Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Noah Leonardo Wach
born in Ludwigsburg (Germany)

2021

Data Re-Uploading on Qudits

This Bachelor Thesis has been carried out by Noah Leonardo Wach at the
Kirchhoff-Institute in Heidelberg
under the supervision of
Prof. Dr. Fred Jendrzejewski

Abstract

The aim of this thesis is to explore the capabilities of qudits in
regard of quantum machine learning. After a general description
of the dynamics of qudits, a brief explanation of how to realize
qudits as a collective bosonic spin follows. Next, an introduction
into the used quantum machine learning method follows, data re-
uploading. The focus here lies on the realization of data re-upload-
ing using qudits and what benefits and disadvantages this intro-
duces. Additional to the theoretical description, the models will be
simulated and trained on various data sets. The final training will
be on parts of the famous “MNIST Handwritten Digits Data Set”.
In the end, the results will be discussed and compared to a classical
machine learning model.

Kurzfassung

Das Ziel dieser Bachelorarbeit ist es, die Moglichkeiten von Qu-
dits im Zusammenhang mit dem Konzept des "Quantum Machine
Learning” zu erforschen. Nach einer kurzen Beschreibung von Qu-
dits folgt eine Erklarung, wie diese mit einem kollektiven Spin
von Bosonen realisiert werden konnen. Daraufhin folgt eine Ein-
fihrung in das in dieser These verwendete Machine Learning Mod-
ell, data re-uploading. Anschlieflend wird das Modell von Qubits
auf Qudits erweitert. Hier wird kurz auf die Vor- und Nachteile der
Implementation von Qudits im Gegensatz zu Qubits eingegangen.
Im Folgenden wird das theoretisch eingefithrte Modell simuliert
und auf verschiedene Datensétze trainiert. Fiir einen finalen Test
wird das Modell versuchen Teile des bekannten “MNIST Handwrit-
ten Digits Data Set” zu lernen. Zum Schluss werden die Ergebnisse
diskutiert und mit einem klassischen Machine Learning Modell
verglichen.

Contents

1

2

Introduction
Outline of the thesis

Bits vs Qubits vs Qudits

Qudits as a Collective Spin
Qudits on a Bloch Sphere

Theory

2.1

2.2

2.3
23.1
2.3.2
2.3.3

Husimi Q Distribution
Qudits and Squeezing
Qudits and Spin Matrices

Data Re-Uploading

3.1 Data Re-Uploading on Qubits
3.1.1 Circuit Structure
3.1.2 Loss Function and Gradient Descent
3.1.3 Learning Process.
3.14 Measurement.
3.1.5 Classification Illustration
3.2 Data Re-Uploading on Qudits
3.2.1 Circuit Structure
3.2.2 LabelClasses
3.23 Learning Process.
324 Measurement.
Simulations
4.1 UsedLibraries
4.1.1 Scikit-learn
412 Jax
4.2 Simulation Method
43 Binary Classification
431 LinearModel
43.2 Non-Linear Model
4.4 Multi Class Classification
4.4.1 Linear Multi Class Classification
4.4.2 Non-Linear Multi Class Classification . . .
4.5 MNIST Classification
451 Preparation.
452 Results,
4.5.3 Comparison to a Classical Machine Learn-
ing Algorithm
454 RandomForests
455 Results
456 Comparison

AN N G Ul W W [N

O O 0 ®

10
10
11
12
12
13
13
13

14
14
14
14
14
15
15
16
18
18
21
23
23
23

25
25
26
27

5 Conclusion and Perspectives
5.1 Optimal Parameters

5.1.1

5.1.2

5.1.3

5.1.4

Which qudit dimensions are best for a bi-
nary/multi class classifier?
How many layers are necessary to learn
simple/more complex patterns?
Which circuit structure poses the best re-
sults? ..o
Does Squeezing improve the performance?

5.2 The Loss Function and its Limits
53 Qubitsvs.Qudits
5.4 Labeling the Data correctly
5.5 MNIST Classification
56 Outlook

6 Bibliography

7 Acknowledgments

28
28

28

29

29

30
31
31
31
32

34

38

Bachelor Thesis on Data
Re-Uploading on Qudits

Noah Wach

1 Introduction

In 1980 Paul Benioff proposed a quantum model of a Turing ma-
chine [1] and thus set the starting point for a potentially revolu-
tionizing new branch in physics and computer science. Richard
Feynman later suggested that the proposed model of a quantum
computer can outperform classical computers [2] in certain tasks.
After the theoretical foundation was laid, Peter Shor proposed that
an algorithm run on a quantum computer can solve the NP-hard
problem of prime-factorization in polynomial time [3]. Not only
the prime-factorization problem but also searching an unsorted
database can be less complex using quantum computers [4].

It took almost 40 years until this proposition came true; in 2019 sci-
entists from Google claimed to have reached quantum supremacy
[5]. Only 200 seconds of computation were needed to solve a prob-
lem a classical supercomputer would need 10.000 years to com-
pute!l. Even after this milestone a powerful and fault tolerant quan-
tum computer which can solve a variety of problems is still in the
distant future. The quantum computers available today belong to
the so called NISQ (Noisy-Intermediate-Scale-Quantum) devices
[7]. The question that arises is what computations can be done
using NISQ devices.

To build a quantum computer one needs highly controllable quan-
tum systems, which can interact with each other. The most widely
used approach in this regard are superconducting qubits [8], which
is also the technology Google used in its quantum supremacy ex-
periment [5]. Other realizations such as trapped ions [9], photons
[10] or cold atoms [11] are also being pursued by researchers around
the world.

The explosion in popularity of quantum computers has given
rise to many fields that try to utilize the computational advantages

1 Introduction 1

1: It was later discovered that a mod-
ern supercomputer using tensornet-
works can indeed outperform the
quantum computer Google used [6].

2

Introduction

quantum computation promises. Some of these fields are quantum
cryptography, quantum metrology, quantum simulation and lastly
quantum machine learning on which this thesis will lay its focus.
Quantum machine learning is the bridge between the power of
classical machine learning and the usage of quantum systems to
speed up certain processes. It refers to three different branches,
namely studying a quantum system using classical machine learn-
ing algorithms (1), using quantum algorithms (2) and investigating
classical data using quantum algorithms (3). In this thesis the latter
(3) will be discussed.

Since quantum computers only excel classical computers in cer-

tain types of applications, many quantum machine learning mod-
els still rely on some sort of classical computation. This ensures
that the resulting hybrid model can take advantage of the strengths
of both, the classical and quantum methods [12].
As already mentioned, reliable quantum computers are still in the
distant future. The issue quantum machine learning is facing is
whether models can be trained using today’s NISQ devices and
how they perform compared to purely classical models.

Outline of the thesis

This thesis investigates the quantum machine learning model data
re-uploading and expands the qubit approach onto qudits. This
method can be run on today’s NISQ device, since it only requires
very few qubits.

— Section 2 will lay the theoretical foundation of collective
spins treated as qudits. Additionally, a way to visualize the
quantum state of a qudit is introduced.

- The investigated method of data re-uploading is explained
in Section 3. This method is then extended on the earlier
presented concept of qudits.

- In Section 4 the quantum machine learning model is first
trained on simple data sets. As a final test the model will
learn parts of the MNIST Handwritten digits data set. Lastly
the model is tested against a classical machine learning algo-
rithm.

— The results from the simulations are discussed in Section 5
and an outlook on further improvements and on the experi-
mental implementation is given.

2 Theory

In the following the concept of qudits will be presented and com-
pared to the more standard approach of using qubits. First, the
mathematical foundation of qudits is introduced, while there will
also be a brief discussion on how to realize a qudit experimentally
with cold atoms. The second part will focus on the visualization of
quantum states of the qudit and how to squeeze a collective spin.

2.1 Bits vs Qubits vs Qudits

The smallest processing unit of classical computer is a bit, which
can either occupy the state 0 or 1 (Figure 1a). Contrary to this ap-
proach, a conventional quantum computer uses so called “qubits”.
Qubits can not only be in state 0 or 1, but also in any arbitrary
superposition of those two states. This fact makes quantum com-
puters extremely fast in some specific calculations. The state of a
qubit can be represented by a vector on a Bloch sphere, which was
introduced by physicist Felix Bloch. This representation is quite
useful in the context of quantum computing, since it illustrates
the similarities between classical bits and qubits and also visual-
izes the concept of superposition. Figure 1b shows a Bloch sphere.

—

(@)

(a) Classical bit (b) Qubit

The state of the qubit can be described as a vector of length 1
and the two independent variables 6 and ¢.

|t)) = cos (g) 1) + e sin (g) |0) (1)

Here |1) is a vector in the 2-dimensional Hilbert space C? with the
orthonormal basis {|0) , |1)}.

A qudit is an expansion of the idea of the qubit. It is not repre-
sented by a vector in the 2-dimensional Hilbert space, but a vector
in the d-dimensional Hilbert space C? with the orthonormal basis

{10),]1),...]d — 1)}.

2 Theory | 3

Figure 1: Comparison of a classical
and a quantum bit.

4 | 2.2 Qudits as a Collective Spin

2: For example the spin or the hyper-
fine state of the atom.

3: The collective spin can now be
brought back to a qubit structure
with N, = 1, which leads to
{]—1/2),|1/2)} as the basis for a 2-
dimensional Hilbert space.

The state of a qudit can therefore be written similar to Equation
1[13]:

Co

1

[V) = ¢y |0) + ¢y |1) 4+ ccy_q |[d—1) = (2)

Ca—1

d—1
with 3 |c,|? = 1.
i=0

2.2 Qudits as a Collective Spin

There are many approaches to realize a qudit experimentally such
as ions [14] or photons [15], however this thesis will focus on the
realization using cold atoms and treat the qudit as a collective spin
[11].

