts to

begin [Hun76]. We use the plateau observed for low intensity to define tan(δ0), which

normalizes our function. At this stage every phonon can be resonantly absorbed and

it increases with lower temperature. If instead of phonons, photons are introduced by

an electric field, further called driving field with the field strength Fac, the equation

changes to

tan(δ) =
tan(δ0)√
1 + Fac

Fc

(2.7)

while the underlying process remains the same.
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Figure 2.3: Dielectric loss curve, due to res-
onant interactions with the driving field, de-
pendent on the field strength Fac. At small
field strengths the loss has a plateau until it
reaches the critical field strength Fc and sat-
uration starts to set in and the loss starts to
decrease. At high field strengths the popula-
tion difference approaches zero and the loss
follows accordingly.

2.3 Standard Tunneling Model

The standard tunneling model (STM) was independently developed by Anderson

[And72] and Philip [Phi72] to describe the low temperature behavior of amorphous

solids and assumes that an atom or groups of atoms can have two equilibrium po-

sitions at low temperatures, which we already introduced in Section 2.2 and is best

described with a double well potential with a similar low point energy. Now we want

to introduce a mathematical framework for the STM.

2.3.1 Two-Level-System

To obtain the energy level of the ground state and excited state for two level systems

one can use the time independent Schrödinger equation, resulting in the energy

eigenstates E of our double well potential

HΨ = EΨ . (2.8)
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Linearly combining the wave function of two uncoupled single well harmonic oscilla-

tors gives us the total wave function

Ψ = αψa + βψb . (2.9)

For solving the Schrödinger equation 2.8 with this ansatz from Equation 2.9 the

approach as described in [Ens05] is used. Here only the important results are men-

tioned. Inserting Equation 2.9 into 2.8 results in the energy eigenvalue

E =
⟨Ψ|H |Ψ⟩
⟨Ψ|Ψ⟩

=
α2Haa + β2Hbb + 2αβHab

α2 + β2 + 2αβS
. (2.10)

Where we introduced the following equations as abbreviations:

Haa = ⟨Ψaa|H |Ψaa⟩ =
ℏΩ +∆

2
(2.11)

Hbb = ⟨Ψbb|H |Ψbb⟩ =
ℏΩ−∆

2
(2.12)

with Haa/bb the energy expectation values for a single well, where we set the zero

point of energy between the minima of the two wells

Hab = ⟨Ψaa|H |Ψbb⟩ = −∆0

2
(2.13)

S = ⟨Ψa|Ψb⟩ . (2.14)

The interaction energy between the wells is given by Hab. S is the overlap of the

uncoupled wave functions. We also introduced the tunneling splitting ∆0 and we

can use the WBK1 approximation to get

∆0 = ℏΩe−λ (2.15)

with λ being the tunneling parameter that is dependent of the particle mass, barrier

height and distance between wells

λ =
d

2ℏ
√
2mV . (2.16)

Since we only look at the properties of amorphous solids at low temperatures, we

only need the two lowest eigenstates. We can calculate them by minimizing the

energy of the two single harmonic oscillators

∂E

∂a
= 0 and

∂E

∂b
= 0 (2.17)

1Gregor Wentzel, Hendrik Anthony Kramers, and Léon Brillouin, 1926
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leading us to the equation

0 = (Haa − E)(Hbb − E)− (Hab − ES)2 . (2.18)

Here we can neglect ES due to S being infinitesimally small and insert Equations

2.11, 2.12 and 2.13

0 =

(
ℏΩ +∆

2
− E

)(
ℏΩ−∆

2
− E

)(
∆0

2

)2

(2.19)

leading us to the energy eigenvalues

Eg,e =
1

2

(
ℏΩ±

√
∆2 +∆2

0

)
. (2.20)

We earlier introduced the energy splitting as the difference between the energy of

the ground and excited state and it can now be calculated as

E = Ee − Eg =
√
∆2 +∆2

0 . (2.21)

Now we want the wave function for the ground and excited state. For this it is

useful to use the matrix formalism and depict the Hamilton in the eigenbasis of the

uncoupled wells (ψa, ψb)

H0 =
1

2

(
∆ −∆0

−∆0 −∆

)
(2.22)

for convenience the constant term ℏΩ
2

was ignored. We use the method for change of

basis to transform the hamiltion into the eigenbasis of the two level system

H0 =
1

2

(
E 0

0 −E

)
. (2.23)

The transformation matrices are given by

Rϕ =

(
cosϕ − sinϕ

sinϕ cosϕ

)
and R−1

ϕ =

(
cosϕ sinϕ

− sinϕ cosϕ

)
(2.24)

with the rotation angle ϕ = 1
2
arctan(∆0

∆
). This gives us the the wave function for

the ground and excited state depicted in Figure 2.4

Ψg = cos(ϕ)ψa + sin(ϕ)ψb (2.25)

Ψe = cos(ϕ)ψb − sin(ϕ)ψa . (2.26)
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Figure 2.4: Depiction of the ground
state Ψg and excited state Ψe inside the
double well, with a difference in energy
splitting E. Adapted from [Fre16].

2.3.2 Coupling Between Two Level Systems and External Fields

Without any disturbances our two level system parameters can be assumed to be

constant. If we change our environment via application of a slowly varying field, the

dipole moments of the tunneling systems couple to the external electric field leading

to a small change in ∆ and ∆0. The same effect can be achieved by bending the

sample slightly, inducing a strain field, that modifies the binding angle and length,

and thus the asymmetry energy ∆, because of the deformation. For the following

discussion it is thus only referred to as external field. If we follow the assumption

that the changes are small we can use the first order perturbation theory to establish

the perturbation Hamilton

Hp =
1

2

(
δ∆ −δ∆0

−δ∆0 −δ∆

)
(2.27)

in the basis of the single well. The change in barrier height V and distance d is

negligible and we can approximate δ∆0 to be zero [Phi81, Lis15, Sar16]. We can use

the transformation matrices we used in Equation 2.24 to transform the Hamiltonian

in to the eigenbasis of the two level system resulting in

Hp =
1

2E

(
∆ ∆0

∆0 −∆

)
δ∆ . (2.28)
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Combining the undisturbed Hamilton with the perturbation Hamiltonian gives us

H =
1

2

(
E 0

0 −E

)
+

1

E

(
∆ ∆0

∆0 −∆

)
δ∆ . (2.29)

By combining the diagonal elements we can derive a change in energy splitting δE

due to the change in asymmetry energy.

δE =
∆

E
δ∆ . (2.30)

The change in asymmetry energy is dependent on the field we apply. In the case

of an electric field the determining factors are the dipole moment p and the field

strength of the applied field F giving us the change

δ∆ = 2p⃗F⃗ . (2.31)

In the case of an applied strain field the change depends on the strength of our field

ẽ which increases the more the length of our sample changes due to bending and the

deformation potential γ, which is a measurement of the coupling strength between

phonon and tunneling system.

δ∆ = 2γẽ . (2.32)

2.3.3 Relaxation Processes

Using the framework we discussed in Section 2.2, at low temperatures most systems

reside in their ground state. If an electric field is applied, the energy splitting E

changes due to the dipole moment p⃗ of a single system, thus the polarization P of

the whole system is modified. This effect can lead to an excitation of the respective

tunneling system, ripping them out of their thermal equilibrium, due to the change

δ∆N in occupation number. In the limit of small fields p⃗F⃗ ≪ kBT the change in

occupation number is directly proportional to the change in polarization

δP ∝ δ(∆N) . (2.33)

Naturally the systems want to return to their equilibrium state by emitting or ab-

sorbing thermal phonons. We can use the relaxation ansatz to get the change in

polarization over time, while the system returns to its equilibrium value P∞ with a

constant relaxation time τ1

dP (t)

dt
= −P (t)− P∞(t)

τ1
. (2.34)
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For alternating electric fields the same equation can be achieved by applying the

Debye formalism [Deb13]. By inserting Equation 2.1 we can link the polarization to

the dielectric susceptibility resulting in

χ(ω) =
χ(0)

1− iωτ1
. (2.35)

χ(0) can be obtained if we differentiate the polarization P from Equation 2.1 by the

electric field F :

χ(0) =
1

ε0

∂P

∂F
=

p2

ε0kBT

∆2

E2
sech2

(
E

2kBT

)
. (2.36)

Merging Equations 2.35 and 2.36 and splitting up the dielectric susceptibility into

its real- and imaginary parts gives us the equations

δε′rel =
p2 cos2 θ

ε0kBT

(
∆

E

)2

sech2

(
E

2kBT

)
1

1 + ω2τ12
(2.37)

δε′′rel =
p2 cos2 θ

ε0kBT

(
∆

E

)2

sech2

(
E

2kBT

)
ωτ1

1 + ω2τ12
. (2.38)

The frequency dependence of the real an imaginary part can be seen in Figure 2.5.

