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Abstract

As nanoscale fabrication techniques advanced, photonic integrated circuits gained pop-
ularity for their speed and energy efficiency. A major challenge involves the coupling
between fiber and nano-optical devices. A promising solution to this is the use of grating
couplers, which can orthogonally couple light at any location on a chip. While already
firmly established on the SOI platform, they have also become essential on low-index
platforms such as SiN in recent years. This relatively new material platform is charac-
terized by its low propagation losses and exceptional power handling capabilities, making
it attractive for a wide range of applications. While standard grating couplers efficiently
couple light of only one polarization, polarization-splitting grating couplers can couple
light regardless of its polarization. The latter have not yet been realized on the SiN
platform, making their investigation particularly worthwhile. This thesis determines op-
timal parameters for a 2D grating coupler design on SiN using FDTD simulations. The
simulated maximal coupling efficiency is 51.8%, without employing any additional back
reflector. Furthermore, the development of polarization-splitting grating couplers on SiN
is explored, with 3D simulations indicating that such an endeavor is achievable.

Zusammenfassung

Einhergehend mit dem schnellen Fortschritt von Fertigungstechniken haben photonenin-
tegrierte Schaltkreise aufgrund ihrer Geschwindigkeit und Energieeffizienz an Popularität
gewonnen. Eine vielversprechende Lösung für die Kopplung zwischen Chip und Faser ist
der Einsatz von Grating-Couplern, die Licht orthogonal an jede Stelle auf der Oberfläche
eines Chips koppeln können. Während sie auf der SOI-Plattform bereits fest etabliert
sind, sind sie auch auf Plattformen mit niedrigem Brechungsindex wie SiN unverzichtbar
geworden. Diese relativ neue Materialplattform zeichnet sich durch ihre geringen Ausbrei-
tungsverluste und durch außergewöhnliche Belastbarkeit aus, was sie für eine breite Palet-
te von Anwendungen attraktiv macht. Während herkömmliche Grating-Coupler nur Licht
einer speziellen Polarisation effizient koppeln können, sind polarisationsteilende Grating
Coupler unabhängig von der Polarisation des einfallenden Lichts. Letztere wurden bisher
noch nicht auf der SiN-Plattform realisiert, was ihre Untersuchung besonders lohnenswert
macht. Diese Arbeit bestimmt optimale Parameter für ein 2D-Grating-Coupler-Design auf
SiN unter Verwendung von FDTD-Simulationen. Die simulierte maximale Kopplungsef-
fizienz beträgt 51.8%, ohne dass dabei ein zusätzlicher Rückreflektor eingesetzt wurde.
Darüber hinaus wird die Entwicklung von plarisationsteilenden Grating-Couplern auf SiN
untersucht, wobei 3D-Simulationen darauf hindeuten, dass ein solches Unterfangen er-
reichbar ist.
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1 Introduction

As fabrication methods have advanced, the range of applications for photonic integrated
circuits (PICs) has broadened, now including major industry fields like quantum tech-
nologies [1] and artificial intelligence [2–4]. This thesis is based upon SiN as a material
platform, mainly because of its relatively good manufacturability and its low loss waveg-
uides (< 1 dBm−1) that can handle high optical power [5, 6].

To fully exploit the advantages of SiN devices, an efficient fiber-to-chip interface is crucial.
The strategies to date can be divided into two categories: edge couplers, which direct light
to the chip’s facet and subsequently in-plane into the optical fiber and vertical couplers,
which couple to fiber array units placed atop the chip. In many cases the latter ones
are preferred as they generally work with standard single-mode fibers [7] and most of
all due to their ability of orthogonal light coupling to the chip surface at any location
within the chip area. This feature is especially critical for the development of large-scale
prototypes in densely integrated photonic circuits, which becomes increasingly important
as the complexity of PICs grows.

The most popular vertical couplers are grating couplers (GCs) which are introduced in
Section 2.4. One of the biggest challenges to realize them on the SiN platform is the
relatively low grating strength (which describes how much power gets diffracted out of
the waveguide per distance) due to the low index contrast (∆n ≈ 0.56 at Λ = 1550 nm).
As a consequence, the grating region has to be longer than 40 µm [8] (compare to Section
3.3), which is significantly bigger than the mode-field diameter of conventional optical
fibers (≈10 µm). To effectively couple light between the WG and the fiber, their mode
mismatch has to be dealt with in both, longitudinal (direction of gratings) and transverse
directions. One possibility for mode-matching in longitudinal direction despite this long
grating region is the self-imaging effect of linear apodized gratings while using a negative
diffraction angle, which has been demonstrated in [9] and will be explained in more detail
in Section 3.3. As shown in [10], linear apodization nicely approximates the optimal
apodization to achieve gauss-like up-reflection. The focusing effect in transverse direction
can be achieved using circular gratings, as demonstrated in [11]. Section 2.4 will go into
more detail. Using standard optical fibers and the just mentioned techniques for mode-
matching between the WG and the fiber, a coupling efficiency of −0.55 dB at λ = 1550 nm

has been achieved on the SiN platform [12], making it comparable to silicon-on-insulator
grating couplers [13–15].
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The main drawback of this setup is that it is designed for one specific polarization state
of the Gaussian beam in the fiber while the coupling efficiency is strongly polarization
sensitive [10], which will also be shown in this thesis. Controlling the polarization state of
fibers can be difficult, especially for setups where several hundred fibers have to be coupled
on one device. Having to add polarization controllers, the increase in components may
also result in efficiency problems in certain setups. An elegant solution for this problem
are polarization-splitting grating couplers (PSGCs), which have mainly been realized on
the SOI platform so far [16–20].