Lets consider N 4 bosonic atoms in an optical tweezer. The many
body system can efficiently be described by the creation and an-
nihilation operators in second quantization, d,, and al,. Here m
denotes the internal states 0 and 1 of the atom?. A collective spin
is formed by the atoms via the Schwinger representation:

~ 1 .+ N

L,= 5[‘11@1 - a(T)ao] (3a)
L, =ala, (3b)
L =aba, (3¢)
- 1 -~ ~

L=5L, +L1] (3d)
- —i o~ -

L=l ~L] (3e)

The eigenstates of L are indicated by |m,), where m; is a (half)

integer spin and is ranging from m; = —I[,...,l with [= %
The computational basis can be expressed with |j) = |—I + j) and

j=0,1,..., N, > The operators L, are a 2] + 1 dimensional repre-
sentation of the generators of the SU(2) Lie algebra. The commu-
tators of the operators are the following:

L;, 'Zj] = iEijkik 4)

For the case of [= 1 the operators are:

10 1 00
L,={0 0 0 [LZ=]0 0 0
0 0 001

A given state |1)) evolves while the operators act on it for a
certain time. The time evolution is described via the Hamiltonian?,
which was experimentally realized in [16], containing L, L, and
L2

H=xL?+AL,+9QL, (5)
The Hamiltonian is able to generate all unitary operations if the
variables x, A and (2 can be tuned independently. In the following
these parameters are either set to 0 or 1, to obtain a gate based ap-

proach®. The Hamiltonian acts on the state via the time evolution
operator.

[(0)) = =7 [4) (6)

The following notation for the different independently tuned Hamil-
tonians is introduced at this point:

R,(0) = e"i0L= (7a)
R,(0) = e L (7b)
R2(h) = e 1¥L2 (7c)

To achieve a universal set of quantum gates®, at least one entan-
gling gate is needed, in this case this is the R2(6) gate. The set
of these three operations’ represents a universal set of quantum
gates [11].

2.3 Qudits on a Bloch Sphere

Similar to the states of a qubit the states of a qudit can also be
visualized by a vector on the Bloch sphere? as it is illustrated in
Figure 2. Nevertheless, it makes more sense to visualize a quasi
probability distribution on the Bloch sphere, namely the Husimi
Q distribution[18]. In contrary to the 2-dimensional Hilbert space
of the qubit, the qudits Hilbert space dimension is higher and can
thus not entirely be represented on the surface of a sphere. For a d-
dimensional Hilbert space a representation with d — 1 independent
variables is needed.

2.3.1 Husimi Q Distribution

The Husimi-Q distribution is the trace of the density matrix
p = |1) (1| over the basis of the coherent states |q).

9(0,0)) = (6, ¢) In) (8)

n

The states |¢) depend on the two independent variables ¢ and 6,
which make up the Bloch sphere.

2 Theory | 5

4: It is also called the one-axis twist-
ing Hamiltonian.

5: Instead of thinking of the opera-
tions on the qudit as the Hamiltonian
acting on the collective spin via mi-
crowave pulses one can think of it as
gates (Equation 7a) acting on the qu-
dit (similar to logic gates in electrical
engineering).

6: A set of quantum gates is univer-
sal if any unitary operation can be ap-
proximated to an arbitrary accuracy
using these gates[17].

7: R R, R?

8: In this case the vector would show
to the point with the highest probabil-
ity but would not represent the entire
probability distribution.

Figure 2: Qudit withd =7

6 | 2.3 Qudits on a Bloch Sphere

9: The black line indicates the shot
noise.

10: This is shown in Section 5.1.4.

11: Similar to the state seen in Figure
4b.

Figure 3: Squeezed state for a col-
lective spin with variance below the
shot noise.

|n) are the basis states of the qudit. The formula for the Husimi Q

distribution is: .

Qlg) = —{dlpla) ©)
When evaluating the Husimi Q distribution over ¢ € [0, 27) and
6 € [0, 7] it can be mapped on a sphere. This is comparable to the

Bloch sphere representation for qubits.

2.3.2 Qudits and Squeezing

The entanglement for qudits is achieved via squeezing, which is
done by applying L2. If a state is squeezed in z-direction, the vari-
ance of L, gets smaller while the variance in L or f/y gets larger.
This is due to the Heisenberg uncertainty principle.

&~ a 1

In [16] it is demonstrated that squeezed qudit states can achieve
a variance below the shot noise. Figure 3a shows the experimen-
tal data from [16] and the simulated data’ using the spin matrices
from Section 2.2. Squeezing proves to be very important later on,
since it can be used to improve the classifier'’.

2.3.3 Qudits and Spin Matrices

Figure 3b shows a squeezed state. Here, red indicates a high proba-
bility of finding the qudit in this state, whereas blue indicates a low
probability. This state is the result of applying a rotation around
the y-axis to reach an unstable fixed point at the equator!!. Then
the one-axis twisting Hamiltonian (Equation 5) acts on the state
with (2 = 0. As a final step the state is rotated around the z-axis to
obtain a non-Gaussian state.

Number Squeezing

Number Squeezing in dB

0 3
. ® 15ms
.o
5 —— 15ms Simulation
o 25ms
—— 25ms Simulation

0 25 s0 75 100 125 150 175
tomography angle a

(a) Simulation of the Data in [16] (b) Probability distribution of a
squeezed non-Gaussian qudit state.

To get a better understanding of what effects the spin matrices
have on the qudit, Figure 4 shows the evolution of a qudit under
the following operations.

[4) = R2(n/15)R.(n/4) R, (n/2) |d — 1) (11)

(a) The qudit starts in the position of the collective spin up |d — 1)
(Figure 4a).

(b) This state evolves under R, to a coherent superposition of
the basis states. The probability distribution is located on the
equator (Figure 4b).

(c) Then Rz acts on it, which rotates the distribution around the
z-axis (Figure 4c).

(d) Finally R? squeezes the state (Figure 4d).

(a) Basis state (Jd — 1)) (b) State after applying R, (/2)

(c) State after applying R, (w/4) (d) State after applying R2(7/15)

To get a variance below the shot noise, the state has to be rotated
again around the x-axis. This results in a state similar to the one
shown in (Figure 3b). Here the variance in L, is below the shot
noise, while the variance in L, and iy are much greater than the
shot noise.

In conclusion, qudits are represented by a vector in the
d-dimensional Hilbert space. A qudit can be realized experimen-
tally using cold atoms where the individual spins of the atoms are
treated as a collective spin. Entangling the individual spins allows
to reach a variance below the shot noise in one measurement ba-
sis. This is called squeezing which is beautifully visualized by the
Husimi Q distribution on a Bloch sphere.

2 Theory | 7

Figure 4: Illustration of an evolving
qudit state

8 | 3.1 Data Re-Uploading on Qubits

3 Data Re-Uploading

In theory, most quantum algorithms need a number qubits or qu-
dits well beyond the capabilities of current experimental platforms
to run on instances of practical interest. Since a quantum computer
with a large number of qubits/qudits, a high fidelity and a low error
rate has yet to be built, the question arises what algorithms can be
run on the quantum systems that are present at the moment, no-
tably NISQ (Noisy-Intermediate-Scale-Quantum) devices [7]. Data
re-uploading charges this problem at the extreme, A. Pérez-Salinas
introduces the idea of only using one qubit and states that this, in
combination with a classical subroutine, is sufficient to built a uni-
versal quantum classifier [19]. Data re-uploading maps the input
vector Z via rotations onto the qubit. A second set of operators
rotates the state onto target states. This process is repeated mul-
tiple times, hence the name data re-uploading. Data re-uploading
belongs to the class of Variational Quantum Algorithms [20].

This section of the thesis will introduce the fundamentals of data
re-uploading and will later expand this approach onto qudits.

3.1 Data Re-Uploading on Qubits

The first problem in only using one qubit to construct a universal
classifier is the processing and encoding of the classical input data

12: Thisis illustrated nicely inEqua- onto the qubit. For once, a qubit has only two degrees of freedom??
tion 1, here the degrees of freedom
are 0 and & so no quantum classifier in higher dimensions can be created. Sec-

ondly once the input is loaded onto the qubit the only possible op-
erations are Bloch sphere rotations. Due to these two limitations,
it is not possible to classify any non-trivial patterns, with a single
data input.

The solution to both of these problems is inspired by neural net-
works. Here the input is processed multiple times before it reaches
the output layer. This motivated the idea to introduce the input
data several times during the classification process.

(a) Simple Neural Network (b) Quantum Classifier

Figure 5: Comparison of a classical
neural net and a quantum classifier
using data re-uploading. The black
circles indicate the input data.

In [19] it is proven that with data re-uploading a single qubit clas-
sifier can classify any classification function to an arbitrary accu-
racy.

3.1.1 Circuit Structure

The input vector Z is introduced as a rotation on the Bloch sphere.
Assuming an input vector of dimension d, the data is mapped onto
the qubit as d independent rotations. For a three dimensional input
vector the unitary operation applied onto the qubit would be the
following:

U(Z) = R;(x1)Rj(xg) Ry(w3) (12)

Due to the Euler angles, only two different rotational operations
are needed to make an arbitrary rotation. These are denoted as 7
and j. The unitary U/ (Z) is referred to as the input rotation.

Additional to the input rotations, an operation with learnable
parameters is needed, to create a classifier. These parameters are
comparable to the weights in a neural network and are denoted
as 6,,. Rotations stemming from 6, have a similar structure as the
input rotation in Equation 12. The following equation shows a uni-
tary operation composed of three independent variables.

~

In the following the unitary operator 2(6,) is referred to as the
parameter rotation. 2/(6,) and %(Z), the two unitary operations,
make up a processing layer.

£(2,0,) = U(0,)U (%) (14)

£(Z,6,,) can be applied multiple times one after another with dif-
ferent én

—

U (%,0) = £(2,0,)..L(%,0,) =U(0,)UZ)..Ul)UE) (15)

As the expressivity of the circuit grows the more accurate the clas-
sifier will be. If the input vector Z has a higher dimension, addi-
tional rotation gates are added to the input rotation, such that ro-
tation ¢ and j alternate.

Every time the circuit is executed the qubit starts in state |0).

From this starting point each unitary operation is applied to obtain
the final state |¢(6, Z)).

[0 (6. 2)) = % (2,6)|0) = £(Z.6,,)...£(Z,6,)[0) (16

3.1.2 Loss Function and Gradient Descent

Having a similar approach to classifying as a classical neural net-
work, there is also the need for a loss function and a classical min-
imization method. First a loss function has to be defined. To in-
crease a models performance the loss function needs to be mini-
mized, which is done via the gradient of the loss function. The gra-
dient tells the optimizer how to adjust the parameters such that

3 Data Re-Uploading | 9

Figure 6: Circuit Diagrams for a 2
layer classifier.

