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ABSTRACT With an increasing presence of science throughout all parts of society, there is a rising
expectation for researchers to effectively communicate their work and, equally, for teachers to discuss
contemporary findings in their classrooms. While the community can resort to an established set of
teaching aids for the fundamental concepts of most natural sciences, there is a need for similarly illustrative
experiments and demonstrators in neuroscience. We therefore introduce Lu.i: a parametrizable electronic
implementation of the leaky-integrate-and-fire neuron model in an engaging form factor. These palm-sized
neurons can be used to visualize and experience the dynamics of individual cells and small spiking
neural networks. When stimulated with real or simulated sensory input, Lu.i demonstrates brain-inspired
information processing in the hands of a student. As such, it is actively used at workshops, in classrooms, and
for science communication. As a versatile tool for teaching and outreach, Lu.i nurtures the comprehension
of neuroscience research and neuromorphic engineering among future generations of scientists and in the
general public.

INDEX TERMS education, leaky-integrate-and-fire, low-cost, neuron, outreach, PCB

I. Introduction
Expanding our understanding of the mammalian brain is
among the central frontiers of modern science and yet implies
some of the longest standing questions humanity has posed to
itself. Their fundamental nature induces an intrinsic curiosity
about the progress of neuroscience, artificial intelligence, and
brain-inspired technology. In contrast to this demand, the
repertoire of demonstrators to communicate principles and
recent achievements in brain research is limited (Gage, 2019).
In comparison, other fields can build on many centuries of
experience for conveying their essential concepts.

In our current understanding, the fundamental principles
of information processing in nervous systems lie in neuronal
dynamics and synaptic interactions. A strong intuition for
these mechanisms is, therefore, the foundation for understand-
ing and investigating more complex processes and emerging
phenomena. In the following, we thus present Lu.i – an
analog electronic implementation of the leaky-integrate-and-
fire (LIF) neuron model targeted for educational use as well
as scientific outreach. Lu.i features current-based synaptic
inputs that enable the formation of simple spiking neural
networks (SNNs) and offers control over many parameters,
including the time constants and the synaptic weights. The

Figure 1. A single Lu.i neuron PCB, with a 2-Euro coin for scale. To
relay information from one neuron to the other, excitatory and inhibitory
synapses can be formed by wiring the axonal output (right) to one of the
three dendritic terminals (left).

printed circuit board (PCB) visualizes the time-continuous
dynamics of the emulated membrane potential and allows
interfacing with digital and analog periphery for advanced
experiments. It has been optimized for low-cost production,
long battery life, and intuitive operation.
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Figure 2. Schematic of the LIF emulation circuit implemented in Lu.i. (A) Membrane capacitance and leakage resistance. (B) Current-based synaptic input
circuits. This circuit is instantiated three times, once per synapse. (C) Synaptic integrator and voltage-to-current conversion circuit. (D) Threshold, reset,
and refractory circuit. The spike output pulse is derived from the neuron’s reset signal and of equivalent duration.

II. Neuron and synapse dynamics
Lu.i implements the LIF neuron model, arguably the simplest
abstraction that still captures the most fundamental prop-
erties of neuronal information processing: time-continuous
computation, spatio-temporal integration, and event-based
communication. This model was originally put forward by
Louis Lapicque in 1907, after whom the PCB was fittingly
named. The LIF model describes the dynamics of a neuron’s
membrane potential Vmem(t), which are governed by the
differential equation

Cmem
dVmem(t)

dt
= −gleak [Vmem(t)− Vleak] + Isyn(t) , (1)

where Cmem denotes the membrane capacitance, gleak the
leak conductance, and Vleak its resting potential. Isyn(t)
subsumes the time-dependent synaptic currents stimulating
the neuron. This differential equation describes a membrane
potential which continuously decays to the resting state. It
is, however, augmented by a reset condition to mimick the
hyperpolarization following the action potentials observed in
biological neurons: Whenever the membrane potential crosses
the threshold ϑ, the neuron emits a spike. This efferent signal
is accompanied by a reset of the membrane potential, where
the latter is simply clamped to Vreset for the refractory period.