This thesis investigates the implementation of a PSGC on the SiN platform, leveraging
concepts of focusing diffractive gratings as discussed in [12]. In contrast to that study,
this thesis utilizes an in-coupling configuration to optimize coupling efficiency, making
it easier to observe and optimize the region between the gratings and the WG during
simulations.
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2 Theoretical background

This chapter establishes the theoretical foundations of this thesis, spanning from concepts
of fundamental optoelectronics to specific mathematical derivations needed for the grating
coupler design discussed in the chapter following this one.

2.1 Snell’s law and Gaussian dispersion

Snell’s law describes how light behaves at the transition between two materials of different
refractive index, which will be crucial in later sections of this thesis. It establishes a
relationship between the angle of incidence (θ1) and angle of refraction (θ2) at the border
of the material 1, where the beam comes from with the refractive index n1, and the
material 2, in which the beam gets diffracted and has a refractive index n2:

sin θ1
sin θ2

=
n2

n1

(2.1)

A Gaussian beam refers to a type of electromagnetic wave where the electric field ampli-
tude distribution in any cross-sectional plane perpendicular to the direction of propagation
is given by a Gaussian function. It is particular relevant in Optoelectronics. The beam’s
radius ω(z) increases with the distance from its waist z (the position where the beam’s
radius is the smallest):

ω(z) =

√
1 +

(
λ · z
πω2

0n

)2

(2.2)

λ is the wavelength, ω0 is the radius at the waist and n is the refractive index of the
medium.

2.2 Modes and effective index

In PICs, modes refer to the distinct patterns of electromagnetic fields that can propa-
gate through the waveguides formed on the PIC. These modes are solutions to Maxwell’s
equations under the boundary conditions imposed by the waveguide’s geometry and ma-
terial properties. Light confined in a waveguide can travel in different modes, each with
a specific spatial distribution of the electric and magnetic fields. Single-mode waveguides
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support only one mode, while multimode waveguides can support several modes. The
propagation velocity of a mode is determined by its effective refractive index, which is
defined by the waveguide’s refractive index profile (for further details, take a look at
[21]). Therefore, modes are critical in determining the behavior and performance of PIC
components like modulators, switches or couplers.

2.3 Polarization

Polarization of electromagnetic waves refers to the orientation of the electric field vector.
In the domain of PICs, controlling polarization is crucial, since the interaction of light with
PIC elements often depends on this orientation. Components within PICs are designed
to guide, manipulate, and exploit these polarization states for improved functionality
in applications like optical data transmission and processing. Proper management of
polarization is critical for minimizing losses and other impairments in signal integrity,
leading to more efficient and higher-performing photonic systems.

2.4 Grating couplers & bragg equation

A grating coupler (GC) is a periodic structure, which uses the concept of diffraction and
constructive interference to couple light from a fiber to a waveguide or the other way
round. As grating couplers can be modeled as linear open systems, the reciprocity the-
orem is valid, which means that the coupling efficiency for the out-coupling (source in
the waveguide as shown in Figure 2.2a) and in-coupling (source in the fiber above the
chip) configuration hast to be the same [22]. The change of refractive index due to the
alternation of two materials causes the incoming beam to partly get diffracted out of the
waveguide as diffractive index change occurs. Only in the direction where this diffracted
light interferes constructively, beams of light will be visible. The conditions for con-
structive interference are easier to understand looking at the out-coupling configuration.
Therefore, Figure 2.1 is used to illustrate the Bragg equation for gratings [9]:

neff · Λ− nc · Λ · sin(θ) = λ ·m = λ (2.3)

For constructive interference, the phase of the diffracted beam in point A and point B

has to be the same. As a consequence, the sum of the period Λ weighted by the effective
index of the gratings neff and the length l weighted by the effective index of the cladding
nc has to be an integer multiple (m ∈ N) of the wavelength λ. We directly set m = 1

as we are only interested in the first diffraction order, mainly because this is the most
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Fig. 2.1 Scatch of the beginning of the gratings. The light originating from the source gets
diffracted at the negative diffraction angle θ. The period of the grating is indicated by
Λ and the tooth-length by d.

efficient in terms of the energy distribution. The length l is given as l = sin θ · λ and
neff , the effective refractive index of the light in the grating structure can (as a first-order
approximation) be expressed as a weighted average of ntooth, the effective index of the
unetched SiN-tooth, and ntrench, the effective index of the etched SiO2-trench [9]:

neff = FF · ntooth + (1− FF ) · ntrench (2.4)

The weight is called the filling factor FF and given by FF = d
Λ

where d is the length of the
tooth as shown in Figure 2.1. The negative sign in Equation 2.3 is due to the diffraction
angle θ being negative, indicating that the diffracted beam inclines towards the source,
as it can be seen in Figure 2.1 as well. Consequently, sin θ is negative, neutralizing the
negative sign of Equation 2.3. Given that future calculations are based on this equation,
treating the diffraction angle consistently as being negative is essential.