10 | 3.1 Data Re-Uploading on Qubits

13: All measurements are the expec-
tation value of L .

the loss function is minimized. The parameters to optimize are in
this case the learnable rotations 2 (6,).

The goal of the rotations introduced in Section 3.1.1 is to ro-
tate the qubit state on a specific spot on the Bloch sphere. In other
words: Maximize the fidelity of the resulting state after the rota-
tions and a specific point on the Bloch sphere. For each input vec-

tor Z,, the following equation needs to be maximized:

Fo(0) = | (,]0(0,7,,)) |2 (17)

Here |1,ZS> corresponds to the label state of the class of data point
Z,,. Since the gradient descent optimizer “Adam”[21] is used, the
equation needs to be put in such a form, that the desired outcome
corresponds to minimizing the equation. This leads to:

M

0) = > (1= (@,lw(0,2,)) ?) (18)

n=1

X3

M denotes the size of the data set with input vectors Z,,, so the sum
over each input vector needs to be minimized. In the most simple
example the classifier is binary, such that the label classes are |0)
and |1). The circuit maximizes the fidelity such that an input Z,
with the class 0 is rotated onto |0) after running the circuit with
its input and the learned parameters . If the state is rotated exactly
on |0) the loss is:

XH(0) = (L= [{0]e(6,%,)) =1-1=0

3.1.3 Learning Process

The parameters 6 are initialized with random values between 0
and 7/2. After that, the data set is split into a test and a training
set. In each epoch the model splits a randomized training set into
batches from which it will use the Adam [21] optimizer to optimize
for these data points. A batch is a subset of the training data. Batch
learning is used in Machine Learning, because when computing
the gradient over the entire data set a lot of information is lost
due to averaging. Once the optimizer has received and used every
batch of the data set (the entire training data set) an epoch is over.
Finally, the model is tested using the test data set.

3.1.4 Measurement

Once the model has processed the input it outputs a state vector
for a given data point, from which the model has to make a predic-
tion. For this the probability P,(|1/)) of the state being in |0)!* and
P, (1)) of the state being in |1) is computed. This is just:

P,(1$)) = | (nly) [* (19)

3 Data Re-Uploading | 11

An input is classified as 0 if Py(|¢))) > P,(|¢))) and 1 otherwise.
On a quantum computer this is done by a majority vote of the
measurement results.

3.1.5 Classification Illustration

This section will briefly illustrate the classifying process of a two
layer binary classifier. The data point Z is labeled as 1 and needs
to be mapped on |1). The following operations with the already
learned parameters 6, rotate the input to the desired state. The
qubit is initialized into state |0).

The resulting rotations can be seen in Figure 7. The input rotations
in both layers are the same, hence the name data re-uploading. The
parameter rotations are different in each layer. Figure 7d shows
the final state of the qubit. This state is used to compute the prob-
abilities which are later used to classify the input data.

1) 1)

£ i

/\»y /\>y
»]

0) 10)
(a) 1*" input rotation U (Z) (b) 1°* parameter rotation 2((6,)

| \
ENIRYA T,
z A/\(Y z &
Figure 7: Illustration of an input be-
i ing classified.
|0) |0) Probabilities of the final state:
(c) 2™ input rotation 2/ () (d) 2" parameter rotation 2((6.,) Fo(2) =0.05

P,(#)=0.95

12 | 3.2 Data Re-Uploading on Qudits

14: In [19] it is described to use max-
imal orthogonal states on the Bloch
sphere to label more than 2 classes.
This leads to the well known problem
of quantum state discrimination[22].
Even though this problem is solved in
some cases it is hard to realize exper-
imentally. It is far easier to measure
the collective spin length of a qudit
Section 2.2.

15: |0),[1),]2),3),]4)

Figure 8: Fidelities of each basis state
of a qudit with dimension 5.

16: The basis states |0) and |d — 1)
can reach a fidelity of 1 without
squeezing since these are already
eigenstates of L.

17: As seen in [11] appendix B.

18: This structure proved to be best
when testing different circuits struc-
tures.

3.2 Data Re-Uploading on Qudits

The concepts described in Section 3.1 can now be extended onto
a qudit. This introduces some advantages and disadvantages. For
once the qudit is not limited to a Hilbert space dimension of only 2
and one can assume that it is easier to build a multi class classifier
with a qudit compared to a single qubit!*. However if the state is
just rotated on the qudit Bloch sphere, the fidelity of the states
not lying at the poles can never reach 1. This is due to the fact
that only the eigenstates |0) and |d — 1) of L, can be reached by
simply rotating the qudit around the x-axis. The other states the
qudit reaches are not eigenstates of L. Additionally the variance
of L, has its maximum at the equator, which results in the state
|(d — 1)/2) having the smallest maximal fidelity. In Figure 8 the
fidelities for each basis state!® are shown when the state is rotated
from the north pole to the south pole.

Fidelity for the different qudit states

1.04 —— Fidelity of |0)

Fidelity of |1)
—— Fidelity of |2)
—— Fidelity of |3)
—— Fidelity of |4)

Fidelity |(n|w(6))|?
o o o
'S > ©

o
)

o
o
L

0.0 0.5 1.0 1.5 2.0 25 3.0
X-rotation 6

This is where the squeezing, which was introduced in Section
2.3.2 comes into play. Squeezing a state decreases the variance of
L, and thus increases the fidelity of a given label state. When only
labeling the poles of the qudit this will worsen the performance,
since squeezing in this case only decreases the fidelity'®. Never-
theless, when labeling more states of the qudit, squeezing should
improve the speed of learning and the accuracy, because the fi-
delity of the states that do not lie on a pole will reach higher values
(Equation 18).

3.2.1 Circuit Structure

In the example from [19] three instances of two different rotations
are sufficient to approximate any unitary operation on a single
qubit. For qudits the L2 operation is needed to approximate an ar-
bitrary unitary operation!” on a qudit with d > 2. Later, whenever
a circuit with squeezing is mentioned, it will have the following

structure!s.

VR;(0,,,) R:(6,,) (20)

Here i and j are replaced by z and z, the rotations, that are men-
tioned in [11]. The input rotation is the same as in (Equation 12).
A circuit without squeezing has the same structure as the one men-
tioned in Equation 13.

3.2.2 Label Classes

As previously stated, the approach of classifying multiple classes
using maximally orthogonal states (as described in [19]) is hard to
realize experimentally. By using qudits, one already has a higher
dimensional Hilbert space and thus each, or every other, compu-
tational basis state can be used to label classes. In principle one is
only limited by the dimensionality of the qudit, when building a
multi class classifier.

3.2.3 Learning Process

The learning process is almost exactly the same as described in
Section 3.1.3. The only difference is the fact that the parameter 0,
for R? is not set randomly but is set to 0 at the beginning of the
training. This is due to the fact that models that have randomly set
variables for 6, converged much slower to a minimum, because
it is very hard for the model to “unsqueeze” a state. In addition the
squeezing parameter is orders of magnitude smaller than the other
parameters.

3.2.4 Measurement

The measurement is also quite similar as described in Section 3.1.4,
but instead of only computing the probability of the two basis
states |0), |1), now the probability of each labeled state!’ is com-
puted. This leads to n probabilities for a n class classifier, from
which the maximum is chosen as the prediction.

To summarize, the quantum machine learning model of data re-
uploading can be realized on a single qubit or qudit. The classifier
consists of multiple layers, in each layer are two rotational oper-
ations. The first one decodes the input data onto the qudit. The
second rotational operation has learnable parameters which map
the state of the qudit onto a label state. The state resulting from
these rotations is later used to classify the data point by comput-
ing the overlap with the different label states. The prediction is
based on the label state with the highest fidelity. The more layers
the classifier consists of the more powerful the classifier becomes.

3 Data Re-Uploading | 13

Figure 9: In principle each computa-
tional basis state |0}, ..., |d — 1) can
be labeled as a class to build a d class
classifier.

19: Of course for a binary classifier
the measurement falls back to having
only 2 probabilities and thus being
the same as in Section 3.1.4, with the
slight difference that the measured
states are |0) and |d — 1)

14

20:

oyl

T

Fo
RZ

4.2 Simulation Method

r
R,.

example

R.R.R.

or

4 Simulations

Before benchmarking the classifier on the famous MNIST Hand-
written Digits Data Set [23], it is beneficial to replicate some of the
results from [19], such as the classification of a circle and of multi-
ple simple 2D plane problems. This leads to a better understanding
of the classifier and will provide insight into the effect of the dif-
ferent parameters for the training on the MNIST data set. When
constructing the quantum classifier the following questions need
to be answered, such that an optimal performance on the MNIST
data set can be obtained:

Which qudit dimensions are best for a binary/multi class

classifier?

- How many layers are necessary to learn simple/more com-
plex patterns?

— Which circuit structure®® poses the best results?

Does squeezing improve the performance?

4.1 Used Libraries

This section will shortly introduce the python packages that were
used for the simulations. The code can be found in the this

Git Repository. A helpful blog post and introduction into the topic
of data re-uploading can be found on the pennylane website [24].

4.1.1 Scikit-learn

scikit-learn [25] was used to split the data sets into respective
training and test sets and shuffle them. It was also used to run the
classical machine learning algorithm in Section 4.5.3 to compare
the quantum classifier to a classical one. But most importantly the
Principle Component [26] analysis of scikit-learn was used to
reduce the dimensionality of the MNIST data set (Section 4.5.1).

4.1.2 Jax

This package is probably the most important one in terms of code
speedup. jax [27] is a Python library for automatic differentiation
(autograd) and accelerated linear algebra (XLA) for native Python
and NumPy code. It computes the gradient of the used circuits. jax
was also used to vectorize the code and compile it “just in time”.
This sped up the code by a huge margin.