As introduced in Section 2.1 the real part ε′ accounts for energy storing processes. At

low frequencies ωτ1 ≪ 1 the electric fields alternates slow enough, so that the dipole

moments can easily follow in alignment to the field and energy can be sufficiently

stored. For frequencies ωτ1 ≈ 1 the excitation becomes to fast in comparison to

relaxation times for the system to completely follow the alignment and the system

lags behind in phase. The real part decreases accordingly until the field changes so

rapidly that our system becomes static and the real part approaches zero.

The imaginary part ε′′ contains dissipation processes and start at zero for low fre-

quencies while slowly increasing and reaching its peak at ωτ1 = 1 since the most

energy dissipates, due to the system lagging behind the field. Since at high fre-

quencies the system becomes static no energy can be lost and the imaginary part

drops to zero again. Relaxation processes in amorphous solids below temperatures

of T = 10K occur by emission or absorption of thermal phonons. At lowest temper-

atures T ≤ 1K only single phonons are emitted when relaxation to the ground state

happens. This happens with the rate [Jä72]

τ−1
1P =

∆0

E

E3

K1P

coth

(
E

kBT

)
(2.39)
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Figure 2.5: Normalized real (ε′) and imag-
inary (ε′′) contribution of a single two level
system to the dielectric function by relaxation
processes as a function over ωτ1. Here ω is the
frequency of the electric field and τ1 the sin-
gle phonen relaxation time.

with the coupling constant

K1P = 2πρℏ4
(
γ2l
ν5l

+ 2
γ2t
ν5t

)−1

. (2.40)

Here ρ represents the mass density, ν is the sound velocity and γ the coupling strength

of the longitudinal and transversal phonons. Since E =
√
∆2 +∆2

0 we can deduce

that the relaxation times decreases if the energy minima of each well are close to

each other with the fastest time achieved by symmetrical wells. At temperatures of

about T = 2K the number of thermal phonons increases to a point were two phonon

relaxation processes become relevant as calculated by [Dou80] with the coupling

constant K2P for two phonon relaxation

τ2P = K2P
∆2

0

E2
T 7f

E

2kBT
(2.41)

resulting in the total relaxation time

τ−1
1 = τ−1

1P + τ−1
2P . (2.42)

2.3.4 Resonant Processes

If the energy of a photon matches the energy splitting E = ℏωTS of a two-level

system ℏω = ℏωTS they interact with each other. If the system resides in its ground

state, the photon is absorbed, raising it to the excited state. However, if it resides in
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the excited state, a second photon is emitted with the same energy, and the system

changes to the ground state.

At high temperatures kBT ≫ ℏω the population difference ∆N approaches zero and

an equal amount of emission and absorption processes takes place, meaning resonant

interactions are negligible and only become important at low temperatures where the

population difference is high. The change in the dielectric function due to resonant

processes can be calculation using Fermis golden rule again, as was done by [Car94]

leading to the equations

δχ′
res = δε′res =

p2 cos2(θ)

ε0ℏ

(
∆0

E

)2

tanh

(
E

2kBT

)
b′(w) (2.43)

δχ′′
res = δε′′res =

p2 cos2(θ)

ε0ℏ

(
∆0

E

)2

tanh

(
E

2kBT

)
b′′(w) (2.44)

using the frequency dependency

b′(w) =
(ω + ωTS)τ

2
2

(ω + ωTS)τ 22 + 1
− (ω − ωTS)τ

2
2

(ω − ωTS)τ 22 + 1
(2.45)

b′′(ω) =
τ2

(ω − ωTS)2τ 22 + 1
− τ2

(ω + ωTS)2τ 22 + 1
. (2.46)
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Figure 2.6: Normalized real (b′) and imag-
inary (b′′) contribution of a single two level
system to the dielectric function by resonant
processes as a function over ω

ω0
. ωTS is the

resonant frequency of our system.

Here τ2 describes the transversal relaxation time, which describes the process of an

excited system interacting with its neighboring systems, which dephases our initial

system, leading to a loss of its coherence to the electrical field. Figure 2.6 shows how

the real and imaginary part change as a function of frequency. At low frequencies

w ≪ ωTS there is a small positive contribution to the real part due to shifts in the
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dipole moment, while the imaginary part remains zero. At resonance w = ωTS the

real part rises until it undergoes a sign change adding a negative contribution to

the real part. The imaginary part rises sharply due to photons coupling with the

tunneling systems and thus energy being dissipated from the electric field. At high

frequencies the polarization becomes static leading the real part to approach zero

with no negative contributions anymore. The imaginary part does the same since no

resonant interaction with the tunneling system can take place and no energy being

lost.

2.3.5 Parameter Distribution

The standard tunneling model makes two key assumptions: The first one is that

the parameters ∆ and λ are independent of each other and the second that the

parameters are uniformly distributed. With this we can establish the distribution

function with the material constant P0 as

P (∆,λ)d∆dλ = P0d∆dλ . (2.47)

We can then transform the variables to get the distribution in terms of the coupling

energy ∆0 and the energy splitting E:

P (∆,∆0) = P (∆, λ)| ∂λ
∂∆0

|d∆d∆0 =
P0

∆0

d∆d∆0 (2.48)

P (E,∆0)dEd∆0 = P0|
∂∆

∂E
|dEd∆0 = P0

E

∆0

√
E2 −∆2

dEd∆0 . (2.49)
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Figure 2.7: Distribution function of the pa-
rameters of a two level system in regards to
the energy splitting E and coupling energy
∆0. The minimum ∆0,min which we need
in order to integrate over the distribution is
marked by the dotted line.
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As can be seen in Figure 2.7 two singularities are present at ∆0 = 0 and ∆0 = E.

We can integrate our function at the latter, while we need to introduce a minimum

tunneling splitting ∆0,min in order to avoid non physical behavior at ∆0 = 0. Tun-

neling systems with tunneling splitting below ∆0,min can be understood as systems

with a vanishing tunneling probability and each well can be considered isolated. We

will use ∆0,min ≲ 10−3kBTmin as found by [Luc16] with Tmin the minimal temperature

within the experiment .

2.3.6 Temperature Dependency

To model the temperature dependency of the dielectric function, we integrate the

dielectric susceptibility of the relaxation and resonant contributions as seen in the

Equations 2.37, 2.38, 2.43 and 2.44 with the parameter distribution shown in Equa-

tion 2.49 and the singularities ∆0, min and E as start and end points of the integrals.

The results of these numerically calculated integrals can be seen in Figure 2.8, where

we used a frequency of 1GHz for the electric field.

Relaxation:

δε′

ε′
=

1

3ε0ε′
p20P0

kBT

∫ Emax

∆0,min

dE

∫ E

∆0,min

d∆0

(
1− ∆2

0

E2

)
sech2

(
E

2kBT

)
1

1 + ω2τ 21

E

∆0

√
E2 −∆2

0

(2.50)
δε′′

ε′′
=

1

3ε0ε′
p20P0

kBT

∫ Emax

∆o,min

dE

∫ E

∆0,min

d∆0

(
1− ∆2

0

E2

)
sech2

(
E

2kBT

)
ωτ 21

1 + ω2τ 21

E

∆0

√
E2 −∆2

0

(2.51)

The influence of relaxation effects depends on the relaxation time τ1 and increases

as it gets shorter. The relaxation time in turn correlates to the number of available

thermal phonons. At low temperatures this number is low and thus the relaxation

time is high, leading to negligible contributions for both the real and imaginary

part. At T ≈ 1K tunneling systems with relaxation times of ωτ1 < 10 start to

appear, resulting in a rise of the real part, while the imaginary part starts to rise

slightly earlier. At high temperatures the real part increases steadily as more systems

can contribute with the decrease in relaxation time. The imaginary parts however

flattens into a plateau since only tunneling system with ωτ1 ≈ 1 contribute.