In the case of a constant grating, the period and filling factor stays the same over the
length of all gratings. In general, both of these two parameters can be varied to tailor
the properties of the grating coupler. This is called apodization. Practically, the period
is often kept constant to guarantee constructive interference, while only the filling factor
is varied.

Figure 2.2a shows a linear apodized grating (with constant period). The negative diffrac-
tion angle increases with a growing filling factor, as the condition of Equation 2.3 for
constructive interference has to stay fulfilled. Thus, if the initial filling factor is chosen to
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(a) (b)

Fig. 2.2 a: out-coupling design of a grating coupler with 20 gratings. SiO2 is shown in green,
SiN in red, and air in blue. The lower the filling factor, the smaller is the diffraction
angle.
b: curved gratings with opening angle α. In this plot, taken by an index monitor, the
blue color corresponds to SiO2.

be bigger than the final filling factor, the upward reflected beam converges at a specific
distance away from the chip (as indicated in Figure 2.2a). This is called the self-imaging
effect and can be used to effectively couple light with a GC even if the length of the cou-
pler has to be significantly bigger than the mode-field diameter of the fiber in which the
light has to couple (which is the case on the SiN platform due to its low index contrast).

Mode-matching the fiber in transverse direction with the much smaller waveguide can be
achieved with curved gratings. The optimal shapes for the gratings are ellipse-like curves
as can be calculated using the bragg equation [10]. Only for a vanishing diffraction angle
(θ = 0) the ellipses become circles (compare to Figure 2.2b), which are normally used for
focusing gratings as they approximate well the optimal shape for small diffraction and
opening angles.

2.5 Polarization splitting grating coupler

As GCs are very polarization sensitive [10], an alignment of the polarization of the in-
coming light with the WG mode into which the light is intended to couple is necessary
to ensure efficient mode matching in order to achieve a high coupling efficiency. For most
GC designs like the one used in [12], on which this work is based, this means that only
transverse electric (TE) polarized light can effectively couple into the waveguide. This
drawback is addressed with a PSGC, which is able to efficiently couple light to a waveguide
regardless of its polarization when coming out of the fiber.

A PSGC consists of two GCs placed on top of each other at a 90-degree angle, as shown in
Figure 2.3. The injecting source is rotated by 45 degrees to align with the PSGC’s axis of
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Fig. 2.3 Illustration of the working principle of a PSGC. GC1 couples to WG1 if the polarization
angle from the source is 45◦. If it is −45◦, only GC2 couples to WG2. The triangle-
like shapes at the beginning of the WGs are tapers to confine the light in transverse
direction. The light blue arrows indicate the direction of the E-field and therefore the
polarization of the beam from the source. The source aluminates the PSGC from above
while featuring a deviation from the normal to the PSGC of the diffraction angle. It is
this perspective that makes the yellow arrow so short.

symmetry. Each of the two GCs can effectively couple one polarization into the respective
WG, with the two polarizations being orthogonal to each other. If the polarization of the
out-coming beam of the fiber is at state |−45◦⟩ the beam couples into waveguide 1. If it
is at state |45◦⟩, it couples into WG 2. All other polarizations, which can be expressed
as a superposition of these two states, couple partly in WG 1 and partly in WG 2. If
both GCs are identical, the coupling efficiency is independent of the polarization. Note
that the polarization after the coupling process is the same (E-field in the direction of the
surface of the chip) in both waveguides, so that the PSGC can be used for polarization
diversity configurations [23].

For a GC where the injecting source is rotated by ϕ = 45◦ around the normal to the chip,
like it is shown in Figure 2.4b, the bragg Equation 2.3 has to be slightly adopted:

neff · Λ− nc · Λ · sin (β − 90◦) = λ

neff · Λ + nc · Λ · sin (90◦ − β) = λ

neff · Λ + nc · Λ · cos(β) = λ (2.5)
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Note: β is positive in this definition in contrast with the negative diffraction angle β−90◦!

The only difference between Equation 2.3 and 2.5 is, that l = − sin(θ)Λ has to be replaced
with l̃ := − sin(β − 90◦)Λ = cos(β)Λ, which can be understood remembering Figure 2.1
of the preceding section and looking at Figure 2.4a. Like l is aligned with the source at
ϕ = 0◦, l̃ is the equivalent of l, but aligned with the source at ϕ = 45◦.

(a) (b) (c)

Fig. 2.4 a, b: Both figures represent the identical setup while only different angles are indicated.
They show an illustration of an in-coupling setup where the injection axis (defined by
the line cd) is rotated 45◦ out of the plane defined by the chip’s normal and the direction
of the gratings (defined by the line ad). The gratings are situated in the plane defined
by the points a, d and b, but they are not included in the drawing.
c: Snells law applied two times to the in-coupling setup.