4.2 Simulation Method

To be able to analyze a models performance accurately, each model
was trained over 40 epochs at least 20 times. The number 20 was

https://github.com/nlwach/Data-Re-Uploading-on-Qudits
https://pennylane.ai/qml/demos/tutorial_data_reuploading_classifier.html

chosen because it produced statistically meaningful results while
still being computationally feasible. Then the mean and the vari-
ance of those 20 simulations was computed. The linear binary clas-
sifier was only trained for 20 epochs since after 20 epochs, the
model had already converged.

4.3 Binary Classification

As an easy classification problem some simple data sets were cho-
sen. The premise of each is the same, N points with z € R? are
randomly sampled in a square with Z;, € [—1,1]. Each point is
labeled with a class, depending on the position in the 2D plane. In
this way, linear and non-linear data sets can be generated.

For the binary classifier the points are either labeled as 0 (blue)
or 1 (red). These two classes are mapped to the label classes |0)
and |d — 1) of a qudit with dimensionality d. This is illustrated in
Figure 10.

The following plots and tables compare the quantum classifier
for different circuit depths and learning rates®!.

4.3.1 Linear Model

The following example leads to a linearly divided data set with the
labels given by

0: zt <0
Y, = 1 (21)
1: 29>0

First of all it needs to be checked if the classifier can replicate
the performance of [19] using the same structure, i.e. with a qudit
dimensionality of 2.

The following table shows the accuracies after 20 epochs of train-
ing and a learning rate of 0.05. The accuracy is defined as

Number of correct predictions

Accuracy = (22)

Total number of predictions

Layers ‘ Accuracy

100.0 %
99.6 %
98.0 %
99.6 %
98.4 %
98.8 %
99.2 %

N NG W

The reason for the missing variance in accuracy in Table 1 is,
because the model always converged to the same final parameters,

4 Simulations 15

la-1)2e

lo)=e
Figure 10: Labels of the qudit/qubit
for the binary models.

21: The learning rate refers to the
step size the optimizer takes towards
the point of steepest descent, given
by the gradient. A large learning rate
can lead to the optimizer “stepping”
over the global minimum, whereas a
small learning rate can lead to the op-
timizer getting caught in a local min-
imum.

Table 1: Performance of model on lin-
ear data set

16

1.00 1

0.754

0.50 1

0.254

X2

—0.254
—0.50 4
—0.754

—1.00 1

Figure 11: Resulting truth data from

0.00

4.3 Binary Classification

Linear Cut

":. ‘\; e ..l-.'. % ?t
ﬁ-& 'Ell_;‘shr"f &

T e v et &
O
1-'5"&52.- S 3 PRt

-1.0 -05 0.0 0.5 1.0
x1

Equation 21.

Figure 12: Examples from the models
trained on a binary linear data set af-
ter 20 epochs and a learning rate of

0.05.

1.00
0.751
0.501
0.259

£ 0,00

-0.251
~0.50
~0.75

—1.001

Figure 13: Resulting truth data from

Circle

ot s Yol o .22
SR

XL X
e

-10 -05 0.0 05 1.0
x1

Equation 23.

independent of the chosen starting parameters for ,,. The reason
for this being the simple structure of the data set.

From Table 1, one can deduce that one layer is sufficient to clas-
sify the linear data set. More layers minimally decrease the accu-
racy. This is due to the fact that with one layer the only possible
separation is a linear one whereas multiple layers are able to create
a non-linear decision boundary. This leads to overfitting the train-
ing data set and in turn to a reduction of the test performance.
This simple problem is easily classified with a high accuracy by
the model.

Below are some examples from the linear binary classifier.

1.0 A

0.5 1

0.0 1

X2

(a) Predictions of a model with 2 lay- (b) Predictions of a model with 5
ers. layers.

Accuracy = 99.6% Accuracy = 98.4%

4.3.2 Non-Linear Model

A more complex problem is the following

0 :
Y; = 1.

with r being the radius.
First the effect of the qudit dimensionality and the consequences
of different number of layers is investigated. In each case the label
states are |0) and |d — 1).

Figure 14 shows the accuracy and the loss depending on differ-

|20 <

(23)
|1Z;]| >

ent qudit dimensions and number of layers. It can be seen, that
lower qudit dimensions perform significantly better and reach a
lower loss.

This result is not very surprising since by increasing the dimen-
sionality of the qudit the optimization problem becomes more com-
plex which leads to a worse performance of the classifier. The in-
creased complexity leads to a loss function, that has a higher min-
imal loss and thus the optimizer is not able to reach lower losses
than at lower dimensions. Additionally, with an increasing Hilbert
space dimension more commutators are needed to approximate an
arbitrary unitary operation.

4 Simulations 17

aaaaa

W owN

0.8

| |k |
HHRREYLLL

0.4

o é
IEREREE. %@He%

Layers Layers

Figure 14: Performance comparison
for different qudit dimension on the
binary non-linear data set.

(a) Loss dimension comparison of (b) Accuracy dimension comparison of non-
non-linear model. linear model.

Table 2: Performance of the model on

The following figure shows the results after 40 epochs of train- ~ anon-linear data set with d = 2.
ing, a learning rate of 0.05 and a qudit dimension of 2. The dimen-
sion is set to 2 since, as stated above, the model performs signifi-

Layers | Accuracy

cantly better with a lower qudit dimension. 1 60.7 £ 4.9%
2 77.2 +2.8%
1.0 3 85.5 + 2.9%
@ 4 82.8 +4.4%
0.9 @ l:IL! 5 87.9 + 3.1%
iii 6 90.9 +2.1%
2% # 7 91.2 + 2.3%
g, 8 91.9 £ 3.9%
9 93.5+2.7%
0.6
0541

Figure 15: Boxplot accuracy for
d=2.

Additionally, the lower dimension of the qudit leads to a faster
computation, since computing many high dimensional matrix ex-
ponentials is resource expensive. As described in [19], one needs
at least two layers to approximate a non-linear data set with an
accuracy above 50%. This is due to the fact, that one layer can only
linearly cut a data set. With six or more layers, an accuracy above
90% is possible. In Figure 16 the prediction results of two differ-
ent models can be seen. While the three layer model struggles to
classify a round circle, eight layers achieve a quite high accuracy.

1.0 1 1.0 1

0.5 - 0.5 1

< 0.0 X' 0.0 5%

—0.5 A —0.5 A

-1.0 1 —-1.01
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X1 X1

(a) Predictions of a model with 3 (b) Predictions of a model with 8 Figure 16: Examples from the binary
layers. layers. non-linear data set trained models

Accuracy = 85.6% Accuracy = 96.2% over 40 epochs and a learning rate of
0.05.

18 | 4.4 Multi Class Classification

Figure 17: Accuracy during the
learning process for different circuit
depths of the 2-dimensional model.

22: This is due to the fact that if the
poles are used for the labels, the vari-
ance can only increase at these points
leading to a worse fidelity.

°
ou s WN RO

-1.0 -0.5 0.0 0.5 1.0

Figure 18: Resulting truth data from
Equation 26.

1.0 A
—— 1 Layer
0.9 1 —— 3 Layers
—— 6 Layers
0.8 ? ? é @ é ? 9 Layers
go0.7
5
1o
£ 0.6 1

o
w
—
—r——

——
——
—_——
——
——
—

o
i
L

o
w

1 6 11 16 21 26 31 36
Epochs

Figure 17 shows the accuracy over the epochs for different cir-
cuit depths. One can see that the models achieve a high accuracy
after 10 epochs and then reaches what looks like a plateau. The
improvements in accuracy after 30 epochs are only marginally.

4.4 Multi Class Classification

Since the “MNIST Handwritten Digits data set” is a multi class
data set, the model has to be tested on a data set containing multi-
ple classes. For this, the approach from Section 4.3 was expanded.
Rather than only having two different label classes, the model now
needs to learn three or more.

As described in Section 3.2, in theory, squeezing should improve
the performance of the model. Since squeezing does not introduce
any beneficial aspects regarding a binary classifier?®, the circuit
only from now on has the additional R2(6) gate in each but the
last layer. In preliminary tests, this structure proved to be best.

~

u(d,) = R2(0,,)R,(0,,)R;(0, R0,) (24)

The last layer has the following structure.

For comparison purposes models with and without the additional
squeezing gate in the parameter rotation were trained. Addition-
ally, the effect of the circuit structure (R R, R, and R, R_R,) is
investigated. The results for a linear and a non-linear data set are
presented below.

4.4.1 Linear Multi Class Classification

The following equation cuts the data set into m equally sized re-
gions:

n+1

IA

+1<

T (26)

3=

Y =mn

Figure 18 shows the resulting data set for m = 7. This data
set was also used to train the classifier and the results are shown
below.

First of all the effect of the qudit dimensionality is investigated.
From Figure 14b one suspects that higher dimensions decrease the
performance. On the other hand one could argue that labeling ev-
ery other basis state could be beneficial, since then the classifier
has a bigger margin of error to the next class.

Both models are trained with the same 7 classes. The 7-dimensional
classifier uses every possible computational basis state to label the
7 classes (Figure 19), whereas the 13-dimensional classifier uses
the following states as label states: |0}, |2), |4),|6),|8),[10),(12)
(Figure 20).

Table 3 shows the results for a 7-dimensional and a 13-dimensional

classifier.
Accuracy
L
S | g =7 d=13
2 72.0 £t43 % 57.0 +9.3 %
3 88.2 9.0 % 76.3 £13.6 %
4 86.3 £9.0 % 76.4 £10.6 %
5 91.2 +45 % 80.3 £12.7 %
6 88.1 9.5 % 839195 %
7 88.6 £10.0 % | 83.9 £11.8 %
8 922 +4.6 % 75.3 £14.7 %
9 91.6 +6.3 % 79.2 £10.7 %
1.0

o] B =

ﬁ q] @ .

o
©
A

Accuracy
©
~
—{1TH

0.6 1

0.5 1

Layers

Both classifiers use squeezing and the circuit structure is R,R_R, .
The two models were trained over 100 epochs, to ensure the opti-
mizer had converged. Table 3 clearly shows that the ansatz with
lower dimensions greatly outperforms the one using twice as many
basis states as label classes. The reason for this is the same as men-
tioned in Section 4.4.1.