Resonance:

δε′

ε′
=

1

3ε0ε′
p20P0

kBT

∫ Emax

∆o,min

dE

∫ E

∆o,min

d∆0
∆2

0

E2
tanh

(
E

2kBT

)
b′(w)

E

∆0

√
E2 −∆2

0

(2.52)
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δε′′

ε′′
=

1

3ε0ε′
p20P0

kBT

∫ Emax

∆0,min

dE

∫ E

∆o,min

d∆0
∆2

0

E2
tanh

(
E

2kBT

)
b′′(w)

E

∆0

√
E2 −∆2

0

(2.53)

The real part contribution of resonant processes is small at high temperatures, since

the population difference between ground and excited state is nearly zero and only

systems with w ≪ wTS are not fully thermally saturated and can contribute because

of dipole shifts as explained in Section 2.3.4. As the temperature decreases, more

systems with lower frequencies are no longer saturated leading to an increase in

the real part. This leads to a maximum at a temperature of around 30mK, which

decreases slightly at even lower temperatures because more systems with frequencies

w ≥ ωTS are available and these contribute negatively to the real part due to the sign

change at ω = ωTS. This negative contribution quickly approaches to zero leading

to a plateau at lowest temperatures.

For the imaginary part the contribution consists only of resonant tunneling systems

with frequencies ω ≈ ωTS. Because of this, the imaginary part starts of at zero for

high temperatures, as all systems in this range are saturated. When the temperature

reduces to a point where resonant system become available, the resonant contribution

begins to rise continuously until it stays constant at T ≈ 10mK because all resonant

systems are fully able to contribute.
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Figure 2.8: Temperature dependency of the dielectric function with the real part on the
left and the imaginary part on the right, while an electric field with the frequency f = 1GHz
is applied. In both cases are the resonant contributions dominant at low temperatures while
at higher temperatures the relaxation is the relevant contributor. Data from [Fre21]

Combining these results, we can see that at low temperatures resonant contributions

dominate due to low saturation of tunneling system and a small amount of thermal

phonons. This changes at higher temperatures until relaxation processes become
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dominant, with a minimum in the real part proportional to the relaxation time

Tmin ∝ τ1.

2.4 Landau-Zener Loss

In this section we discuss the dielectric loss of glass at low temperatures under the

influence of an additional mechanical strain field, also called bias field. We have

shown earlier, that external fields have the ability to modulate the energy splitting

of a tunneling system. The strain-field applied is supposed to be stronger than the

probe field Fprobe ≪ Fbias so that the effect of the probe field on the energy splitting

can be ignored.

E(t) =
√
∆2

0 + (∆ + δ∆(t))2 . (2.54)

As seen in section 2.3.4 and 2.3.6, the only contributor to the dielectric loss at low

temperatures are tunneling systems with energy splitting near resonance due to the

resonant interaction from photons with two-level systems of similar energy. For this

reason we can use the Taylor approximation for δ∆ −→ 0 to get

E(t) ≈ E0 +

√
1−

(
∆0

E0

)2

δ∆(t) (2.55)

with E0 =
√

∆2 +∆2
0 the energy splitting before modulation. Inspecting the change

in energy over time, we can define the energy bias rate ν as

ℏν =
dE(t)

dt
=

√
1−

(
∆0

E0

)2

δ∆̇(t) (2.56)

and if we differentiate Equation 2.32 we can insert it into this framework

ℏν =

√
1−

(
∆0

E0

)2

2γ ˙̃e = ℏν0

√
1−

(
∆0

E0

)2

(2.57)

with ν0 = 2γ ˙̃e
ℏ . It should be mentioned that for matters concerning the bias field,

the deformation potential γ is used, whereas for matters of the probe field the dipole

moment p must be used. If we assume the change in energy splitting to be linear,

achieved by a linear bias ramp, we get

E(t) = ℏω + ℏν(t− t0) (2.58)

where t0 is the time at which the tunneling system interacts resonantly with the
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Figure 2.9: Schematic representation of a single tun-
neling system changing its asymmetry energy ∆ due
to an applied bias field and crossing the resonant fre-
quency because of this change. The tunneling sys-
tem is represented by a red dot, while the frequency
of probe field is symbolized with a blue semi circle.
Adapted from [Bli22].

probe field ℏω = E. The visualization of this process can be seen in Figure 2.9.

Tunneling systems with resonant energy splitting, so the right ratio of ∆ and ∆0, as

marked by the blue circle, are subject to resonant interactions with the driving field,

while our bias field changes the energy splitting and pushes new tunneling systems

over this circle. The energy splitting can change positively and negatively, meaning

that different tunneling systems can cross the resonance frequency everywhere on the

circle along the ∆ axis with the same probability, due to the uniform distribution of

our parameters.

Considering this we want to get the probability of our system being either in the

ground or excited state. For this we use the wave function |Ψ(t)⟩ = cg(t) |Ψg⟩ +
ce(t) |Ψe(t)⟩ with cg, ce the probability amplitude of the respective state and solve

the time dependent Schrödinger equation

iℏ
∂

∂t
|Ψ⟩ = H |Ψ⟩ (2.59)

with the Hamiltonian from Equation 2.29. In the solution we neglect relaxation

effects and assume the effect of the driving field to be small E
2
≫ ∆

E
pFac resulting in

the differential equations

iℏċe(t) =
E

2
ce(t) + ℏΩR cos(ωt)cg(t) (2.60)

iℏċg(t) = −E
2
cg(t) + ℏΩR cos(ωt)ce(t) (2.61)
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were the Rabi frequency ΩR is introduced. It gives us the oscillation between the

ground- and excited state because of the driving field and is given by

ΩR =
∆0

E

pFac

ℏ
cos θ =

∆0

E
ΩR,0 cos θ (2.62)

with ΩR,0 =
pFac

ℏ . It is important to note that originally the Landau-Zener dynamics

were introduced with an electric bias field in mind and thus θ is the angle between

electrical bias field and dipole moment of a single tunneling system. It quantifies if

the change δ∆ is positive or negative and by which factor it is changed. θ follows

the universal distribution as explained in Section 2.3.5 and thus the factor for the

change δ∆ follows suit. Since this is also the case for acoustic biasing the same

mathematical framework can be used.

Going back to our differential equations, we can transform those into a rotating

frame with (ae, ag) = (ceexp(
iωt
2
), cgexp(

-iωt
2
)) and take advantage of the rotating

wave approximation to get

ȧe(t) = − iν

2
(t− t0)ae −

iΩR

2
ag (2.63)

ȧg(t) =
iν

2
(t− t0)ag −

iΩR

2
ae . (2.64)

These equations match the equations of the Landau-Zener problem for a two-level

system [Lan32, Zen32].