Lu.i further implements current-based synapses with post-
synaptic currents following exponential kernels with time
constant τsyn. This additional temporal filter mimics the
kinetics of synaptic ion channels: Each presynaptic spike
j, arriving at time tjpre at synapse i, triggers an exponentially
decaying current

Ijsyn(t) = wi · exp

(
− t− tjpre

τsyn

)
, (2)

where wi denotes the weight of the respective synapse i. The
total synaptic current then results as a sum over all of these
individual contributions.

III. Electronic implementation
Lu.i realizes the LIF dynamics through a set of analog
electronic circuits (Fig. 2) and thus forms a physical model
thereof. Equation (1) is rendered by the combination of
capacitor Cmem and potentiometer gleak, which form an
RC integrator with adjustable time constant τmem. Without
external stimuli, Vmem decays towards the resting potential
Vleak, which we generate by the combination of an adjustable
voltage divider with a subsequent unity gain buffer. The
spike mechanism is implemented by continuously comparing
the membrane potential to the threshold (Fig. 2D). Once
the membrane reaches ϑ = VDD/2, the threshold comparator
trips, indicating a spike and causing a membrane reset. To
avoid instabilities, it is fitted with a hysteresis circuit that
temporarily reduces the comparator’s reference potential to
VDD/4 during the onset of a spike. At that point, the capacitor
Cref is discharged and the connected comparator trips, thus
shorting the membrane to Vreset = 0 via the transistor Qreset
to implement the refractory period. Rref and Cref determine
the fixed refractory time of approximately 12 ms, which starts
once Vmem is discharged below VDD/4, where the threshold
comparator releases. The control signal for Qreset is re-used
as the neuron’s axonal output, with a pulse width equivalent
to the refractory time.

Lu.i features three synapses implementing the current-
based model with an exponential kernel as introduced by
Eq. (2). Each of them possesses a tunable weight and can be
switched between excitation and inhibition. The synapses
share a common synaptic time constant τsyn, which is
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Figure 3. (A) A single Lu.i neuron receiving multiple excitatory and a single inhibitory event. The depicted trace shows an analog recording of Vmem on the
board. For applications without an oscilloscope at hand, each Lu.i neuron features a bar of LEDs to display the current membrane potential as well as
axonal spikes (top LED, flashing). (B) Tuneable neuron parameters on Lu.i. Each model parameter is represented by a small potentiometer (cf. Fig. 1), all
three synaptic weights are individually configurable in sign and strength. (C) Analog recording of the membrane potential Vmem of two Lu.i neurons. The
top trace shows the dynamics of a circuit that is configured with Vleak > ϑ and emits spikes at regular intervals. This neuron projects onto a second one
(bottom trace), which is excited by these events, integrates the postsynaptic current and – eventually – also spikes. (D) Wiring diagram of a closed, circular
delay chain built from seven Lu.i neurons. (E) Spike recording of three Lu.i boards, configured to represent rate-based AND, OR and – combined – XOR
gates. The inputs A and B are presented by an external microcontroller.

adjustable over a broad range. For an area- and cost-effective
implementation, we minimize the amount of integrated
components per synaptic connection: Events from presynaptic
neurons control the gate of the n-channel MOSFET Qlow
(Fig. 2B). Depending on the selected polarity Si

sign, this tran-
sistor either directly discharges the shared synaptic integrator
or indirectly charges it via the p-channel MOSFET Qhigh. For
each event, this synaptic trace is in- or decremented by a fixed
amount of charge proportional to the respective weight giweight
which can be configured through a potentiometer. The time
constant τsyn = Csyn/gτsyn of the integrator can be similarly
tuned. Especially in light of the additional filter introduced by
the membrane, this closely approximates the instantaneous
response of the original model. The synaptic current Isyn is
derived from the integrator state through a V-I conversion
stage. As such, it consists of two voltage-controlled current
sources – each built from a resistor, a MOSFET, and an
operational amplifier. Qpush and Qpull operate in a push-pull
configuration and generate two antagonistic currents. Their
difference is proportional to the deflection of the integrator
and corresponds to the total postsynaptic current Isyn that
stimulates the membrane.