Next, the effect of squeezing on the model is examined. As a
result of the simulations from Table 3 and because the data set

4 Simulations 19

s, 192
(/”_ N ‘\‘4>7-
C) [3)=¢
’\:‘ / \)‘2>:-
(\‘_‘_‘/ 1=

DED

Figure 19: Labels of the qudit for 7
classes and a qudit dimension of 7.

Table 3: Comparison of two clas-
sifiers using different qudit dimen-
sions.

100 epochs, learning rate: 0.001

Figure 20: Labels of the qudit for 7
classes and a qudit dimension of 13.

Figure 21: Boxplot showing the accu-
racy ford = 7and d = 13.
100 epochs, learning rate: 0.001

20 | 4.4 Multi Class Classification

Table 4: Performance of the model on
a linear data set with 7 classes and a
qudit dimension of 7.

* since the last layer of each circuit
has no squeezing gate a single layer
classifier with squeezing is not possi-
ble.

Figure 22: Examples from the multi
class non-linear data set trained mod-
els after 40 epochs and a learning rate
of 0.05

Figure 23: Example states from the
3 layer multi class linear data set
trained models.

has seven classes, a qudit dimension of d = 7 is chosen. Since the
computation of all four models over several epochs and model in-
stances is computationally expensive, the models were only trained
for 40 epochs, instead over 100 as above.

Layers R ANoA SqueezAing) o §queezing o
RZ RI RZ RZL’ RZRI RZ RI RZ RZL’ RZRI

1 65.0 £2.0 % | 64.8 £2.3% - =

2 529 435% | 52.0 £3.1% | 70.1£59 % | 67.1 £5.3%
3 66.4+7.4 % | 60.6 £6.6% | 87.6 £9.3 % | 89.5 +8.2%
4 61.4+t4.2% | 61.2+64% | 858 +6.0% | 87.9 £3.1%
5 62.2£52 % | 67.0 £7.0% | 88.1£3.7% | 89.1 £5.0%
6 65.4 £6.1 % | 70.1 £7.5% | 87.4 £10.7 % | 86.2 £10.0%
7 65.2£6.8 % | 71.1 £5.9% | 88.8 £8.0 % | 90.3 £5.5%
8 66.9t4.9 % | 72.4+5.9% | 87.8t7.4% | 86.3 £9.8%
9 70.8 £5.9 % | 72.3 £7.6% | 87.8 £8.7 % | 82.7 £12.0%

Overall the model containing squeezing performs significantly bet-
ter than the one without. The variance for the models with fewer
layers is smaller than the ones with more or less layers. A reason
for the higher variance of the models with more layers could be
the loss function (Equation 18). Due to the structure of the loss
function a lower loss does not necessarily lead to a more accurate
classifier.

1004 o o, ° 3 ey 1004 o0 0q © @ ‘q:u% e 0
0.75 ?}' :S.%:b- ﬁ“g“mo 0.754 gﬁ:gﬁ%-‘; -h'f '!: °% ° 2
by ooy TR R
| SRS s | RESED | -
.8 o r-'--..\g- o8 o ‘,-"-.JD o
2 o000ie Q,g? .';-.“?i:';%e < 00046 & g? .‘.‘ o fi&%@
~0.251 ,.'E,%" ° &gy, o 8RS © 5% -0.251 %o 805 b ol T S
| 2 etesd P X EP;% o Rest v eSS agm
70'507 -‘g‘\l..; .éf‘?‘-"h: ~0.50 1 ‘;%':L %l'k%;;%
0751 50 & :h;b,':ﬁ‘-. -."Qﬂm‘:’s % 0751 30 & ‘%\":ﬁ‘-. o’ %
100 &0 % BRSBTS ool 6 B8 Dot AEP B850
10 -05 00 05 10 10 -05 00 05 10
(a) Predictions of a model with 3 (b) Predictions of a model with 3 layers
layers without squeezing. with squeezing.
Accuracy = 71.6% Accuracy = 90.0%

(a) Model without squeezing, (b) Model with squeezing, True
True label (3), classified as (2) label (3), classified as (3)

It is very interesting to see that the classifier without squeezing
prefers the classes which are labeled with the poles. This can be
seen when comparing Figure 22a to Figure 22b and is not very
surprising, since without squeezing the label states at the poles can
achieve the highest fidelity®*. In Figure 23 example states from the
classifiers with and without squeezing are shown. The correlation
between the maximal fidelity and the predicted classes can be seen
in Figure 24.

0.275

1 , e 2 layers
\ I }0.250 3 Layers
0.250 4 :\‘ II . e 4 layers
" H
c] \ I F0.225 e 5 layers
'% 0-225 \\ II ~_ e 6Llayers
8 0.200 \ / (02005 | 7layers
- \ 1 =4 8 Layers
S
<0175 \ H [0.175 = ——- True Label Distribution
g \] 2 == Maximal Fidelity
£ 0.150 \ 1 F0.150 ©
g | —---- b e - 2
4 \ I "=
9 0.125 1 * " Lo.125
| § : : A
0.100 1 st i [F0.100
0.075 T T T T T T T 0.075
0 1 2 3 4 5 6

Labelstate |n)

Here the y-axis on the left represents the portion of predicted
states of the classifier without squeezing, whereas the right y-axis
shows the maximal fidelities of the basis states. The simulated pre-
dictions without squeezing seem to correlate strongly with the
maximal possible fidelity without squeezing.

Since the data set is uniformly distributed, a classifier which is
not limited by the maximal fidelity of its qudit states would show
uniformly distributed predictions, just like the data set. However,
the classifier without squeezing shows this correlation (Figure 24)
between the maximal fidelity and the share of the predictions for
each label.

Another approach to remove the bias resulting from the maxi-
mal possible fidelities would be to rescale the loss function such
that every label state has the same maximal possible fidelity.

4.4.2 Non-Linear Multi Class Classification

The last preparation before learning the handwritten digits will be
a non-linear multi class classifying problem. For this a similar data
set as in Section 4.3.2 is generated with the difference being that
there are two circles, one inside the other

0: |7 <r
Yy =91 r <[] <y (27)
2 0 2] >y

with 7, < r,. The way these classes are mapped on the qudit is
visualized in Figure 26.

Just as deducted in Section 4.4.1 it is now assumed that the

4 Simulations | 21

23: as seen in Figure 8.

Figure 24: Comparing the maximal fi-
delity of different qudit states with
the occurrence of the state in the pre-
dictions of the linear multi class clas-
sifier.

1.00 o0
0.75 ’1 -,"rﬁ'. k.o.
Iy '?;% oghpe
g2t

%

° g%ou %E“,"—“-
) 0.25 ,L%%gﬁ.:% o"h.o;-'
T :s i §°;“§‘=.‘.'
@ms%aﬂ%a‘ﬁ% 3

~1.00 l'- -l' . - * ®

10 -05 00 05 10
x1

e o
N o

0.50

Figure 25: Resulting truth data from
Equation 27.

22 | 4.4 Multi Class Classification

Table 5: Performance of the model on
a non-linear data set with 3 classes.
* since the last layer of each circuit
has no squeezing gate a single layer
classifier with squeezing is not possi-
ble.

0)=*

Figure 26: Labels of the qudit for 3
classes and a qudit dimension of 3.

Figure 27: Examples from the model
trained on the multi class non-linear
data set after 40 epochs and a learn-
ing rate of 0.05.

model with squeezing will perform significantly better than the
one without squeezing.

Layers | - ANoA Squeeging) o SAqueeziilgA)

1 53.1 £1.6% | 53.0 £2.1% - =

2 55.6 £0.5% | 55.5 £0.5% | 55.2 +2.3% | 59.6+1.2%
3 76.3 £2.3% | 78.6 £2.5% | 73.0 £3.0% | 77.1+£3.3%
4 78.8 £1.7% | 79.2 £2.0% | 75.1 £3.5% | 75.6+2.3%
5 81.2 £3.0% | 80.6 £3.6% | 78.2 £3.2% | 80.9+3.2%
6 80.6 £4.5% | 79.8 £3.0% | 85.1 +4.2% | 87.1+4.7%
7 82.5 £3.4% | 79.6 £3.2% | 85.7 £3.0% | 85.4+4.3%
8 81.2 £2.3% | 80.2 £2.4% | 88.6 +3.8% | 87.9+3.4%
9 79.2 £1.9% | 78.7 £3.0% | 88.8 +4.5% | 89.4+5.1%

In this case, squeezing does increase the accuracy but not as much
as in Section 4.4.1. This is because for the ternary classifier there
are only three classes and the improvements squeezing introduces
are only beneficial for the classes not labeled at the poles, which is
in this case only one. Nevertheless, squeezing improves the classi-
fiers accuracy.

1.04

0.5

< 0.0

0.5

(b) Predictions of a
model with 8 layers
with squeezing.
Accuracy = 91.1%

(c) Predictions of a
model with 8 layers
without squeezing.
Accuracy = 76.5%

(a) Predictions of a
model with 3 layers
with squeezing.
Accuracy = 72.8%

Table 5 also shows a similar trend as Table 4 concerning the circuit
structure. The arrangement of the gates R, and R, does not seem
to have a significant effect on the performance of the classifier.
This is expected since in both cases there are sufficiently many
commutators to approximate any arbitrary unitary operation U.
When comparing Figure 27b to Figure 27c one can again see that
without squeezing class 2 (yellow) is underrepresented. The rea-
son for this can be seen in Figure 24. The model with squeezing
however does not have this bias.

4 Simulations | 23

4.5 MNIST Classification

The “MNIST Handwritten Digits data set” is the data set to test a
new algorithm in machine learning.

4.5.1 Preparation

Since the digits in the MNIST data set are of the shape 8 x 8, which
would lead to 64 input parameters, the dimensionality of the input
vectors needs to be reduced. For this a Principle Component Anal-
ysis (PCA) [26] was used. PCA reduces the dimensionality of a
given data set to a set number of dimensions. In this process, some
of the information gets lost, but since it is not numerically feasible
to introduce 64 input dimensions (d;) to the model this trade-off
had to be made.

Using the whole MNIST data set with all ten numbers would re-
quire bigger computational resources, so only five of the 10 num-
bers were selected to train the classifier.