A tunneling system at low temperature is assumed to be in the ground state. If

it undergoes a change in energy splitting resulting in it being swept through the

resonant energy, it can either resonantly absorb a photon or cross while remaining in

the ground state, which is called Landau-Zener transition. By solving the equations

we get the probability for this transition to happen

|ag|2 = PLZ = exp

(
−πΩ

2
R

2ν

)
= exp(−δ) . (2.65)

We can see that at slow bias rates Ḟbias the chance of a photon being resonantly

absorbed is high, while at higher rates a Landau-Zener transition becomes more

likely. To calculate how much energy is dissipated due to resonant absorption, we

need to integrate over the number of all relevant tunneling system with the transition

energy ℏω and the probability of a resonant absorption P = 1− PLZ resulting in

dEdis =

∫
dV

∫
dNℏωP (2.66)
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with the sample Volume V. Inserting the distributions for tunneling system param-

eters leads us to

dEdis = ℏωP0V

∫ 1

0

d cos θ

∫ ℏω

0

d∆0

∫ ℏω+ℏνdt

ℏω−ℏνdt
dE

(1− exp(−δ))E
∆0

√
E2 −∆2

0

. (2.67)

We can further approximate this by assuming small changes in energy ℏνdt ≪ ℏω,
substituting x = ∆0

ℏω and use the Taylor approximation [Fre21], giving us the dissi-

pated power

Pdis =
dEdis

dt
= πωV P0p

2F 2
ac

∫ 1

0

d cos θ cos2 θ

∫ 1

0

dx
1− e−δ

δ

1√
−x2

. (2.68)

We are now able to define the loss tangent as dissipated power per cycle and stored

energy Wtot = ε0εrF
2
acV

tan δ =
Pdis

ωWtot

(2.69)

which we can further rewrite for high bias rates were the approximation e−δ = 1− δ

is valid to get a constant loss

tan δ0 =
πP0p

2

3ε0εr
. (2.70)

This is also a good point to introduce the dimensionless bias rate, with the goal to

simplify comparisons of the loss at different driving field strengths

ξ =
2ν0
πΩ2

R,0

. (2.71)

Uniting the last 4 equations gives us our final expression for the loss tangent for

which the numerical solution can be seen in Figure 2.10

tan δ = 3 tan δ0ξ

∫ 1

0

d cos θ cos θ

∫ 1

0

dx

x

(
1− exp

(
−cos θ

ξ

x2√
1− x2

))
. (2.72)

We need to be careful in interpreting this since we ignored relaxation effects in our

calculations. For low bias rates our integral approaches zero because the energy

splitting changes so slowly that emission and absorption of photons cancel each

other. In reality however tunneling systems can relax back to the ground state given

enough time, so the steady state limit introduced in Equation 2.7 marked by the

red doted line takes over. As the bias rate increases, so does the dielectric loss

since more new systems are able to resonantly interact with the driving field and

our calculations become valid. This increase slows down at higher bias rates until

it reaches the constant tan δ0. At this point we sweep over the resonant crossing so
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Figure 2.10: Numerical integration of the
dielectric loss over the dimensionless bias rate
of the bias field. The bias field changes the
energy splitting while the driving field that is
additionally applied interacts resonantly with
the tunneling system. The red dotted line
marks the steady state loss, were the bias rate
is too slow to significantly impact the loss,
with the result that it can be ignored. Data
from [Bli22].

fast, that the probability of a photon being absorbed is low, so the effects of more

tunneling systems being able to interact and the probability decreasing cancel each

other out leading to the aforementioned plateau.
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3. Experimental Methods

In this chapter, we introduce the setup we used to conduct out experiments. We start

by shortly introducing the cryostat, followed up by the signal pathway. We then

explain the resonator and composition of the sample on which the measurements

will be conducted. We also show the acoustic biasing setup and the workings of a

piezoelectric actuator. Finally, it is explained how the dielectric function is extracted

from the measured data and how to obtain the acoustic bias rate.

3.1 Measurements at Low Temperature

We use a 3He/4He dilution refrigerator, which allows us to cool our sample down to

temperatures below 10mK. The glass is mounted to a sample holder that is attached

to the experimental platform, which is thermally coupled to the mixing chamber, the

coldest part within the cryostat. For a deeper understanding of the cooling principle,

a read in [Ens05] is advised. To keep the sample at a stable temperature, a heater

controlled by a PID-feedback controller is used. The temperature is measured with

a carbon resistance thermometer1. The temperature we use in our setup is 30mK

because there the population difference is with ∆n = tanh( E
2kBT

) = 0.62 high, while

local heating effects, due to the experimental procedure, remain small enough. We

need most systems in the ground state, because we want to study the resonant loss,

while the sample is placed inside an electric driving field and this is only sensible at

low temperature as discussed in Section 2.3.6.

3.2 Signal Pathway

In order to research dielectric behavior of the sample under the influence of a driving

field, a microstructured LC-resonator on glass substrate is used. A radio frequency

(rf-) signal stimulates the resonator. The readout is done with a vector network

analyzer2 (VNA), via coaxial cables. The VNA can supply signals in the range from

10 dBm to -30 dBm. The signal is then attenuated by a 30 dB attenuator, followed

by an adjustable attenuator which can be adjusted in a range from 0 to 81 dB.

1AVS-47, RV-Elektroniikka Oy Picowatt, Veromiehentie 14, FI-01510 Vantaa, Finland
2R & S®ZNB8, Rohde & Schwarz GmbH & Co. KG, Mühldorfstraße 15, 81671 München,

Germany
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Figure 3.1: Illustration of the signal path-
way. The box with the colored sections rep-
resents the pathway inside the cryostat, the
rest is outside at room temperature. The blue
lines represent the rf-signal pathway and the
red line the connection between the bias gen-
erator and the PEA stack. Green is used for
the pathways connecting the PC to the dif-
ferent parts. Adapted from [Sta25]

A LabView program3 is used to control the VNA as well as the attenuator settings.

Instead of solely relying on the adjustable attenuator, the 30 dBm attenuator is

employed in order to reduce standing waves occurring due to differences in wave

impedance of the coaxial cables.

Inside the cryostat, several heatsinks are used in order to thermally couple the cables

to it and avoid heat input to colder stages of the cryostat. DC-blocks are used to filter

out occurring DC-signals for the same purpose. Two additional attenuators, the first

with 20 dB at a temperature of around 1K and the second in the mixing chamber

with 10 dB, are used to reduce the thermal noise entering our setup even further.

After interacting with the resonator, the signal leaving through the heatsinks and

DC-blocks has a very low amplitude. For this reason the signal is amplified by +20 dB

with an low temperature rf-Amplifier still inside the cryostat and an additional 50 dB

outside the cryostat. Since some noise is deflected back into the setup an additional

attenuator at 3 dB is employed in the mixing chamber. For the bias signal, a simple

3LabView 8.5, National Instruments Corporation, 11500 N MopPax Expwy, Austin TX
787593504, USA
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generator is used. It is connected to the resonator with coaxial cables, which only

have heatsinks to reduce the thermal load acting on the mixing chamber.

3.3 Resonator and Sample

To study the dielectric response of amorphous solids we use an LC-resonator designed

by [Sta25] with the software Cadance4. A meander line was used as an inductor

connected to a microstructured interdigital capacitor (IDC) forming our resonator.

The IDC consists of 80 fingers with 100 µm in length, 6 µm width an a distance of

2 µm between each finger. The ends of each finger are rounded in order to avoid

non-linear behavior. Niobium sputter deposited directly on the glass sample is used

to build the resonator and the feedline. The resonance frequency of the resonator

Feedline

Coils
Interdigital 
Capacitor

24   m
Bondpads

Figure 3.2: Illustration of the LC-resonator design used in this thesis. 4 Resonators with
different resonance frequencies are sputtered on our BS 3.3 sample, while we will only use
the resonator with a resonance frequency of 1.16GHz for our measurements. The feedline,
connected to coaxial via the bondpads, induces the resonator. The resonator itself consists
of coils and the interdigital capacitor (IDC). Adapted from [Sta25].

is 1.16GHz The whole setup is illustrated in Figure 3.2 and consists out of five

different resonators with different resonance frequencies, but we will only use the

one mentioned. We use niobium as our microstructure because at a temperature

of T = 9.2K [Mat63] it gets superconducting and we can avoid ohmic losses which

would heat our sample. The sample we use in order to study the dielectric response is

4Cadance Design Systems, 21 Oak Hill Ave, Endicott, NY 13760, USA



26 3. Experimental Methods
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Figure 3.3: Render of the sample holder case with its parts. The resonator is placed
inside the holder and a bias electrode hovers above it with Kapton spacers used to ensure
a consistent distance. The rf-signal enters the holder through SMA connectors, which were
bonded to the feedline. The PEA-stack is placed outside the holder and connects to the
resonator through a small hole. A steel ball is placed between resonator and stack to have
a single contact point. Adapted from [Sta25].

borosilicate glass BS 3.35 and features a relative permittivity of εr = 4.6. It consists

mainly of silicon dioxide and boron trioxide. The whole chemical composition can

be seen in table 3.1. The sample has a length and width of 10 mm and a thickness

of 125µm. The sample is clamped down to the sample holder made of oxygen-

SiO2 B2O3 Na2O Al2O3 K2O BaO
83,4% 11,6% 3,4% 1,14% 0,41% 0,005%

Table 3.1: Chemical composition of BS 3.3

free copper. Copper is used due to its has good thermal conductivity. The inside

of the sample holder is coated with niobium, which is for the sake of clarity not

depicted, to reduce radiation losses of the resonator. The rf-signal enters the sample

holder through SMA6 connectors where the coaxial cables are attached to. The SMA

connectors are bonded with aluminum wires to the bondpads, which establishes a

connected between the VNA and the feedline. A bias electrode is placed above the

resonator with Kapton7 spacers in the middle to ensure a constant distance between

the resonator and the electrode. The bias electrode is used for electrical biasing and

plays no role in our measurements.