Lu.i displays its state through a set of LEDs. Six of
them form a bar that visualizes the membrane potential,
and a seventh LED indicates efferent spikes with a flash.
This interface is sketched in Fig. 3A for various states of
the neuron. The voltmeter is implemented through a set of
comparators and a resistor ladder to generate the respective
reference potentials. While these circuits take up significant
area on the PCB, they have been omitted from the schematic

for clarity. This intuitive on-board interface enables standalone
operation and the visualization of network activity and signal
propagation therein. Experimentation with external equipment
is, however, encouraged and allows more detailed insights
into the neuron dynamics. For that purpose, the emulated
membrane is accessible through a pad at the board edge for
interfacing with, e.g., current sources and oscilloscopes.

The PCB is powered from a single CR2032 coin cell, which
we chose for its small form factor, wide availability, and
comparably high capacity at low cost. All voltage references
of the circuit are derived relative to this supply. The temporal
dynamics are thus, on first order, invariant to the battery
voltage. This ensures mostly stable operation across the entire
lifetime of the cell, which results in approximately 24 h
of continuous use. Lu.i can be powered down completely
through a switch on its back side.

While aiming for an intuitive and appealing form factor,
the PCB has been strongly optimized for low-cost fabrication.
This is reflected in the selection of components as well as the
layout, which only relies on a simple two-layer PCB. As a
result, we achieved a unit price of around US$3 already
for batches below 1 000 Lu.i neurons. As the backside
only contains the battery holder and an optional power
switch, fabrication costs can be further reduced by restricting
automated assembly to the top layer.

IV. Exploring Neural Computation with Lu.i
Lu.i was designed to illustrate two of the fundamental aspects
of biological neurons: spatio-temporal accumulation of input
and event-based communication, both of which are captured
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Figure 4. Lu.i has played an integral role at various events all over the world for teaching and outreach applications: Nacht der Forschung (Switzerland, 2022),
CapoCaccia Workshop toward Neuromorphic Intelligence (Italy, 2023), TReND in Africa (Ghana, 2023), and Deutsche Schülerakademie (Germany, 2023).

by the LIF model. These aspects can be demonstrated in a
set of experiments of increasing complexity, some of them
shown in Fig. 3.

The first property – leaky integration of input – can be
seen in Fig. 3A: The membrane potential rises after weak
excitatory stimuli and decays back to the resting potential,
similarly with inhibitory input. The resulting trajectories are
shaped by the adjustable time constants τsyn and τmem. These
determine the time scales on which consecutive inputs are
integrated and stacked. Only when the threshold is reached,
an efferent spike is triggered and visible externally. On Lu.i,
these dynamics can be observed using an on-board LED
strip visualizing the membrane state and spike output, as
shown in Fig. 3A. Neurons compute through this combination
of analog integration and thresholding, for example by
performing spatio-temporal coincidence detection. Exploring
the impact of the model parameters on this computation – in
case of coincidence detection on the sensitivity and detection
window – is a worthwhile educational exercise.

In contrast to the local computation on their membranes,
neurons communicate through temporally sparse spike events.
This signal propagation can be demonstrated in a simple
two-neuron network (Fig. 3C), where a synaptic connection
is formed by a cable between the presynaptic axon and
a postsynaptic dendrite. By choosing a resting potential
above the threshold, the first neuron can act as a regularly
firing spike source to the second. As before, the stacking
of excitatory stimuli and the reset upon threshold crossing
can be observed on the membrane of the postsynaptic cell.
The behavior of both neurons is clearly visible using the
built-in LEDs without an external oscilloscope. Already in

this simple setup, the influence of the synaptic parameters
can be explored: For example, the combination of a short
synaptic time constant and a strong excitatory weight can be
used to trigger one spike for each incoming event. Increasing
the synaptic time constant, while lowering the weight, can
lead to a delayed propagation of single spikes. This can be
used to build delay chains, which vividly illustrate the finite
propagation speed of neural signals. Once these chains are
closed (Fig. 3D), their activity becomes self-sustained.