As we want the PSGC to match the 8◦ polishing angle of our in-house fiber array, we
set θ45◦ = −8◦, which is the diffraction angle or angle of incidence, defined as the angle
between the incident beam and the normal to the surface of the chip as is shown in Figure
2.4b. θ := θ0◦ represents the diffraction angle for ϕ = 0◦, where the source is situated
on the plane defined by the chip’s normal and the gratings’ symmetry axis. Optimizing
parameters for a ϕ = 0◦ setup is relatively simple because this can be achieved using 2D
simulations, as described in Section 3.3. To guarantee that the parameters determined
in this step are also applicable to the PSGC design, where 3D simulations are essential,
it is necessary to ensure that the values for neff and Λ are identical in both the Bragg
Equations (2.3 and 2.5). As nc and λ are constants in this setup, these two equations can
be subtracted from one another and the following equality is obtained:

sin(θ) = − cos(β) (2.6)
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β is uniquely defined by θ45◦ , ϕ as can be seen from Figures 2.4a and 2.4b. Appendix 1
shows how these figures can be used to derive the corresponding equation:

cos β = cos θ̃45◦ · cosϕ (2.7)

Combining Equation 2.6 and 2.7 establishes the following relationship:

sin(θ) = − cos θ̃45◦ · cosϕ (2.8)

This makes it possible to calculate the diffraction angle θ for which neff and Λ of Equation
2.3 have to be optimized in order to find the optimal values for the two grating couplers
making up a PSCG which has a diffraction angle of −8◦ at its symmetry axis. Plugging
in the two given values θ45◦ =−8◦ and ϕ =45◦ into Equation 2.8 results in the following
value for the diffraction angle, which will be used for the simulations of the following
chapter:

θ = − arcsin
(
cos θ̃45◦ · cosϕ

)
≈ −5.65◦ (2.9)

θ45◦ = −8◦ is the angle of the beam propagating through the fiber. In our case, it is
a SMF-28 single-mode fiber, which has a core that has a refractive index of n ≈ 1.44

similar to the cladding material SiO2. In between the fiber and the cladding, the beam is
propagating in air and therefore is refracted two times before reaching the gratings. At
the transition from SiO2 (nSiO2 = 1.44) to air (nair = 1), the angle of incidence (which
is the angle of the beam with the normal to the chip) is getting bigger because of Snell’s
law (compare to Equation 2.1). At the second transition from air to SiO2, this increase is
reversed so that the angle of incidence in the cladding is the same as in the fiber. This is
illustrated in Figure 2.4c for a fiber angle of θSiO2 = 5.65◦ corresponding to the diffraction
angle calculated just above. Applying the Equation 2.1 of Snell’s law returns the following
θair, the angle of incidence in air for this setup:

θair = arcsin

(
sin (θSiO2) ·

1.44

1

)
≈ 8.15◦ (2.10)

This is the angle at which the source must be positioned over the chip in the in-coupling
configuration for the 2D simulations discussed in the next chapter.
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3 Simulation procedure

Fabrication of Nanostructures like PICs on the SiN platform is expensive and time-
consuming. Therefore, the fast development of simulation technologies in the last few
decades was key to designing nanoscale devices. Especially for devices that make use of
electromagnetic phenomena which feature many parameters and a very high complexity so
that it is not possible to predict the behavior theoretically, even if the underlying physics
is well understood. One software which became indispensable in the fields of photonics,
optoelectronics and nanotechnology is the one developed by Ansys Lumerical. This was
also used for the purposes of this thesis.

3.1 Simulation software Ansys Lumerical

Ansys Lumerical’s simulation software can be used to construct nanostructures in the
shape of rectangles, polygons or rings which can be combined in so-called structure groups
in order to define more complex objects like grating couplers. The material database
provides values for the refractive index as a function of the wavelength and can be sup-
plemented with custom materials.

One principle type of electromagnetic simulation is the FDTD (Finite Difference Time
Domain) simulation, which is a numerical modeling technique for solving Maxwell’s equa-
tion in time domain. For this simulation, it is also possible to add sources and monitors.
The frequency and polarization of the emitted light of every source can be customized, and
the type of the source can be chosen. One example is the mode source which ejects one
special mode (dependent on the surrounding material) and the gauss source, which has
additional parameters like the distance from the waist taking into account the dispersion
of the beam. Monitors include the index monitor, to verify the index profile of a setup,
and the frequency-domain field and power (DFT) monitor which can collect properties
like the transmission T and the E-field magnitude E which both play an important role
in the next section. T is the amount of power transmitted through the monitor, nor-
malized to the source power. E is defined by E =

√
E2

x + E2
y + E2

z and also normalized
to the source power. The FDTD solver region fixes the region for which the simulation
should be conducted, and also whether it is 2D or 3D. The FDTD method discretizes both
space and time, allowing for the direct observation of electromagnetic wave propagation,
scattering, absorption, and reflection within photonic structures. As a result, the mesh
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settings (specifying this discretization) can be specified in the FDTD object as well. To
decrease the maximal mesh step that can be used during the simulation for regions where
a higher resolution is needed, additional mesh override regions can be defined.