5Th. Geyer GmbH & Co. KG, Dornierstraße 4-6,71272, Renningen, Germany
6Sub-Miniature-A
7CMC 70125, DuPont, 974 Centre Rd., Wilmington, DE 19805, USA
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3.4 Acoustic Biasing Setup

We have explained that the acoustic bias field is induced by bending the sample,

leading to a change in properties. This is achieved in our setup with the use of a

piezoelectric actuator8 (PEA). It uses the principle of the inverse piezoelectric effect,

where if certain solids are placed inside an electric field, they change their dipole

alignment, leading to a change in bond angle, resulting in expansion or contraction of

the piezoelectric material. To enhance this effect, multiple ceramic chips are stacked

face-to-face with each other with electrodes in between. The commercially available

stack we use employs chips consisting of lead zirconate titanate bonded together with

epoxy and glass beads. The stack is connected to a signal generator. Experiments

done by [Adh21] show that the maximum displacement at low temperatures is 1.2µm

with the maximum voltage of 75V. It is important to note that our sample can heat

up if it oscillates fast due to quick changes in voltage. They also found the maximum

displacement at low temperatures is 1.2µm at the maximum voltage of 75 V as seen

in Figure 3.4. The PEA is fixed inside a brass tube, in order to ensure that the
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Figure 3.4: Plot of the maximum displacement of the PEA-stack at 75V for different
temperaturs. The right plot shows only the displacement for lowest temperatures and we
can observe that for 5K and lower the displacement remains at a constant 1.2µm. Data
from [Adh21].

position of the PEA is stable and connects to the resonator through a hole inside

the sample holder. An additional stainless steal ball is placed between the PEA and

our sample to establish a single contact point. In its neutral state with no voltage

applied, the stack already presses slightly against the sample, resulting in a preload

acting upon it. To ensure this, an adjustable screw is used to place the PEA in the

right position. We will show that this preload has no effect on the loss and allows

8Type PK2FVP2, Thorlabs Inc., 43 Sparta Ave Newton, NJ 07860, USA
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us to directly link the loss to the displacement of the PEA.

3.5 Measurement Principle

To study the dielectric response while an electric field is applied, we need to connect

the dielectric function with the resonance frequency f0 and the quality factor Q of

the LC-resonator. The resonance frequency is given by

f0 =
1

2π
√
LC

(3.1)

with the inductance L and the capacitance C of the resonator. Power inside the

LC-circuit is dissipated due the interaction with tunneling systems leading to a

dampening in resonance amplitude and can thus be understood as a RLC-circuit

with the resistance R

Pdis =
U2
ac

2R
. (3.2)

As explained in Section 3.3 ohmic and radiation losses, which normally need to be

considered, can be ignored due to the nature of our setup.

Combining these equations leads us to the intrinsic quality factor Qi, defined as the

ratio of energy stored inside the resonator W0 = 1
2
CU2

ac over the energy dissipation

per cycle

Qi = 2πf0
W0

Pdis

= R

√
C

L
. (3.3)

We need to take into account that the resonator is induced via a feedline with the

coupling quality factor Qc and add the inverse resulting in a reduction of the total

quality factor
1

Q
=

1

Qi

+
1

Qc

. (3.4)

We have shown in Sections 2.3.3 to 2.3.5 that at low temperatures the real part of the

dielectric function changes in response to an applied electric field, because of resonant

processes. Since the real part describes energy storing processes, the capacitance and

with it the resonance frequency respond to changes in it. If we set Cref and f0,ref as

arbitrary reference points we can get the relative change of the capacitance and by

interesting Equation 3.1 the relative change of the resonance frequency

∆C

C
=
C − Cref

Cref

=

(
f0,ref
f0

)2

− 1 . (3.5)

Since the electric field also interacts with and probes the volume outside the sample

we have to split up the capacitance into two parts, the capacitance of the sample Cx



3.5. Measurement Principle 29

and a parasitic stray capacitance Cp which we assume to be constant

C = Cx + Cp . (3.6)

We already linked changes in capacity to changes in the real part and can now

narrow it to being directly proportional to the capacitance of the sample Cx ∝ ε′

and combining this with Equation 3.5 leads us to

δε′

ε′
=

∆Cx

Cx

=
∆C

C

1

1− Cp

C

=

[(
f0,ref
f0

)2

− 1

]
1

F
(3.7)

were we defined the filling factor F = 1 − Cp

C
as the ratio of energy stored in the

sample and in the resonator as a whole. Since the internal quality factor is dependent

on the capacitance, the parasitic stray capacitance also needs to be considered and

taken out because we only want to research effects of the sample. This leads us to

the quality factor of the sample QTS ≈ Qi,x with the ratio Qi/Qi,x = (C/Cx)
1
2 . If we

compare the quality factor with Equation 2.69 of the loss tangent we can see that

one is the inverse of the other giving us the relation

tan δ =
1

Qi,x

=
1

Qi

√
F

. (3.8)

We now know how to obtain the real part from the resonance frequency and imag-

inary part from the quality factor and want to obtain those from the VNA readout

signal S12. We also have to consider external factors that influence our signal. One

is the cable delay τ , another are possible impedance mismatches we account for

with the complex quality factor eiΦ and phase shifts eiα. Lastly we need to have

an additional factor a since we amplify or attenuate our signal. This was already

done by Probst et al. [Pro15] giving us the Equation for the non-ideal behavior of a

notch-type resonator

S12(f) =
Uout

Uin

= aeiαe2πifτ

(
1− Q/Qce

iΦ

1 + 2iQf−f0
f0

)
. (3.9)

If we use the Amplitude |S21| as a fit function for the measured resonance curves, we

can finally obtain the desired values. An example of this fit can be seen in Figure

3.5.
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Figure 3.5: Example of a resonance curve,
with its respective fitted function. The fit is
shown in red, while the data points are shown
in black and gray. Only the black points are
used for the fit to ensure the closest fit during
a resonance sweep.

3.6 Single Ramp Acoustic Biasing

The PEA is setup in a way that it presses against our sample, causing it to bend

slightly, straining the sample, due to the difference in length between the neutral

axis L and the outer scope L′ of our sample due to the width h = 0.2mm, inducing

a strain-field.

ẽ =
∆L

L
=
L′ − L

L
. (3.10)

Like it can be seen in Figure 3.6, we assume our deformation to be circular, with

the circle crossing the x-axis at the mounting points at (±D
2
, 0) with D the distance

between our mounting points and the deflection at height (0, z). The Radius of our

circle is given by

R =
z

2
+
D2

8z
(3.11)

and for our setup we can take R·z to be constant at 12.5 · 10−6m2 and the relative

changes as equal (See A.1).
∆R

R
= −∆z

z
. (3.12)

The calculations that led us to these equations can be further examined in Appendix

A.1. With this in mind we can calculate the strain-field with Θ the corresponding

angle of the circle cutout

L = ΘR and L′ = Θ

(
R +

h

2

)
. (3.13)
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Figure 3.6: Illustration of the different chip
parameters during bending. L is the neutral
axis and L′ the outside axis of the chip. The
length of the chip without bending is D and
the deflection is given by Z. The imagined
circle we get by continuing the neutral axis
has the radius R. The circle cutout has the
angle Θ.