The numbers were labeled on the qudit as follows (visualized in
Figure 28):

— |0
— ’1
— |2
— ’3
— |4

S~ S S S S
111 Ib
O N B~

This specific labeling was chosen because it produced the best Pl SN
results when running preliminary tests. SN A

For these simulations the lessons learned form above were ap- — -~

plied: - -

- Low qudit dimensions AN BATEL

= A qudit dimension of d = 5 was used
Figure 28: Label states of the qudit for

- Sufficiently many layers five digits.
= Simulations with at least 3 layers were run
- Squeezing

= The models used squeezing

4.5.2 Results

Each model was trained 10 times over 500 epochs with a learn-
ing rate of 0.005. Additionally to varying the layer size, models
with different input dimensions were trained. Each of these mod-
els received the data with input dimensions d; of 3 to 7. In Section
4.3 and Section 4.4 the input data was mapped via R, (z,)R,(1,).
Since the input dimension has now changed, for each additional
input dimension an additional rotation gate R, (x,) is added to the

24 | 4.5 MNIST Classification

Table 6: Performance of the model on
parts of the MNIST data set.

Figure 29: Accuracy of the MNIST
classifier with different layers and in-
put dimensions d.

input rotation unitary operation. The type of rotation (either Rw
or R,) depends on the previous rotation operations such that an

alternating rotation pattern emerges:

R (x1) R, (25) R (x3) R, (2) ... (28)
Layers Accuracy of Input Dimension d;
3 4 5 6 7
3 69.0+7.3% | 70.6 £6.5% | 71.0£5.8% | 65.5+8.6% | 63.5+7.7%
4 76.1£3.3% | 77.1£3.1% | 74.144.2% | 70.1£5.8% | 72.0£3.9%
5 76.9t6.9% | 79.0+4.1% | 75.6%6.4% | 73.0£6.4% | 70.8+3.8%
6 83.4+1.9% | 81.6+4.4% | 79.6+3.8% | 75.3%4.7% | 72.4+4.8%
7 83.8+3.1% | 82.7+2.8% | 80.3£3.6% | 80.0£2.1% | 73.7£3.9%
8 82.1+4.6% | 82.9+2.6% | 80.5+3.2% | 79.7+4.2% | 72.8+6.6%
9 85.3£2.7% | 86.0+3.1% | 80.0£2.5% | 79.9+2.9% | 73.7£5.0%

Table 6 shows the results from the MNIST classifier. One can
see that more input dimensions do not necessarily lead to a better
performance. There is a clear downwards trend in the accuracy
with an increasing number of input dimensions.

This result is rather surprising since an increasing number of
informative input dimensions allows the classifier to separate the
data more efficiently and thus achieve higher accuracies. The re-
sults from Table 6 and Figure 29 show the exact opposite. It can be
suggested that the method of data re-uploading breaks down with
an increasing number input dimensions using this circuit structure
and loss function. To answer the question why this happens and
how to avoid this, further research is needed.

- B Bl =5
o i 4

Accuracy
o
~
o
L

0.65 -
0.60 -
0.55 A
3 4 5 6 7 8 9
Layers

Figure 29 visualizes the data from Table 6 in a boxplot. From this
plot one can deduct that the optimal number input dimensions for
this data set and classifier structure is 3 or 4. More layers proved to
increase the accuracy for these input dimensions. Even more layers
would probably produce even more accurate results, but training

the model with d; = 4 and 9 layers 10 times took over 4 hours. For
further investigation in this regard, more powerful computers are
necessary.

In Figure 30, the accuracy and the loss of three selected models
is plotted. The red boxplot shows the in the mean best performing
model?*. The higher the input dimension d; the lower is the accu-
racy. Another surprising observation is the widely scattered loss
of the model with 7 input dimensions. The whiskers of the boxplot
are fairly large when comparing them to models with less dimen-
sions. This fact can be used to further investigate the effect of an
increasing number of input dimension on the data encoding and

the loss function.

. “HBMMGMMMMM e
0 ‘ ' ﬂ ' ‘ ﬂ ‘ u —— 8layers, di=7
0.7
§0.6' '
go.s-
¢
0.4 @ 0.5 6‘ ' ’ ‘
” 0 SOV
' 4’6 '1(’)0'1é3'266'2é0'3i3’3é6’42’0'4%3'
TFIRIIRTSR e oA
Epochs

4.5.3 Comparison to a Classical Machine Learning
Algorithm

This section will provide a comparison between the results ob-
tained from the quantum classifier and a classical machine learn-
ing approach. There are many machine learning algorithms that
could be used to compare the results. This thesis will use random
forests to classify the same part of the MNIST data set and then
compare the results. Random forests are very versatile and “meet-
[ing] the requirements for serving as an off-the-shelf procedure
for data mining” [28].

4.5.4 Random Forests

The concept of random forests was first introduced by Tin Kam
Ho in 1995 [29] and later improved by Leo Breiman [30]. Random
forests consist of many decision trees?. While training a decision
tree, the data is split at features and feature values, which are deter-
mined by a metric, such as the Gini coefficient or information gain.
The split data is then assigned to one of the children of the node.
The child turns into a leaf as soon as the data assigned to it consists
of only one class. After training, a decision tree represents the data

4 Simulations | 25

24: d, = 4,9 layers

Figure 30: Performance comparison
for different input dimension of the
MNIST classifier.

25: In the context of computer sci-
ence trees are acyclic graphs. Each
node which is not a leaf has at least
one child.

26 | 4.5 MNIST Classification

Figure 31: Single decision tree

26: Remember that during the train-
ing a leaf was created only when
data points from a single class were
present, thus the tree can now make
prediction based on which class
reached this specific leaf.

Figure 32: Accuracy of the random
forest with different depths and input
dimensions d;.

27: The maximum depth of a tree.

where the labels are derived by simple rules as specified through
the feature splits. Each leaf node represents a certain subset of the
data.

root
leaf ~
leaf
H/—/
leaf

In a random forest, many decision trees are trained, where each
decision tree is trained with a randomly selected subset of the data
and operates only on a randomly selected subset of the features.
The final classification result can be derived from the individual
trees by various aggregation methods. The scikit-learn imple-
mentation averages the probabilistic predictions of each tree in the
ensemble. When the forest receives an input to classify, it forwards
the input to each decision tree. Each tree then compares a charac-
teristic value at each node and makes the decision based on the
seen data to classify it to a certain child. Once the input reaches a

leaf the decision tree can make a prediction?.

4.5.5 Results

u B @ | =5

I
{17 :

The boxplot below shows the results for different forest depths®’
and input dimensions d;. Each depth was trained 10 times with a

Accuracy
o o o
(e} (<} e}
o N Sy

! N L

6 8 10
Depths

randomly selected training and testing batch and a different ran-
dom state for each forest.

The random forests perform very well when reducing the data
set to at least four dimensions. Once a depth of 6 is reached, the
classifier reaches a median accuracy of over 95%.

4.5.6 Comparison

Figure 29 and Figure 32 show that the classical algorithm random
forest is still superior to data re-uploading. Not only when looking
at the accuracy but also regarding the computation time. While
the random forests only took seconds to train the quantum model
trained for about 10 to 40 minutes depending on the input dimen-
sions and layer depths. Nevertheless, an accuracy of around 85.0%
with a 9 layer model is not as bad when comparing it to a classi-
cal algorithm, a random forest with depth 9. The difference is only
about 8 percentage points. The most surprising discovery concern-
ing areal world data classifier is the fact that an increasing number

of input dimension decreases the accuracy of the quantum classi-
fier.

This section first tested the qudit classifier on simple classifica-
tion problems that became increasingly more difficult. The results
for the qubit classifier from [19] were recreated. The preliminary
simulations showed four things: squeezing improves the classifier,
the circuit structure is not as important for the accuracy, lower qu-
dit dimensions achieve a higher accuracy and at least three layers
are necessary to classify a non-linear data set. Finally the model
was trained on parts of the MNIST Handwritten Digits data set
and compared to the classical machine learning algorithm of ran-
dom forests. The qudit model reached a maximal accuracy of 86%,
whereas the classical algorithm achieved accuracies above 95%.

4 Simulations

27

28 | 5.1 Optimal Parameters

Figure 33: Comparison of the pole
fidelities for different qudit dimen-
sions.

5 Conclusion and
Perspectives

5.1 Optimal Parameters

5.1.1 Which qudit dimensions are best for a binary/multi
class classifier?

Binary Data Set The simulations in Section 4.3.2 are quite clear.
The qudit dimension does not only impact the computation time,
but also the accuracy of the model. It proved to be better to choose
a lower dimension rather than a higher one.

Multi Class Data Set When classifying a multi class data set the
results were similar to the one observed in the binary case. The
performance of the model was significantly better when the qudit
dimension was equal to the number of classes in a data set.

For the optimal performance the relation m = d needs to be cho-
sen, where d is the qudit dimension and m the number of classes
in a data set.

Qudit Dimensions and the Loss Function The reason for the
performance issues of the higher dimensional qudit is the loss func-
tion. The rate at which the fidelity of a given qudit state approaches
0 is dependent on the qudit dimension.

10 — Fidelity of [0) Lo —— Fidelity of [0)
— Fidelity of [2) —— Fidelity of 100}
08

Fidelity |(n|y(6))?
Fidelity |(n|y(6))]*

00

00 05 10 s 20 25 30 0.0 05 10

15 2.0 25 30
X-rotation 8 X-rotation &

(a) Fidelity of |0) and |2) for d = 3. (b) Fidelity of |0) and |100) for d = 101.

Since the fidelity vanishes much quicker for higher dimensions
the loss function does not reach values as small as for lower qudit
dimensions. Additionally, the optimizer only sees a plateau (Barren
Plateau) at the region where both fidelities are 0. Thus the gradient
is zero over a vast region of the Hilbert space. A similar problem
with high dimensional Hilbert spaces and learning is discussed in
[31]. In [19] a weighted loss function is presented, where not only
the fidelity of the correct label state is maximized, but also the
fidelity of the wrong states is minimized.

Another approach to overcome the plateaus of the loss function
for high dimensional qudits could be, to label more than one qudit
state with a single class. This would lead to a coarse grained loss

5 Conclusion and Perspectives | 29

function that could have Gaussian shapes over the desired qudit
states.