Apart from FDTD the MODE (mode solutions) simulation is an important feature of the
simulation software which will also be used in this chapter. It focuses on the eigenmode
analysis of waveguides and resonant structures to solve Maxwell’s equations in the fre-
quency domain. This allows for the calculation of mode profiles and effective indices of
guided modes in optical structures.

3.2 SiN Material Stack

Figure 3.1 shows the typical material setup for the SiN platform. A cladding layer of SiO2

(green) is covering the optical circuitry (brown) on top of a SiO2 layer (green) which is
grown on a Si substrate (dark brown) which is typically more than 500µm big so that
only the top of it is shown in Figure 3.1.

Fig. 3.1 Cross-section of the SiN material stack featuring the following thicknesses:
base: ≈ 500µm; box: 3.7µm; circuitry: 0.33µm; cladding: 0.8µm

The box- and circuitry-thickness is fixed by the chip manufacturer. The main reason of the
box is to prevent the light to couple to the substrate, which has a much higher refractive
index of n ≈ 3.5. Structures such as GCs are fabricated by removing SiN material from
areas where it is not needed, employing etching techniques. The primary purpose of the
cladding is to protect the circuitry, and its thickness is chosen to match a value that can
be easily achieved in our laboratories.
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3.3 Finding optimal parameters for a 2D grating cou-

pler

The setup shown in Figure 2.2a will now be used to determine the filling factor FF and
the period Λ that optimize coupling efficiency. Combining the bragg Equation 2.3 with
the Equation 2.4 and solving for the filling factor FF results in the following expression:

FF =
nc · sin θ + λ

Λ
− ntrench

ntooth − ntrench

(3.1)

λ is set to 1550 nm as this is the wavelength we are interested in, in this work. θ is fixed
to −5.65◦ because the polishing angle of our in-house fiber array is 8◦ and the final goal
of this thesis is the design of a PSGC (compare to Section 2.5). The negative sign is
explained in Section 2.4. Next, the values for the effective indices nc, ntrench and ntooth

in the direction of the source in the waveguide have to be determined. As the material
of the trench is the same as the one above (cladding) and below (box) of the waveguide
(SiO2), the effective index of the tooth is the same as the refractive index of SiO2 (at λ =

1550 nm): nc = ntrench = 1.44.

The effective index for the tooth ntooth is not the same as the corresponding refractive
index of the waveguide material SiN as the surrounding material is different in negative
and positive y-direction on a very small length scale (0.33 µm). Therefore, the effective
index is calculated using the MODE simulation of Ansys Lumerical which was presented
above. For the E0 mode (the one guided by the waveguide which is used) which is shown
in Figure 3.2a we get ntooth = 1.68.

Hence, FF and Λ are the only undetermined parameters of Equation 3.1. Their relation-
ship FF (Λ) is shown in Figure 3.2b for reasonable FF between 0.1 and 0.9. Further on,
FF is allowed to vary linearly from the initial filling factor FFinitial to the final filling
factor FFfinal (remember Figure 2.2a from chapter 2) to implement the linear apodization
of the gratings for the self-imaging effect talked about in the theory chapter. FF can be
expressed using the initial and the final filling factor as follows:

FF =
FFinitial + FFfinal

2
(3.2)

As a next step, simulations in 2D are employed to find the values for FFinitial, FFfinal and
Λ which optimize the coupling efficiency to the waveguide. If two of these parameters are
given, the third one can be uniquely determined due to Equation 3.1 and 3.2. The coupling
efficiency is determined measuring the transmission for a DFT monitor covering the cross-
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(a) (b)

Fig. 3.2 a: TE0 mode of the waveguide (white) with a simulated effective index of ntrench =
1.68.
b: Filling factor vs period according to Equation 3.1

section of the waveguide for an in-coupling setup. As an example, the transmission of 0.1
corresponds to 10% coupling efficiency.

3.3.1 Out-coupling simulation configuration

The E-field up-reflection of the out-coupling configuration has to be Gauss-like to ensure
efficient coupling to the fiber. In order to achieve this, the initial filling factor has to be
maximized as shown in Figure 3.3. This has been theoretically predicted in [10], where it
is calculated that the optimal grating strength for a grating coupler to emit a Gaussian
beam starts at 0 and increases monotonically with position. The strong oscillations around
the running average value are called Fabry-Périot oscillations. They are caused by the
light getting back-reflected into the grating structure due to the index mismatch of the
end of the gratings with the waveguide after the gratings. They show that a significant
amount of light is still in the waveguide after passing the gratings. Simulations show that
it is slightly less than 7% of the source intensity.