Inserting Equation 3.13 into 3.10 gives us the formula for our strain-field

ẽ =
h
2

R
. (3.14)

Applying a voltage extends our PEA, bending our sample further. This leads to a

decrease in radius and in turn increase in the displacement of the chip as well as the

strain and the corresponding field.

∆ẽ =
δẽ

δR
∆R = −

h
2

R2
∆R (3.15)

We already explained that the maximum displacement of the piezo stack is dmax =

1.2µm and now assume that our PEA displaces linearly with the applied Voltage.

While we do not believe this is the case entirely, our measurements have shown that

this assumption is sufficient for our framework. This gives us the change in deflection

∆z = aUb (3.16)

with the gradient a = 1.6 · 10−8m
V
and Ub the applied bias voltage. Since we increase

our Voltage linearly with the frequency fb we can rewrite Equation 3.16 to

∆z = aUbtotalfbt (3.17)

with Ubtotal = 20V the total change in voltage. Inserting Equation 3.3 and 3.8 into

3.6 gives us

∆ẽ(t) =
h
2
∆z

R · z
=

h
2
aUbtotalfbt

R · z
. (3.18)

This allows us to split up our strain field into a constant preload ẽo and a time
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dependent part

ẽ = ẽo +∆ẽ(t) . (3.19)

Differentiating ẽ gives us the acoustic bias rate, the rate at which our strain-field

changes over time,

˙̃e =
d

dt
(ẽ0 +∆ẽ) = ∆˙̃e =

h
2
∆z

R · z
=

h
2
aUbtotalfb

R · z
(3.20)

which we can now use to describe our measurements in the framework based on

Landau-Zener transitions, introduced in Section 2.4, originally developed for the

description of electrically biased resonators. This grants us the ability to express our

findings with the dimensionless bias rate

ξ =
2νo
πΩR,0

=
2ℏ2νo
πp2F 2

ac

. (3.21)

We can insert ν0 = 2γ ˙̃e
ℏ combined with Equation 3.20 into this framework resulting

in

ξ =
2ℏ2γ ˙̃e
πp2F 2

ac

=
2ℏγhUbtotalafb
πp2F 2

acRz
. (3.22)

3.6.1 Measurement Protocol for Bias Ramps

In the previous section we introduced the bias rate with a linear increase in voltage

of the electric field acting upon the PEA. One way to achieve this is to use a triangle

signal that continuously changes the asymmetry energy and modifies the loss. This

method has the disadvantage that the time between resonant crossings of our tunnel-

ing systems can be too short for them to relax back into the ground state, resulting

in resonant emissions. This leads to a reduction in loss for higher rates, was can be

seen in [Bli22]. Another problem is that the continuously changing signal heats up

the sample, which is especially prominent for acoustic biasing, which was observed

by [Roz23].

To counteract this, we used an alternative protocol, where the bias voltage changed

positively over an interval t = 1
2f
, then remained at 20V for 6 times that interval

and then drops to zero volt with the same interval. This should allow tunneling

systems to relax back into their equilibrium state before being swept through the

resonance once again. During this time the VNA, supplying the rf-signal that probes

our sample, is set to CW time-sweep mode. In this mode, the VNA is set to a single

frequency and continuously measures the amplitude S21 for a fixed time interval.

After the protocol is finished, the driving frequency changes and the process gets

repeated.
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Figure 3.7: On the left is an example of a mapping during an acoustic bias rate mea-
surement. The probe tone power was -99 dBm the interval length was 0.0734 s and the
temperature was 30mK. To increase the clarity, the mapping only shows the first 1.2 s
of the protocol, which took around 2.6 s. The mapping depicts the amplitude S21 of the
rf-signal depending on the time and frequency of the driving field. On the right is the time
dependence of the dielectric function extracted from the mapping depicted in Figure 3.6.
While the loss increases during changes in Ub the real part is nearly unaffected.

The VNAmeasures 12.000 points for every frequency and the time of a single protocol

is depended on the if-bandwidth and is around two seconds for our measurements.

An example of the resulting mapping is depicted on the left in Figure 3.7, where the

interval was about 0.075 seconds. The resonance frequency of the chip can clearly be

identified when the mapping turns yellow, since the amplitude decreases. The time

frame where U̇b > 0 can be easily identified, since the amplitude decreases and the

resonance curve broadens during the change.

Now we can take a vertical slices out of the mapping to get a resonance curve for

different times during the protocol. With the resonance curve, we can calculate the

real part and the loss of the dielectric function, which we explained in Section 3.5.

An example of this process can be seen on the right in Figure 3.7, where we can

observe the increased loss during the positive and negative changes in Ub, while the

real part remains largely unaffected.
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4. Experimental Results

In this chapter, we display the experimental results of this thesis. We start by

showing the dielectric response for different probe tone powers and temperatures.

In Section 4.2 we focus on the non-equilibrium measurements, where we start off by

showing the dielectric response during single ramp acoustic biasing and the difference

between increasing and decreasing the strain field voltage during a ramp. We then

investigate if the response changes if a preload is applied. The last step is to compare

the results during a ramp for different probe tone powers and then plot the loss over

the dimensionless bias rate.

4.1 Power and Temperature Dependence

The power and temperature dependence measurements were performed by [Sta25].

Starting with the power dependence, the measurements were performed at a constant

temperature of T = 30mK. The adjustable attenuator was used to change the probe

tone power in the range from -136 dBm to -70 dBm. No strain field was applied

during these measurements.

These measurements are important in exploring changes in the dielectric function

and saturation effects at different driving-field strengths and are useful in comparison

to the steady-state loss at low bias rates shown at a later point.

The results can be seen in Figure 4.1 with the real part on the left and the dielectric

loss on the right. The error bars for each point are statistical in nature and represent

the standard deviation. The real part is independent of the probe tone power and

remains constant. This occurs because all two-level systems influence the real part

and the impact of resonant tunneling systems is negligible. With this in mind,

changes in the loss can only be attributed to changes in the imaginary part. At

low probe tone power, our loss remains constant until a critical point is reached

and the loss starts to decrease. After that point, the population difference starts to

decrease with higher probe tone powers until saturation sets in and both the loss

and population difference approach zero. The measurements validate our theoretical

framework and follow the curve shown in Figure 2.3.

The error for both the real part and loss is high at low probe tone power, because

the signal-to-noise ratio is small and our data gets distorted.

Following this, we explore the reaction of our sample to different behaviors, in order

to confirm that our resonator thermalizes well to the mixing chamber and to explain

the measurements. The measurements were performed at a constant probe tone

35
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Figure 4.1: Power dependence for the real part and the loss of BS 3.3 at probe tone
powers from -136 dBm to -70 dBm and a temperature of T = 30mK. The real part shows
no dependence, while the loss decreases with higher power. Data from [Sta25].

power of -126 dBm, because at this power the loss retains its maximum, while having

a passable signal-to-noise ratio. The measurements were performed at temperatures

from 7mK to 5K. We used f0,ref = 1.19GHz as the reference frequency, in order to

calculate the real part.

The results are shown in Figure 4.2 and we can see that it follows the expected

behavior proposed in Section 2.3.6. The real part, seen on the left, is high at lowest

temperatures with a small maximum at around 20 to 30mK. At higher temperatures,

the real part decreases because more tunneling systems become thermally saturated.

We have a minimum at 3K after which relaxation behavior becomes important as

the relaxation time decreases since it is directly linked to the number of thermal

phonons available.

The loss seen on the right also follows the predicted behavior with a plateau at low

temperatures, where resonant tunneling systems are all able to fully contribute. This

changes at a temperature of around 20mK where systems with energy splitting near

resonance start to become thermally saturated, leading to a steeper slope than in the

real part, since only tunneling systems near resonance contribute to the imaginary

part. At around 2K the loss starts to rise again as relaxation processes become

the main contributor, which is earlier than in the real part and thus also follows

expectation. For high temperatures, our measurements start to deviate from the

theory because no plateau can be observed. This is due to the fact that equilibrium

measurements at a stable temperature become impossible and our measurement

results become unreliable.
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Figure 4.2: Temperature dependence for the real part and the loss of BS 3.3 at a tem-
perature range from T = 7mK to T = 5K and an probe tone power of -126 dBm. The
real part and the loss show similar behavior with a maximum at low temperatures that
decreases as it gets higher. Data from [Sta25].

