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ABSTRACT
Emergent phenomena in condensed matter physics, such as su-
perconductivity, are rooted in the interaction of many quantum
particles. These phenomena remain poorly understood in part due
to the computational demands of their simulation. In recent years
variational representations based on artificial neural networks, so
called neural quantum states (NQS), have been shown to be effi-
cient, ie. sub-exponentially scaling, representations. However, the
computational complexity of such representations scales not only
with the size of the physical system, but also with the size of the
neural network. In this work, we use the analog neuromorphic
BrainScaleS-2 platform to implement probabilistic representations
of two particular types of quantum states. The physical nature
of the neuromorphic system enforces an inherent parallelism of
the compuation, rendering the emulation time independent of the
used network size. We show the effectiveness of our scheme in two
settings: First, we consider a hallmark test for "quantumness" by
representing a quantum state that violates the classical bounds of
the Bell inequality. Second, we show that we can represent the large
class of stoquastic quantum states with fidelities above 98% for mod-
erate system sizes. This offers a novel application for spike-based
neuromorphic hardware which departs from the more traditional
neuroscience-inspired use cases.
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1 INTRODUCTION
The properties of materials are determined by the interactions be-
tween many electrons and are described by the laws of quantum
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mechanics on the microscopic level. The inherent complexity of
these laws makes it challenging to predict emergent macroscopic
material properties from first principles. Examples include the elec-
tronic structure of molecules, topological states of matter, or high
temperature superconductivity. Many of these phenomena can be
modeled by spin-1/2, or qubit, systems, i.e. ensembles of two-state
particles. Conceptionally, quantum states can be represented either
using the wave function formalism |𝜓 ⟩ = ∑

𝑖 𝑐𝑖 |𝜓𝑖 ⟩ or the density
matrix formulation. Here |𝜓𝑖 ⟩ represent a choice of basis states
and 𝑐𝑖 ∈ C are coefficients determining their contribution to the
system’s state |𝜓 ⟩. The number of 𝑐𝑖 ’s is given by the size of the
system’s state or Hilbert space 𝑘𝑛 , where 𝑘 is the number of states
per body and 𝑛 the number of bodies in the system. Already for
the spin-1/2 system (𝑘 = 2) this requires an exponential number of
coefficients to be known. In practice, the interest lies in describing
a specific state, or at least states from a specific class, for example
the ground state of a system. This introduces properties that can
be exploited to find a compressed state representation. Recently,
neural-network-based approaches have been shown to be able to
efficiently provide an effective representation such quantum states
[2]. These methods essentially implement a priority sampling of the
most relevant |𝜓𝑖 ⟩ in order to keep the computational complexity
of expectation value calculations limited. For these methods, fast
sampling represents an essential prerequisite for their usefulness.

We use the analog neuromorphic system BrainScaleS-2 to imple-
ment a probabilistic representation of quantum states. The physical
nature of our system renders the speed of the sample generation
independent of the size of the neural network used [1]. We demon-
strate the feasibility of our scheme on two types of quantum states:
First, we learn the prototypical Bell-state of two spin-1/2 particles
and show that the representation can violate the classical bounds
of the Bell observable |B| ≤ 2. Second, we represent stoquastic qua-
tum states, i.e. states which can be represented by real coefficients
𝑐𝑖 ∈ R and use these representations to find ground states, i.e.,
states of least energy, for the transverse-field Ising model (TFIM).

2 NEUROMORPHIC IMPLEMENTATION
BrainScaleS-2 (Fig. 1b) provides up to 512 leaky integrate-and-fire
(LIF) neurons with a maximum fan-in of 256 pre-synaptic partners
per circuit. Under high-frequency Poisson stimulus, networks of
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Figure 1: (a) Dynamics of sampling neurons. After a spike the neuron is considered to be active 𝑧 = 1 (shaded area, 𝑧 = 0 otherwise). (b) The BrainScaleS-2 chip
used to represent the desired quantum states and the associated hardware-in-the-loop training scheme. (c) Layered network structure used for all experiments. The
distribution over the visible layer 𝑝 (𝑣) is parametrized by the connectivity matrix𝑊 and represents the quantum state |𝜓 ⟩. (d) Positive-operator-valued measure
(POVM) representation of quantum states. POVM labels 𝑎𝑛 ∈ {0, 1, 2, 3}𝑛 are associated with the sampled binary states 𝑧 ∈ {0, 1}2𝑛 . (e) Example of a sampled
distribution 𝑝 (𝑧) . (f) Final neuromorphic representation of a pure Bell state (red) and a noisy state (green). Depending on the measurement angle Θ, the chosen Bell
observable exceeds the classical bound |B (Θ) | ≤ 2 (shaded area). The inset shows the convergence over the course of the training. (g) For the stoquastic state
representation, the probability of each observed binary state 𝑧 ∈ {0, 1}𝑛 directly represents the wave function coefficients 𝑐𝑖 of the quantum state |𝜓 ⟩. (h) Resulting
(quantum) infidelities of the learned ground states over the course of the training for different system sizes (𝑁 = 3, 5, 7, 9).

such neurons have been shown to approximately sample from Boltz-
mann distributions 𝑝 (𝑧) = 1

𝑍
exp

(
− 1
2𝑧

𝑡𝑊𝑧 − 𝑏𝑡𝑧

)
[6]. Their mem-

brane potential 𝑢 then implements a random walk with network-
input-dependent target values (see Fig. 1a). We interpret the neu-
ronal state as active (𝑧 = 1) immediately after a spike when the
neuron is refractory and as inactive (𝑧 = 0) otherwise.