5.1.2 How many layers are necessary to learn
simple/more complex patterns?

Binary Linear Data Set The preliminary simulations in Section
4.3.1 showed that one layer is already sufficient to classify the bi-
nary linear data set. Even though the model was trained 20 times
with each layer, no variance in the accuracies was recorded. This
is due to the fact that the data set is so simple that the optimizer
converges to the global minimum each time.

Binary Non-Linear Data Set Since the non-linear data set is more
challenging for the classifier three layers are needed to classify
at least 85% correctly. To correctly classify more than 90% more
than five layers were needed. When comparing these results to
the data in [19] (Table 1) one can see that this classifier performs
quite similar to the qubit classifier?. To further improve the classi-
fier a weighted loss function is described in [19]. The limits of the
chosen loss function is discussed below (Section 5.2).

Multi Class Linear Data Set The classification for the multi class
linear data shows that at least three layers are needed to achieve an
accuracy above 80%. Adding more layers did not record any better
results regarding the raw performance. There is however a sweet
spot of 4-5 layers concerning the variance.

Multi Class Non-Linear Data Set The results from this data set
show a linear trend when looking at the accuracy over the layer
depth. The more layers the circuit consists of, the more accurately
it can classify the data set. To achieve an accuracy above 85% at
least six layers are needed.

5.1.3 Which circuit structure poses the best results?

Section 4.4.1 and Section 4.4.2 paint a clear picture in this regard.
The differences in performance using the two circuit structure are
not significant.

5.1.4 Does Squeezing improve the performance?

The results from Table 4 and Table 5 show a clear result, squeezing
does significantly improve the classifier. In the case of the linear
data set, squeezing improved the classifier by about 20 percentage
points, whereas in the case of the non-linear multi class data set
of about 10 percentage points. Squeezing removes the bias of the

28: Which is not very surprising
since a qudit with dimension 2 is in
principle just a qubit.

30

5.2 The Loss Function and its Limits

classifier to prefer the classes which are labeled with the poles of
the qudit.

5.2 The Loss Function and its Limits

Ideally, the loss function behaves in such a way, that when the
loss after an epoch was minimized the accuracy improves. This
however is not always the case considering the loss function intro-
duced in Section 3.1.2. It has the undesired feature of not always
producing better predictions when minimizing the loss. This is il-
lustrated by the following individual data from the simulation with
squeezing, three layers and the structure of R, R, R, from Table 5.

— Run3

» Loss: 0.374
» Accuracy: 76.8 %

- Run7

 Loss: 0.307
» Accuracy: 70.0 %

Even though Run 3 has a higher loss the accuracy is larger com-
pared to Run 7.

Lets consider a model which has already optimized its parame-
ters such that half of the data set is barely classified correctly, more
precisely

P (|9) = Py(I19)) > 0 (29)

with P! as the probability of a wrong state and P! of a correct

one out of the first half of the data set. The other half is classified
completely wrong:

P2(|y)) — Pa(l9)) <0 (30)

In some cases the optimizer only “sees” a plateau concerning the
second half of the data set and is not able to optimize the model for
these data points. However, the loss of the first half of the data set
can be minimized even further, such that PL(|1)) < P1(]+)). But
once P, (|1)) < P.(|¢)) the further minimization is not as benefi-
cial as for P, (|¢))) > P.(|1)) for the prediction. This is visualized
in Figure 34a, where the accuracy is plotted over the loss of the
linear multi class classifier with squeezing. Each dot represents an
epoch.

With a better loss function, the scatter plot would show a clear
linear trend. The correlation of loss and accuracy is more linear
(Figure 34b) when looking at the binary or ternary classifier, since
the loss function is not a complex in these cases.

In [19] a weighted loss function that also minimizes the fidelity
of the wrong label states is introduced. This approach would prob-
ably also improve the MNIST classifier a lot. Further research is

5 Conclusion and Perspectives

Accuracy
Accuracy

03 0.4 0.5 0.6 0.7 08 02 03 04 05 06
Loss Loss

(a) Accuracy over Loss for the linear (b) Accuracy over Loss for the non-
multi class classifier. linear multi class classifier.

needed to implement the weighted sum for data re-uploading on
qudits.

5.3 Qubits vs. Qudits

The simulations from Section 4 have shown that lower dimension
preform significantly better. When comparing the performance of
a binary qubit and a binary qudit classifier the results are almost
identical. This is not very surprising since the 2-dimensional qudit
is basically a qubit. The advantages of the qudit become present
when constructing a multi class classifier. It is far easier to experi-
mentally measure a qudit state, compared to maximally orthogonal
states on a qubit. In addition, it is conceptually easier to visualize
and understand the processes taking place when classifying multi-
ple classes.

5.4 Labeling the Data correctly

A question that always arises when dealing with machine learning
algorithms is how to properly format the data. In the case of the
quantum classifier this boils down to the question how to label the
qudit states. The straightforward approach is to label the qudit in
the order the data is structured®. This becomes increasingly more
difficult when dealing with a higher dimensional data set, such as
the MNIST data set. The correct labeling of the classes in this case
needs further investigation since this could improve the classifier.
This could be done using methods such as t-Distributed Stochastic
Neighbor Embedding [32] (t-SNE) or Uniform Manifold Approxi-
mation and Projection for Dimension Reduction [33] (UMAP).

5.5 MNIST Classification

When testing a new (quantum) machine learning model, the first
benchmark test is usually done on the MNIST Handwritten Dig-
its data set. The training in Section 4.5 has shown that the qu-
dit model can indeed reach a reasonable accuracy in the mid 80%
regime. This accuracy can probably reach even higher values when

Figure 34: Visualization of the accu-

racy and loss correlation.

29: As it is done in Figure 19.

Figure 35: Does this labeling com-
pared to Figure 26 improve the clas-

sifier?

31

32

5.6 Outlook

implementing improvements mentioned in this section, such as la-
beling the data according to the distance to one another and im-
proving the loss function. The most surprising finding of the train-
ing is the fact that the way data re-uploading was implemented in
this thesis, it struggles with higher dimensional input vectors. The
accuracy decreased significantly when introducing more informa-
tive input dimensions. This is contrary to what one would expect
and observes when training classical models. To investigate the
reason of the worse performance caused by higher input dimen-
sions further research is needed. The classical approach of using
random forests outperformed the ansatz of using a qudit classifier.
Not only did the classical model outperform the quantum model
regarding accuracy but also in computation time (when simulated
on a classical computer). The next steps in research would be to
run the qudit classifier on a near term NISQ device such as the
“NaLi Machine” from [34]. The advantages of this approach would
be that the Hilbert space of the system can reach 1.000.000 and
a single circuit takes only up to one minute to execute. To make
use of the larger Hilbert space and not decrease the performance,
as simulations in Section 4.4.1 have shown, a better loss function
needs to be implemented.

5.6 Outlook

This thesis has presented the implementation of the quantum ma-
chine learning model data re-uploading on qudits. First the theo-
retical foundation was laid to show that data re-uploading is pos-
sible on qudits and might pose some advantages over the more
conventional approach of using qubits. This hypothesis was tested
by training the qudit classifier on a variety of different data sets,
finishing with a classification of the “MNIST Handwritten Digits
Data Set”.

Using qudits for data re-uploading showed to have an advantage
over qubits in the regime of multi class classifying since the higher
dimensional Hilbert space is advantageous when classifying multi
class data sets, contrary to the approach of using maximal orthog-
onal states.

Finally the classifier was compared to a classical algorithm, ran-
dom forests. The classical approached proved to be superior not
only in the accuracy but also in the training time.

The next steps concerning a realization of the theoretical work
done in this thesis would be to run the classifier on an experiment.
This would be possible on the “NaLi Machine” from [34]. A chal-
lenge when running the model on an experimental setup is to de-
termine the gradient of a given circuit. On classical computers the
gradient can be computed numerically. When the model is run on
an experimental setup only the expectation value of f)z can be mea-

5 Conclusion and Perspectives | 33

sured. To be able to find the a minimum from these measurements
one can use a stochastic gradient descent optimizer [35] or a cross-
entropy optimizer [36]. Both optimizers try to find the direction
of steepest descent from a random sample of data points. Addi-
tionally it is interesting to explore and quantify the data encoding
mechanism of the qudit classifier using an approach described in
[37].

34 | Bibliography

6 Bibliography

[1]

[10]

Paul Benioff. ‘The computer as a physical system: A micro-
scopic quantum mechanical Hamiltonian model of comput-
ers as represented by Turing machines’. In: Journal of Sta-
tistical Physics 22.5 (May 1980), pp. 563-591. por: 10.1007/
BFO1011339. (Visited on 08/11/2021) (cited on page 1).

Richard P. Feynman. ‘Simulating physics with computers’.

In: International Journal of Theoretical Physics 21.6 (June 1982),
pp- 467-488.D01: 10.1007/BF02650179. (Visited on 08/11/2021)
(cited on page 1).

Peter W. Shor. ‘Polynomial-Time Algorithms for Prime Fac-
torization and Discrete Logarithms on a Quantum Computer’.

In: SIAM Journal on Computing 26.5 (Oct. 1997), pp. 1484-

1509. DOI1: 10.1137/S0097539795293172. (Visited on 08/11/2021)
(cited on page 1).

Lov K. Grover. ‘A fast quantum mechanical algorithm for
database search’. In: arXiv:quant-ph/9605043 (Nov. 19, 1996).
(Visited on 08/21/2021) (cited on page 1).

Frank Arute et al. ‘Quantum supremacy using a programmable
superconducting processor’. In: Nature 574.7779 (Oct. 24, 2019),
pp- 505-510. pOI: 10.1038/541586-019-1666- 5. (Visited
on 08/11/2021) (cited on page 1).

Feng Pan and Pan Zhang. ‘Simulating the Sycamore quan-
tum supremacy circuits’. In: arXiv:2103.03074 [physics, physics:quant-
ph] (Mar. 4, 2021). (Visited on 08/11/2021) (cited on page 1).

John Preskill. ‘Quantum Computing in the NISQ era and be-
yond’. In: Quantum 2 (Aug. 6, 2018), p. 79. DOI: 10.22331/q-
2018-08-06-79. (Visited on 07/29/2021) (cited on pages 1,
8).