Figure 3.4 points out the region Λ = 890 nm as being the most promising, as the efficiency
for maximal FFinitial is the highest. For the red curve which corresponds to the highest
shown period of Λ = 910 nm the maximal initial filling factor of FFinitial = 0.95 cannot
be attained because of 3.1 and 3.2 which can be understood looking again at Figure 3.2b.
As this is the same for every other period bigger than 910 nm, they are not shown in
Figure 3.4. For smaller periods than Λ = 880 nm, the overall up-reflection, and therefore
the coupling efficiency, further decreases. This is to be expected, as the grating strength
diminishes with a higher filling factor, resulting in more light remaining in the waveguide
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Fig. 3.3 Plotted is the up reflected E-field magnitude E measured by a DFT Monitor which is
situated in the air above the grating coupler as a function of the x-location. Λ is fixed
at 890 µm. The 50 gratings start at x =0 µm and end at x =44.5 µm. The running
average plotted in green matches the gauss fit the best for FFinitial = 0.95 which is
also shown with the corresponding r2 values. The smaller the initial filling factor, the
more power is peak-like diffracted at the beginning of the gratings.

instead of being diffracted by the gratings.

Doing a sweep over the period between 886 and 900 nm while keeping the initial filling
factor constant at FFinitial = 0.95 results in the plots of E as a function of the x-position
shown in Figure 3.5. Apart from being gauss-shaped like the last plot in 3.3 (the brown
one is the last plot of Figure 3.3), they all seem to be quite similar. Looking at the upward
reflected power shown in the inset plot in Figure 3.5 one can assume a maximal coupling
efficiency at λ ≈ 890 nm. Nevertheless, the upward reflected power alone does not take
into account that matching the mode of the optical fiber is also necessary for effective
coupling. Therefore, for further simulations, the in-coupling setup is used.
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Fig. 3.4 Transmission T as a function of the initial filling factor for four different values for the
period Λ.

Fig. 3.5 Big plot: Similar to Figure 3.3, E measured by a DFT Monitor which is situated in
the air above the grating coupler as a function of the x-location is shown. This is done
for eight different values for the period Λ while keeping the initial filling factor fixed
at FFinitial = 0.95. The 50 gratings start at x =0 µm and end at x =44.5µm. As
expected, all plots exhibit a similar gausslike shape.
Inset plot: transmission as a function of the period Λ at constant FFinitial = 0.95.
The two figures show the same simulation.
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3.3.2 In-coupling simulation configuration

The source is positioned in the air over the grating coupler at a diffraction angle of −8.15◦,
a choice explained at the end of Section 2.5, to simulate the beam leaving the fiber. Two
more parameters become relevant: dx, the distance from the first grating to the place
where the beam hits the chip and dw, the distance from the place where the gaussian
beam hits the chip and its waist.

As a next step, Λ, dx and dx have to be optimized together. In order to do this, the value
range for the two parameters describing the position of the source has - like for the period
Λ - to be restricted to a reasonable scope of values.

It is expected that dx ≈ 50Λ
2

= 22.25 µm as this positions the source in the middle of the
gratings. However, our setup features a non-disappearing diffraction angle and the mode-
field diameter of the gaussian beam grows with the distance from the waist (compare
to formula 2.2). This results in a dispersion gap for the part of the beam hitting the
beginning of the gratings and the part hitting the end. As a result, the optimal position
in x-direction of the source is expected to shift to smaller x. As this is also what was
observed during previous simulations conducted within the scope of this thesis (which
provide a quantitative guideline of dx ≈ 18.5 nm), only values for dx between 17 µm
and 22 µm are considered for further simulations. According to formula 2.2, over the
distance dw = 190 µm, the Gaussian beam spreads from a mode-field diameter of 10.4 µm
to 37.6 µm, which is 85% of the grating length (which means that the beam covers the
gratings nicely). 300µm was mentioned as an upper boundary for dw. As a result, values
between 90 and 290 are considered.

The simulation to determine the values for Λ, dx and dx which maximize coupling effi-
ciency is a nested sweep over all values that come into question based on the preliminary
considerations made above. The coupling efficiency for the in-coupling configuration is
measured as the transmission T going through the DFT monitor, which covers the cross-
section of the waveguide (or taper) directly after the grating structure. The simulation
results are shown in Figure 3.6. The maximal coupling efficiency is shown to be 43.8%

(T = 0.438) for the values Λ =892 nm, dw =190µm, and dx = 19µm. As fine-tuning of
these parameters doesn’t result in an improvement of more than 0.3%, these are the final
optimized values for this section.
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Fig. 3.6 Simulated coupling efficiency as a function of dw, the distance from the waist of the
gauss source, dx, its position in x-direction and, Λ, the period. The highest efficiency
of 0.438 is shown for the plot where dx = 19µm.
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3.4 Optimizing mesh values

The mesh step is the size of the discrete parts into which the simulation region is divided
to numerically solve the Maxwell-equations. The smaller it is, the more computationally
intensive the simulation becomes, but the higher the accuracy. A good trade-off between
accurate results and computational feasibility is needed. The optimal values determined
in this section will be employed for the 3D simulations discussed in the next section, where
computational feasibility poses a greater challenge. They have also been used for the 2D
simulations in order to ensure good comparability.