4.2 Non-equilibrium Measurements

In this section, we discuss the behavior of amorphous solids under the influence of

an additional strain field. We start by exploring how our sample reacts to changes

in the strain field and the difference between increasing and decreasing the voltage.

We follow this up by increasing the preload acting upon our sample. The next point

is to look at the different probe tone powers ranging from -97 dBm to -104 dBm.

We end this section by deliberating if the Landau-Zener framework is applicable to

acoustic biasing. All measurements were performed at a consistent temperature of

T = 30mK.

4.2.1 Single Ramp Acoustic Biasing

The first measurements we want to look at were performed at a probe tone power

of -99 dBm and can be seen in Figure 4.3 with the real part on the left and the loss

on the right. We changed the length of the PEA with the application of an electric

bias field. At the start, the bias-field voltage is set to zero and starts to increase

to Ubtotal = 20V over a time-period 1/2f , resulting in a total increase in length of

0.32µm. Then the voltage remains constant for six times that period and after that

decreases to 0V with the same frequency.

It is plotted in dependence of the acoustic bias rate ˙̃e ranging from 0, 85 · 10−6Hz
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Figure 4.3: Real part (left) and loss (right) of BS 3.3 during a single ramp bias sweep
of Ub = 20V. The increase from zero to twenty volt is plotted in red and from twenty to
zero in blue. It is plotted for different acoustic bias rates ˙̃e. The probe tone power remains
constant at -99 dBm.

to 0, 58 · 10−3Hz. The bias rate increases as the time period of a ramp decreases.

The real part and the loss during the up-ramp are shown in red, and during the

down-ramp in blue.

The real part only has slight changes and can be assumed to be constant, which is

expected. As discussed in Section 2.4, the distribution of tunneling system param-

eters does not change with an applied strain field. Since the distribution stays the

same and the influence of resonant tunneling systems is negligible (see Section 4.1),

the results validate our assumptions. Heating effects could have an impact on the

real part, but have not been observed in our measurements. The difference between

the positive and negative change in U̇b is small as well, with the result that changes

in loss can be attributed to changes in the imaginary part due to resonant behavior.

For low and medium bias rates, the loss of positive and negative changes in U̇b are

similar. This can be explained with the uniform distribution of the tunneling system

parameters, leading to an equal number of tunneling systems that increase or de-

crease their energy splitting. The only relevant factor is thus the rate of change, not

the direction. This changes as the bias rate and thus loss increases, and we can ob-

serve that the loss during a positive change in U̇b tends to be noticeably higher. We

assume this is because, for high bias rates, the PEA does not follow the electric field

instantly during the negative change in voltage due to its inertia. This phenomenon

was also discovered by [Adh21], which they called the hysteresis of the PEA. They

also observed a high variance in hysteresis. The error bars are also larger at high

rates, since the number of points measured per ramp decreases and the variance in-
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creases. The variance increases because the resonance curves become more shallow,

resulting in a smaller signal-to-noise ratio. We also had to increase the intermediate

frequency bandwidth with higher frequencies, because otherwise there would not be

enough points per ramp, to achieve reasonable a resonance resonance curve for fit-

ting.

The shape of the loss curve follows our expectations well. Slow bias rates change the

energy splitting of two-level systems within our sample slow enough, so that it can

relax back to the ground state and get excited again during a single crossing. The loss

at the lowest rates matches the equilibrium loss for -99 dBm shown in Figure 4.1 and

also parallels the steady-state limit introduced at the end of Section 2.4. As the rate

increases, so does the number of systems that cross the resonance frequency within

a small time frame, resulting in an increase in loss. The plateau for high bias rates

predicted in Section 2.4 could not be observed, as we were unable to increase the bias

rate enough to reach this point. Due to the limitations, set by the instruments, we

were limited to the slow bias rates. At this stage, there were only a few points dur-

ing each ramp with a high variance and because our setup limits us to only increase

the voltage by 20V during a single ramp, we could not increase the number of points.

From this point on only measurements during the positive change in U̇b are shown

and discussed, as the sample reacts to both ramp directions and we do not have to

worry about the possible interference at high bias rates during the negative U̇b.

4.2.2 Measurements with Increased Preload

The measurements were repeated with the same parameters. The probe tone power

was set to -99 dBm, the voltage Ub at 20V and the bias rate again varied in the

range from 0, 85 · 10−6Hz to 0, 58 · 10−3Hz. The temperature remained constant

at T = 30mK. The only change was an increase in the preload, resulting in an

extension in length of the PEA of approximately 0.72µm. This was achieved by an

expansion in the voltage of 45V, increasing the strength of the electric field acting

on our stack and with it it‘s length, so that the voltage oscillates between 45V and

65V during the ramps. The comparison of this measurement with the previous one

can be seen in Figure 4.4, with the real part on the left and the loss on the right.

The measurement with the additional preload is depicted in red, the one without

in blue. We can see that the real part remains constant and differences between

the measurements are small. We can apply the same explanation as in the previous

section, since the preload does not change the arguments made and we also observe

that no heating effects take place due to the application of it.

The calculated loss is similar for the measurement with and without preload.

The only noticeable difference is at an acoustic bias rate of 4 · 10−3 1/s, where the
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Figure 4.4: Real part (left) and loss (right) of BS 3.3 during a single ramp bias sweep
of Ubtotal = 20V. The measurement with no preload is plotted in red and the one with a

preload of 45V in blue. It is plotted for different acoustic bias rates ˙̃e. The probe tone
power remains constant at -99 dBm.

loss with preload is slightly lower. However, because of the high errors, the points

remain within the 3σ range and are statistically within reason. The fact that there

is no considerable difference in loss is supported by our framework. The only change

in the bias rate is the factor R · z, which is negligible at changes this small (see A.1).

The similarity also supports the assumption made in Section 3.6, that the length of

the PEA and thus the displacement of our sample increases linearly with the applied

voltage and validates the equation for the acoustic bias rate. This observation is also

consistent with the theory presented in Section 2.3.5. The asymmetry energy ∆ is

uniformly distributed, with the result that the loss is unaffected by a constant shift

in ∆.

4.2.3 Measurements with different probe tone powers

We have determined that the real part and the loss follow the expected behavior

during the acoustic bias ramp and that an applied preload has no major effect on

the results. We now want to compare the changes in the dielectric function during a

single sweep at different probe tone powers.

For that, two additional measurements were made at probe tone powers of

P = −97 dBm and P = −104 dBm. The change in voltage during a ramp remained

0-20V and the acoustic bias rate was varied from 0, 85 · 10−6Hz to 0, 85 · 10−3Hz.

The temperature during the measurements was T = 30mK. The results are shown in
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Figure 4.5: real part (left) and loss (right) of BS 3.3 during a single ramp bias sweep of
Ubtotal = 20V. The increase from zero to twenty volt is plotted in red, and from twenty to

zero is plotted in blue. It is plotted for different acoustic bias rate ˙̃e, which are adjusted with
frequencies ranging from 0.316Hz to 215.44Hz. The probe tone power remains constant
at -99 dBm.

Figure 4.5 with the real part on the left and the loss on the right. Starting with the

real part, we can see that the constant nature remains the same, while both the error

and the total value for the -104 dBm measurement are larger in comparison to the

other two. The increased error can be explained with a reduced signal-to-noise ratio

at low probe tone powers and follows the results shown in Figure 4.1. Concerning the

latter, the total value is directly related to the resonance frequency of the resonator

(See Equation 3.7). Before the -104 dBm measurement was conducted, we had to

heat the cryostat to room temperature and cool it down again to 30mK.