Figure 3E shows a more complex example, where rate-
based AND, OR and – in combination – XOR gates are
implemented using three Lu.i neurons. In this case, the OR
(AND) gate is implemented by a single neuron that has been
tuned to fire for at least one (two) active presynaptic neurons.
The output of the OR neuron excites the XOR cell, with the
AND neuron acting inhibitorily.

While the inputs A and B can be presented using Lu.i
neurons (e.g., in leak-over-threshold configuration), we have
used an external microcontroller to stimulate the network in
Fig. 3E. With a signal level of approximately 2.5 V, Lu.i’s
event output signal can be detected by most 3.3 V and 5 V
microcontrollers. The event inputs on Lu.i are compatible
with signal levels from 1.8 V to 20 V, allowing to interface
with a great variety of sensors and devices.

Due to its simplicity, the XOR network is attractive in
educational and outreach environments. Inspired by existing
literature, more complex networks have emerged from col-
laborations of researchers across all areas of neuroscience,
including realtime sound localization (Jeffress, 1948), a
balanced random network (Brunel, 2000), a ring attractor
model (Pisokas, Heinze, and Webb, 2020), an echo localiza-
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tion latch (Wen and Horiuchi, 2022), and – with preprocessing
of the analog signals – a brightness change detection circuit.
Lu.i has been used repeatedly to teach a younger audience
about fundamentals of neuroscience and physical computing,
especially in combination with a subsequent transition to
neuromorphic research systems made accessible through
EBRAINS. Across all described applications, it was used to
compellingly illustrate fundamental topics across a wide range
of research areas from robotics to systems neuroscience.

V. Discussion
This manuscript presents Lu.i, a palm-sized electronic neuron
with versatile applications for teaching and scientific outreach.
It can be used to illustrate the dynamics of individual neurons
under different parametrizations and their interaction in small
spiking neural networks (Fig. 3). Featuring various connectiv-
ity options as well as on-board visualization aids, Lu.i can be
used stand-alone or in combination with external equipment,
like oscilloscopes, current sources, or microcontrollers.

Lu.i complements a range of pedagogical tools spanning
from experimental to computational neuroscience (Marzullo
and Gage, 2012; Latimer et al., 2018). Among those are
guided experiments on tissue and living animals, which
are arguably the most natural way to convey biological
concepts but always imply ethical and logistical challenges.
Simulation-based curricula, on the contrary, trade immediacy
with ease-of-use and simplicity, especially when considering
graphical user interfaces (Bekolay et al., 2014; Spreizer
et al., 2021). To combine the advantages of both approaches,
the concept of tangible hardware has been put forward
before (Eng et al., 2008; Kvello et al., 2017; Baden et al.,
2018; Burdo, 2018; Renault, 2020). As another effort in this
direction, Lu.i combines an inviting interface with an analog
yet accurate implementation of the LIF model. The latter
is sufficiently complex and flexible to allow illustration of
fundamental biological phenomena as well as the concept of
physical computation. The PCB is optimized for cost-effective
manufacturing to ease acquisition especially for educational
institutions. With its engaging form factor, Lu.i has been
welcomed at various conferences and workshops, leading to
adoption by teachers and tutors in classrooms (Fig. 4). As
such, the project received enthusiastic responses initiating
collaborations across both different areas of expertise and
from pupils to faculty.

The Lu.i project is available as open hardware1 and
undergoes active development. The circuits are continuously
improved and future versions might be accompanied by addi-
tional extensions, such as sensory spike sources or actuators.
In conjunction with the above-mentioned collaborations on
courses and workshops using Lu.i, a curriculum of teaching
material is being collected to nurture adoption among teaching
personnel.

1https://github.com/giant-axon/lu.i-neuron-pcb
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