The concrete mesh parameters to be adjusted are the maximal mesh steps in x-, y- and
z-direction (dx, dy and dz) fixed with a mesh override region. The transmission T through
a DFT monitor covering the cross-section of the waveguide, measured for a 2D grating
coupler in in-coupling configuration, is used as an indicator for the simulation efficiency.
The simulation results for this 2D setup are also applicable for the 3D case. Figure 3.7
shows T as a function of dx for different values of dy. Note, that T is systematically
lower than the best values in the preceding section as the simulations of this section were
conducted before the optimization process was completed.

Fig. 3.7 Simulated coupling efficiency vs dx, the maximal mesh step in x-direction.

The transmission drops increasingly for dx > 30 nm, and for values dx < 30 nm, 3D
simulations become too computationally challenging. Further on, the maximal values are
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achieved for dy = 30nm. In the case of this simulation, graphs for higher dy stay constant
on the maximal values of dy, in general they decrease drastically. Both is only due to
computational reasons, which is why it will not be further investigated. As a result, the
values chosen for further 3D simulations are dz = dx = dy = 30nm. dz is chosen to match
dx as a circular grating lying in the x-z plane features similar setups in x- and z-direction.

The recommendation for the minimal mesh step is a fourth of the minimal feature size
(if this is computationally feasible). In the case of the gratings and in x-direction, this
is the smallest trench-length of (1 − 0.95) · Λ ≈ 45 nm. Thus, dx =10nm would be the
recommendation, which is too small to be applicable for the 3D sims of the next chapter.

Following the tendency of a strongly improved transmission for a very small maximal
mesh step (compare Figure 3.7), we simulate the transmission for the optimal values for
FFinitial, FFfinal and Λ found in Section 3.3 for dy =0.03µm and dx =0.0005µm. A
considerably higher transmission rate of 51.8% has been achieved, suggesting that, in
certain scenarios, fabrication might yield better outcomes than simulations predict.

3.5 Continuation in 3D
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Fig. 3.8 Transmission T as a function of the po-
larization angle.

In order to verify the GC design of the pre-
ceding section to be compatible with the
use of a PSGC, the angle of the in-coupling
source with respect to the gratings has to
be adjusted as explained in the previous
chapter. Computationally much more de-
manding 3D simulations were used to find
the values for the coupling efficiency to the
WG as a function of the polarization an-
gle of the incoming beam, shown in Figure
3.8. In accordance to the theory presented
in Section 2.5, the highest value of 17.4%
is measured at the polarization angle of −45◦, whereas nearly no coupling (0.6%) is mea-
sured for the orthogonal polarization of 45◦. This demonstrates that coupling to the
waveguide is feasible even if the source is not positioned within the plane defined by the
GC’s symmetry axis and the chip’s normal, which is essential for the design of a PSGC.
The 17.4% of transmission was measured directly after the gratings. To confine the beam
in z-direction as well to a 1 µm wide WG, a non-optimized set of two tapers was used as
shown in Appendix 2. The additional loss is around 2 dB.
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4 Outlook

In this thesis, a simulation procedure to find optimal parameters for a 2D GC on the
SiN platform was presented while achieving a simulated coupling efficiency of 43.8% for
appropriate mesh parameters and 51.8% as a maximal value. These values were achieved
for a design which can be used for a PSGC which couples to our in-house fiber array
with a polishing angle of 8◦. To demonstrate this, a coupling efficiency of 17.4% could be
simulated for an in-coupling configuration where the source was rotated 45 degrees out of
the plane defined by the GC’s symmetry axis and the chip’s normal. This corresponds to
an additional loss of 4 dB.

Before changing the diffraction angel to θ = 5.65◦ some simulations were conducted at θ =

8◦. For this setup, the additional loss simulated for the introduction of curved gratings
and for changing the source alignment from ϕ = 0◦ to ϕ = 45◦ was less than 1.5 dB each.
The cumulative loss of approximately 3 dB is less than the value of 4 dB which is achieved
for the θ = 5.65◦ setup. Either coupling efficiency is better for bigger diffraction angles,
or the coupling efficiency of 17.4% can still be improved.

The loss encountered while further confining the light in transverse direction to couple
into the 1-micrometer-wide waveguide is around 2 dB. However, by adapting this non-
optimized confinement setup (compare to Appendix 2), it is anticipated that this loss can
be drastically reduced.

4.1 Improvement of the 2D GC

There are several ideas to increase the maximal value for the 2D GC presented in Section
3.3.

First, the effective index ntooth for the tooth of the grating structure, which was determined
using Lumerical’s MODE simulation, changes if more surrounding material is considered.
The TE0 mode for a considered y-span of 3 µm is shown in figure 4.1. The corresponding
effective index value is ntooth ≈ 1.697. The value used for the simulations presented in this
thesis is ntooth = 1.68. This mismatch changes the values for the filling factor as a function
of the period (compare Equation 3.1) about nearly 0.3 dB (≈7%), which could have a
significant impact on the simulations based on this value. Therefore, an improvement in
coupling efficiency might be possible by redoing the simulations presented in Chapter 3
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with ntooth = 1.697.