This process can slightly change the properties of the resonator, resulting in a small

shift in resonance frequency. The change in resonance frequency should not have

a major impact on the loss. Turning to the loss, we can observe that at low bias

rates the loss approaches the steady-state limit marked by the colored dashed lines

for all probe tone powers. We can see that the loss increases at larger bias rates,

but we have to note that the results for the measurements at a probe tone power

of -104 dBm become unreliable because of the relatively large error, stemming from

the bad signal-to-noise ratio. This may also be the reason why the loss for the

measurement with a probe tone power of -99 dBm is larger at high bias rates than

the one with -104 dBm, which falls outside our expectations. The low power limit,

in equilibrium state, taken from the power dependence in Figure 4.1, is marked by

the black dotted line and could not be reached, regardless of the probe tone power.



42 4. Experimental Results

4.2.4 Dimensionless Bias Rate

For the last part, we want to describe our measurements with the dimensionless bias

rate ξ introduced in Section 3.6. As a reminder, the dimensionless bias rate is given

by

ξ =
2ℏ2γ ˙̃e
πp2F 2

ac

=
2ℏγhUbtotalafb
πp2F 2

acRz
. (4.1)

The driving field strength for the used resonator is calculated with

Fac =

√
Q2P

QcCd2ωo

, (4.2)

with ω0 the excitation frequency and the spacing between IDC fingers d = 2µm. The

capacitance of our resonator C and the dipole moment d were determined by [Sta25]

to be C = 3.02 pF and P = 1.1D. The deformation potential γ was the only unknown

factor, which we determined by fitting our measurements to the mathematically

expected loss curve, obtained by numerical integration of Equation 2.72. This can

be seen in Figure 4.6, where we used the maximum loss tanδ0 = 0.835 · 10−3 to

normalize our results and allow for comparison. We determined that a deformation

potential of

γ = 3 eV (4.3)

gives us the best fit between of our data to the mathematical framework. This follows

the estimation performed by [Hun76], who found that a deformation potential in the

order of 1 eV is necessary to explain the acoustic properties.
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Figure 4.6: Loss plotted against the dimen-
sionless bias rate ξ for different probe tone
powers. The back curve shows the numeri-
cal solution of Equation 2.72, describing our
mathematical framework. The colored dot-
ted lines represent the steady state limit for
each probe tone power. The loss is nor-
malized with the maximum loss of tanδ0 =
0.835 · 10−3.
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We can observe that the introduction of the dimensionless bias rate shifts our curves

to the right the more we lower the probe tone power. As the bias rate increases,

all curves converge to the expected loss curve shown in black. The data of the

measurement with a probe tone power of -104 dBm greatly deviates from the expected

loss curve, which can be explained with the same reasoning mentioned in the previous

section. The -97 dBm and -99 dBm measurements follow the loss curve closely and

deviations are within reason. We can see that the Landau-Zener framework used for

describing the effect of electrical bias fields on the dynamics of tunneling system, also

works well for acoustic biasing within the used measurement parameters. However,

to be sure that the framework fully describes the behavior of glass during acoustic

biasing, more measurements in the range of higher bias rates need to be conducted.
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5. Summary and Outlook

The goal of this thesis was to examine the dielectric response of borosilicate glass BS

3.3 while slowly increasing an acoustic strain field in a single sweep. We measured

the dielectric response by probing the sample with a microfabricated superconduct-

ing LC-resonator with a resonance frequency of 1.16GHz and fitting the resulting

rf-signal. The measurements were performed at a constant temperature of 30mK,

which was achieved by placing our sample inside a 3He/4He cryostat. The acoustic

bias field was generated with a piezoelectric actuator that bends the sample, induc-

ing a strain field and changing the energy splitting.

We started our discussion by analyzing the equilibrium measurements performed by

[Stä25], without an applied strain field, in order to compare and better understand

our later results. Both followed the expected behavior, predicted by the standard

tunneling model. Concerning the power dependence, the plateau in the loss for low

input powers could be observed, as well as the decline for higher input powers. The

temperature dependence measurements also followed the expected behavior, decreas-

ing with higher temperatures, while increasing again at around 1K.

The focus of our experiments were the non-equilibrium measurements. For that, we

bent the sample with the piezoelectric actuator that takes advantage of the inverse

piezoelectric effect. The actuator changes its length while inside an electric field.

In all experiments, we changed the voltage of this electric field by 20V at different

frequencies, resulting in a length change of around 0.32µm. For all measurements,

we observed that the acoustic field had no sizable effect on the real part.

At first we compared the loss for different bias rates and if it made a difference if the

actuator extends or contracts. The loss started at the steady state limit for low bias

rates and increases with larger bias rates. This follows expectations because at first

we sweep slow enough, that tunneling systems can interact resonantly multiple times

in a single sweep, while for higher rates more systems are swept through resonance.

The expected plateau for high rates was not observed, due to our setup limiting how

fast and to what maximum voltage we could ramp the bias. We also observed no

difference between increasing or decreasing the length of the actuator for most rates,

while at highest rates the time between positive and negative changes in bias voltage

was too short, resulting in less loss during the negative change.

We followed this up by exploring if an applied preload, achieved by extending the

actuator by 0.72µm, made a difference in the dielectric response of our sample and

were able to confirm that this was not the case. This can be explained by changes

in the bias rate due to the preload are negligible and because the tunneling system
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parameters are universally distributed the neutral state was not affected.

We then performed the bias sweep without preload for different input powers of

-97 dBm, -99 dBm and -104 dBm. While the steady state loss changed according to

expectations, the results of the -104 dBm measurement are not meaningful for higher

bias rates, because the error is large, stemming from the bad signal-to-noise ratio.

In the last step, we took the Landau-Zener framework developed for electrical biasing

and adjusted it for acoustic biasing. We were able to plot our results against the

dimensionless bias rate ξ and were able to extract the deformation potential γ by

fitting our results to the theoretical loss curve. We found a value of 3 eV to fit the

curve best, which agrees with experiments performed by [Hun76], who stated that a

deformation potential in the order of 1 eV is necessary to explain acoustic properties.

We can conclude that the energy splitting can be modified with acoustic biasing

in a similar way to electrical biasing. We were also able to use the Landau-zener

framework to describe our results.

Further experiments could help in understanding the similarities of the different bi-

asing methods. One experiment could explore are measurements with higher bias

rates. The signal generator we used to drive the PEA was only able to provide a

maximum peak-to-peak voltage of Vpp,max = 20V, which limited our range of bias

rates, as we had to sweep with high frequencies. As a result, we were unable to reach

the fully desaturated state. A different signal generator, which can output higher

voltages, should help in providing these measurements.

The interaction between pump fields, fields that change the population difference

with the result of mostly excited systems sweeping through resonance, and acoustic

bias fields could also help to deepen our understanding of acoustic bias fields.



A. Appendix

A.1 Correlation Between the Deflection and the Change in

Radius

As can be seen in Figure 3.6 we imagine the deflection to be circular going through

the points (±D
2
, 0) where the mounting points lie, with D = 10mm and (0, z) the

maximum chip deflection. The general equation for circles is given by

(x− xc)
2 + (y − yc)

2 −R2 = 0 (A.1)

with xc and yc beeing the respective coordinates for the center of the circle and x

and y the coordinates of a point on the circle. xc is set to be zero due to the setup.

Inserting the three known points results in the equations(
D

2

)2

+ y2c −R2 = 0 (A.2)

(
−D

2

)2

+ y2c −R2 = 0 (A.3)

(z − yc)
2 −R2 = 0 . (A.4)

Solving these equations for yc results in

yc =
4z2 −D2

8z
(A.5)

and the Radius

R =
z

2
+
D2

8z
. (A.6)

Multiplying Equation A.6 by z gives us

Rz =
z2

2
+
D2

8
. (A.7)

The sample can only be deflected to a maximum of zmax = 300·10−6ṁ and we can see

that z2max

2
≪ D2

8
= 12.5µm and we can thus assume Rz to be constant and unaffected

by small changes. With this in mind it can be written as

(R +∆R) · (z +∆z) ≈ Rz . (A.8)
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Solving the equation leads us to

∆R

R
+

∆z

z
+

∆R∆z

Rz
= 0 . (A.9)

The ladder part is negligible for small z giving us the relation

∆R

R
= −∆z

z
. (A.10)
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