Using a hierarchical network topology (Fig. 1c) we use the visi-
ble layer to represent the quantum state. The connections to the
hidden layer are trained such that the network samples from the
correct distribution over visible states 𝑝 (𝑣). We employ an itera-
tive learning scheme, where for each iteration we first perform a
sampling run on hardware, then transfer all the recorded spikes to
an host computer, collect the distribution 𝑝 (𝑣, ℎ) and calculate the
corresponding gradients. Using these we update the configuration
parameters of the system Θ and continue with the next iteration.

2.1 Bell States
For the Bell state

��𝜓+〉 = ( |↑↑⟩ + |↓↓⟩) /
√
2we use a positive-operator-

valued measures (POVM) [5] representation: A POVM – for a sin-
gle spin – is a choice of 4 informationally-complete measurements
®𝑒𝑖 such that all states can be represented by ®𝜙 =

∑3
𝑖=0 𝑎𝑖𝑒𝑖 with∑

𝑎𝑖 = 1. We associate the four basis vectors 𝑒𝑖 with binary states
𝑧 ∈ {0, 1}2. The coefficients 𝑎𝑖 then correspond to the probability
𝑝 (𝑧) which allows a reformulation of all physical observables as
expectation values over 𝑝 (𝑧). Using the knowledge of the correct tar-
get distribution 𝑝target, we implement a Hebbian learning scheme
with gradients calculated as Δ𝑊𝑖 𝑗 =

〈
𝑣𝑖ℎ 𝑗

〉
target −

〈
𝑣𝑖ℎ 𝑗

〉
model,

where we recover the target correlations by reweighting the ob-
served correlations:

〈
𝑣𝑖ℎ 𝑗

〉
target =

〈
𝑝𝐵 (®𝑣)
𝑝 (®𝑣;W) 𝑣𝑖ℎ 𝑗

〉
. This allows us

the update calculation based on a single hardware configuration,
which would otherwise introduce significant runtime overhead [3].

Since we can thereby represent the complete state
��𝜓+〉, we can

perform any measurement on it. In particular, looking at the Bell

observable B(𝜃 ) = 𝐸0,𝜃 + 𝐸0,−𝜃 + 𝐸2𝜃,𝜃 + 𝐸2𝜃,−𝜃 we see that our
representation consistently and correctly violates the classical limit
for particular measurement angles (for a pure Bell state, Fig. 1f red).

2.2 Stoquastic States
Ground states of stoquastic Hamiltonians have non-negative real
wavefunction coefficients 𝑐𝑖 ∈ R. This allows us to directly iden-
tify the (square-root) of the probability of each state as 𝑐𝑖 : |𝜓𝜃 ⟩ =∑

{𝑣 }
√︁
𝑝𝜃 (𝑣) |𝑣⟩, where we identify 𝑧 = 1 (𝑧 = 0) with |↑⟩ (|↓⟩)

(Fig. 1g).
Here, we suppose that we do not have a priori access to the

target state |𝜓 ⟩, but rather have to find it by optimizing an ob-
servable. For ground state search, this requires minimizing the
energy of the state: 𝐸𝜃 = ⟨𝜓𝜃 |𝐻 |𝜓𝜃 ⟩. For the transverse field
Ising model (TFIM) Hamiltonian this results in the update rules:
Δ𝑊𝑖 𝑗 ∝

〈 (
𝐸loc®𝑣 − 𝐸𝜃

)
𝑧𝑖𝑧 𝑗

〉
𝑝𝜃 (®𝑧)

, which we can again evaluate

based on a single hardware run (see [4] for details). For the in-
vestigated moderate system sizes (𝑁 ≤ 10) we obtain fidelities
> 98% (Fig. 1h). The performance degrades slightly for larger sys-
tems, which most likely originates in the requirement of longer
sampling times for which the system is currently not set up.

3 CONCLUSIONS
We demonstrated the feasibility of realizing different quantum state
representation schemes using a spike-based implementation on neu-
romorphic hardware. Both the POVM represenation and the ground
states can be well approximated such that a reliable estimation of
the relevant expectation values is possible. The physical nature of
BrainScaleS-2, i.e, the implementation of the spiking neural system
as electronic circuits, makes the runtime independent of the size of
the used system. This allows our method to scale to larger systems,
thereby uncovering the emulation of quantum many-body states
as a potential application for (spike-based) neuromorphic systems.
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