Fig. 4.1 TE0 mode for a 3 µm-region around the waveguide at an x-position of a tooth. The
simulated effective index for it is ntooth ≈ 1.697

Second, the E-field as a function of the direction of the gratings shown in Figure 3.3 and
3.5 features strongly pronounced Fabry-Périot oscillations, as it was already mentioned.
One way to reduce these oscillations is to introduce some gratings with a small filling
factor after the GC to weaken the index mismatch [12]. It is possible that this could also
improve the grating efficiency, as the approximation of the optimal Gaussian shape would
be better.

Third, following the literature [9, 12], 50 was chosen as the number of gratings. This is
enough to diffract most of the light out of the waveguide and to implement an apodiza-
tion to achieve gauss-like up-reflection while staying within the constraints opposed by
simulation and manufacture. Still, an increase of more than 0.36 dB (which is more than
9%) in coupling efficiency was simulated for the 2D in-coupling design for an increased
number of 70 gratings. As it should in principle be possible to simulate and manufacture
devices with a number of gratings higher than 50, this is estimated to be an easy way for
further improvement of coupling efficiency.

Fourth, the optimal apodization to achieve gauss-like up-reflection is not linear, which
is shown in [10]. Implementing a more precise apodization function could lead to an
improvement in coupling efficiency. Nevertheless, this might be difficult, as the optimal
linear function already reduces the overlap loss with the fiber mode to 0.5 dB.
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4.2 Next steps

The last step to implement a PSGC is to create a structure where scattering elements are
placed at the intersections of the two superimposed GCs, like it is demonstrated in Figure
4.2. The angle Ψ is introduced as a further alignment of the WGs is shown to increase
coupling efficiency [24, 25].The shape of these scattering elements plays an important role
[10], circles are not the best choice in most of the cases.

Fig. 4.2 Draft of a PSGC. Adapted from [24].
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5 Conclusion

The simulation procedure employed lead to a design of a 2D GC with a maximal coupling
efficiency of 51.8%, which is a very good value for GCs that don’t include any backreflector
[9]. This design was built in a way so that it can be adopted for the design of a PSGC.
Further simulations and theoretical analysis could be used to indicate that PSGCs can
be implemented on the SiN platform. Predictions for the coupling efficiency cannot be
provided since the last simulation step was not completed, nevertheless, this step was
proven to be realizable on other platforms with a coupling loss less than 0.4 dB [24]. This
strongly suggests that PSGCs could also serve as valuable devices on the SiN platform,
particularly for applications where a 10 dB-loss is still acceptable, given the possibility of
high light intensities on SiN.
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Appendix 1

This appendix mathematically proves that for the angles defined in Figure 1, the following
relationship applies:

cos β = cos θ̃45◦ · cosϕ (1)

(a) (b)

Fig. 1 Both figures represent the identical setup while only different angles are indicated. They
show an illustration of an in-coupling setup where the injection axis (defined by the line
cd) is rotated 45◦ out of the plane defined by the chip’s normal and the direction of the
gratings (defined by the line ad). The gratings are situated in the plane defined by the
points a, d and b, but they are not included in the drawing.

Looking at figure 1b allows us to formulate the following relations:

ab = sin(ϕ) · ad, cb = sin(θ̃45◦) · cd, with θ̃45◦ := 90◦ + θ45◦ (2)

bd = cos(ϕ) · ad, bd = cos(θ̃45◦) · cd (3)

ac2 = ab
2
+ cb

2 (4)

Additionally, through the law of cosines, it is possible to derive a relationship that includes
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the angle β:

ac2 = cd
2
+ ad

2 − 2cd · ad · cos β (5)

Solving for cos β and simplifying by applying the formulas 2, 3 and 4 can be done as
follows:

cos β = −ac2 − cd
2 − ad

2

2cd · ad

= −sin(ϕ)2 · ad2 + sin(θ̃45◦)
2 · cd2 − cd

2 − ad
2

2cd · ad

= −1

2

[
ad

cd

(
sin2 ϕ− 1

)
+

cd

ad

(
sin2 θ̃45◦ − 1

)]
eq 3
= −1

2

[
��bd cos θ̃45◦

��bd cosϕ

(
sin2 ϕ− 1

)
− ��bd cosϕ

��bd cos θ̃45◦

(
sin2 θ̃45◦ − 1

)]
= −1

2

[
cos θ̃45◦(−cosϕ) + cosϕ(− cos θ̃45◦)

]
= cos θ̃45◦ · cosϕ (6)

qed.
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Appendix 2

Figure 2 shows the setup used for the 3D simulations of section 3.5:

Fig. 2 Coupling efficiency measured at x-positon a is 17.4% and at position b 10.5%. The taper
width at b is approximately 11 µm and at a (where the second taper from 2.5 µm to 1 µm,
for which low loss is expected, starts) 2.5µm.
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Appendix 3

Important files and information about the simulations on which this thesis is based can
be found on the following Git-repository:

BA-simulations
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