John Clarke and Frank K. Wilhelm. ‘Superconducting quan-
tum bits’. In: Nature 453.7198 (June 2008), pp. 1031-1042.
DOI: 10.1038/nature07128. (Visited on 08/12/2021) (cited
on page 1).

Rainer Blatt and David Wineland. ‘Entangled states of trapped
atomic ions’. In: Nature 453.7198 (June 2008), pp. 1008-1015.
DOI: 10.1038/nature@7125. (Visited on 08/12/2021) (cited
on page 1).

E. Knill, R. Laflamme, and G. J. Milburn. ‘A scheme for ef-
ficient quantum computation with linear optics’. In: Nature

409.6816 (Jan. 2001), pp. 46—52. DOI: 10 . 1038/ 35051009.
(Visited on 08/12/2021) (cited on page 1).

https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF01011339
https://doi.org/10.1007/BF02650179
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/nature07125
https://doi.org/10.1038/35051009

[13]

[14]

[15]

Valentin Kasper et al. ‘Universal quantum computation and
quantum error correction with ultracold atomic mixtures’.
In: arXiv:2010.15923 [cond-mat, physics:quant-ph] (Oct. 29,
2020). (Visited on 07/28/2021) (cited on pages 1, 4, 5, 12, 13).

Tariq M. Khan and Antonio Robles-Kelly. ‘Machine Learn-
ing: Quantum vs Classical’. In: IEEE Access 8 (2020), pp. 219275~
219294. por: 10.1109/ACCESS. 2020 .3041719. (Visited on
07/08/2021) (cited on page 2).

Yuchen Wang et al. ‘Qudits and High-Dimensional Quan-
tum Computing’. In: Frontiers in Physics 8 (Nov. 10, 2020),
p- 589504. por: 10. 3389/ fphy . 2020 .589504. (Visited on
07/28/2021) (cited on page 4).

Hsuan-Hao Lu et al. ‘Quantum Phase Estimation with Time-
Frequency Qudits in a Single Photon’. In: Advanced Quan-
tum Technologies 3.2 (Feb. 2020), p. 1900074. por: 10.1002/
qute.201900074. (Visited on 08/21/2021) (cited on page 4).

A. B. Klimov et al. ‘Qutrit quantum computer with trapped
ions’. In: Physical Review A 67.6 (June 26, 2003), p. 062313.
DOIL: 10.1103/PhysRevA.67.062313. (Visited on 08/21/2021)
(cited on page 4).

H. Strobel et al. ‘Fisher information and entanglement of
non-Gaussian spin states’. In: Science 345.6195 (July 25, 2014),
pp- 424-427. por: 10.1126/science.1250147. (Visited on
07/29/2021) (cited on pages 5, 6).

Michael A. Nielsen and Isaac L. Chuang. Quantum computa-
tion and quantum information. Cambridge ; New York: Cam-
bridge University Press, 2000. 676 pp. (cited on page 5).

Ko6di Husimi. Some Formal Properties of the Density Matrix.
1940. URL: https://doi.org/10.11429/ppmsj1919.22.
4_264 (visited on 07/28/2021) (cited on page 5).

Adrian Pérez-Salinas et al. ‘Data re-uploading for a univer-
sal quantum classifier’. In: Quantum 4 (Feb. 6, 2020), p. 226.
DOL: 10.22331/(- 2020-02-06- 226. (Visited on 06/06/2021)
(cited on pages 8, 12-15, 17, 27-30).

M. Cerezo et al. ‘Variational Quantum Algorithms’. In: arXiv:2012.09265
[quant-ph, stat] (Dec. 16, 2020). (Visited on 08/25/2021) (cited
on page 8).

Diederik P. Kingma and Jimmy Ba. ‘Adam: A Method for
Stochastic Optimization’. In: arXiv:1412.6980 [cs] (Jan. 29, 2017).
(Visited on 07/08/2021) (cited on page 10).

Stephen M. Barnett and Sarah Croke. ‘Quantum state dis-
crimination’. In: arXiv:0810.1970 [quant-ph] (Oct. 10, 2008).
(Visited on 08/13/2021) (cited on page 12).

6 Bibliography

35

https://doi.org/10.1109/ACCESS.2020.3041719
https://doi.org/10.3389/fphy.2020.589504
https://doi.org/10.1002/qute.201900074
https://doi.org/10.1002/qute.201900074
https://doi.org/10.1103/PhysRevA.67.062313
https://doi.org/10.1126/science.1250147
https://doi.org/10.11429/ppmsj1919.22.4_264
https://doi.org/10.11429/ppmsj1919.22.4_264
https://doi.org/10.22331/q-2020-02-06-226

36 | Bibliography

[23] Corinna Cortes Yann LeCun. The MNIST Database of Hand-
written Digits. 1998. URL: http://yann.lecun.com/exdb/
mnist/ (cited on page 14).

[24] Ahmed Shahnawaz. Data-reuploading classifier. Quantum Ma-
chine Learning. Jan. 19, 2021. urL: https://pennylane .
ai/gml/demos/tutorial_data_reuploading_classifier.
html (cited on page 14).

[25] F.Pedregosa etal. ‘Scikit-learn: Machine Learning in Python’.
In: Journal of Machine Learning Research 12 (2011), pp. 2825-
2830 (cited on page 14).

[26] Ian T. Jolliffe and Jorge Cadima. ‘Principal component anal-
ysis: a review and recent developments’. In: Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 374.2065 (Apr. 13, 2016), p. 20150202.
DOI: 10 .1098/rsta . 2015 . 0202. (Visited on 08/02/2021)
(cited on pages 14, 23).

[27] James Bradbury et al. JAX: composable transformations of
Python+NumPy. Version 0.2.5. 2018 (cited on page 14).

[28] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The
elements of statistical learning: data mining, inference, and
prediction: with 200 full-color illustrations. Springer series in
statistics. New York: Springer, 2001. 533 pp. (cited on page 25).

[29] Tin Kam Ho. Random decision forests’. In: Proceedings of
3rd International Conference on Document Analysis and Recog-
nition. 3rd International Conference on Document Analysis
and Recognition. Vol. 1. Montreal, Que., Canada: IEEE Com-
put. Soc. Press, 1995, pp. 278-282. por: 10 . 1109 / ICDAR .
1995.598994. (Visited on 08/12/2021) (cited on page 25).

[30] Leo Breiman. ‘Random Forests’. In: Machine Learning 45.1
(2001), pp- 5-32. DOI: 10.1023/A:1010933404324. (Visited
on 08/22/2021) (cited on page 25).

[31] Jarrod R. McClean et al. ‘Barren plateaus in quantum neural
network training landscapes’. In: Nature Communications 9.1
(Dec. 2018), p. 4812. DOI: 10.1038/541467-018-07090 - 4.
(Visited on 08/20/2021) (cited on page 28).

[32] Tejas Khot. “Visualizing high-dimensional data’. In: XRDS:
Crossroads, The ACM Magazine for Students 23.2 (Dec. 15,
2016), pp. 66—67.D0OI1: 10.1145/3021604. (Visited on 08/24/2021)
(cited on page 31).

[33] Leland MclInnes, John Healy, and James Melville. ‘UMAP:
Uniform Manifold Approximation and Projection for Dimen-

sion Reduction’. In: arXiv:1802.03426 [cs, stat] (Sept. 17, 2020).
(Visited on 08/24/2021) (cited on page 31).

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://pennylane.ai/qml/demos/tutorial_data_reuploading_classifier.html
https://pennylane.ai/qml/demos/tutorial_data_reuploading_classifier.html
https://pennylane.ai/qml/demos/tutorial_data_reuploading_classifier.html
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1145/3021604

6 Bibliography | 37

Alexander Mil et al. ‘A scalable realization of local U(1) gauge
invariance in cold atomic mixtures’. In: Science 367.6482 (Mar. 6,
2020), pp. 1128-1130. por: 10 . 1126 / science . aaz5312.
(Visited on 07/08/2021) (cited on page 32).

David Saad, ed. Online learning in neural networks. Publica-
tions of the Newton Institute. Cambridge, [Eng.] ; New York:
Cambridge University Press, 1998. 398 pp. (cited on page 33).

Pieter-Tjerk de Boer et al. ‘A Tutorial on the Cross-Entropy
Method’. In: Annals of Operations Research 134.1 (Feb. 2005),
pp- 19-67. pOI: 10.1007/510479-005-5724- 7. (Visited on
08/25/2021) (cited on page 33).

Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. “The
effect of data encoding on the expressive power of varia-
tional quantum machine learning models’. In: Physical Re-
view A 103.3 (Mar. 24, 2021), p. 032430. DO1: 10.1103/PhysReVA.
103.032430. (Visited on 08/25/2021) (cited on page 33).

https://doi.org/10.1126/science.aaz5312
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.103.032430

38

Acknowledgments

7 Acknowledgments

Many people supported me during my work on this bachelor thesis.
To all the people who contributed directly or indirectly, thank you!
Especially I would like to mention

Fred Jendrzejewski for giving me the opportunity to work
on this thesis and for supporting me during the entire time
I spent in the group.

Martin Gérttner for taking the time and being the 2°¢ correc-
tor of my thesis.

Yannick Deller for always answering the many questions I
had (and still have), for giving me many new ideas every
day (which I unfortunately was not able to test all) and for
proofreading my thesis.

The Nali’s SoPa’s and NaKa’s for the good food, the en-
joyable lunches and dinners and for the fun working atmo-
sphere.

Sebastian Schmitt for the valuable discussions about machine
learning, optimizers and for proofreading my thesis.

My family. Mama, Papa und Marvin vielen Dank fiir Eure
Unterstiitzung tiber die letzten drei Jahre. Ohne Eure Unter-
stiitzung hatte ich es nicht dahin geschafft wo ich jetzt bin.

Erklirung

Ich versichere, dass ich diese Arbeit selbststandig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.
Heidelberg, den 30. August 2021

s

	Bachelor Thesis on Data Re-Uploading on Qudits
	Introduction
	Theory
	Data Re-Uploading
	Simulations
	Conclusion and Perspectives
	Bibliography
	Acknowledgments

