
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics
submitted by

Milena Czierlinski

born in Bad Segeberg (Germany)

2020

PyNN for BrainScaleS-2

This Bachelor Thesis has been carried out by
Milena Czierlinski

at the
Kirchhoff Institute for Physics in Heidelberg

under the supervision of
Dr. Johannes Schemmel

Abstract

BrainScaleS-2 is an accelerated analogue neuromorphic system developed within the
efforts of the European Human Brain Project at the Kirchhoff Institute for physics
in Heidelberg. Targeted at emulating spiking neural networks as they can be found
in the body’s nervous system, its current single chip version HICANN-X comprises
512 analogue neuron circuits. This technology offers the possibility to explore a way
of information processing beyond the traditional von-Neumann architecture. Aspir-
ing to grant a wide range of experimenters from different fields of research access
to this neuromorphic substrate, the domain-specific programming language PyNN
provides a useful tool to communicate with the chip. It is designed to model spiking
neural networks and is employed by a variety of such simulators, as well as by other
hardware backends. Offering a user-friendly and uniform interface, experimenters
without specific hardware knowledge are encouraged to utilise the BrainScaleS-2
substrate and an easy comparison with results obtained by software simulations is
possible. In this thesis the implementation of PyNN for HICANN-X has been carried
out and its applicability has been proven by realising a soft winner-take-all network.

Zusammenfassung

BrainScaleS-2 ist ein beschleunigtes analoges neuromorphes System, das im Rah-
men des europäischen Human Brain Projects am Kirchhoff Institut für Physik in
Heidelberg entwickelt wurde. Mit dem Ziel, feuernde neuronale Netzwerke nachzu-
bilden, wie sie im Nervensystem des Körpers gefunden werden können, beinhal-
tet die aktuelle Einzelchip Version HICANN-X 512 analoge Neuronenschaltkreise.
Diese Technologie bietet die Möglichkeit eine Art der Informationsverarbeitung zu
erforschen, welche über die traditionelle von-Neumann Architektur hinaus geht.
In dem Bestreben, einer breiten Menge von Experimentatoren aus verschiedenen
Fachgebieten den Zugang zu diesem neuromorphen Substrat zu ermöglichen, bietet
die bereichsspezifische Programmiersprache PyNN ein nützliches Mittel, um mit dem
Chip zu kommunizieren. Sie ist zum Modellieren neuronaler Netzwerke konzipiert
und wird von einer Vielzahl solcher Simulatoren, so wie anderen Hardware Backends
eingesetzt. Das nutzerfreundliche und einheitliche Interface macht es Experimenta-
toren leicht, auch ohne spezifische Hardware Kenntnisse die BrainScaleS-2 Plattform
zu verwenden und ihre Ergebnisse mit denen aus Software Simulationen zu ver-
gleichen. In dieser Arbeit wurde die Implementierung von PyNN für HICANN-X ab-
solviert und dessen Anwendbarkeit durch die Realisierung eines soft winner-take-all
Netzwerkes gezeigt.

Contents

1. Introduction 1
1.1. Biological Background . 2
1.2. Modelling Neural Networks . 3
1.3. LIF Neuron Model . 4
1.4. HICANN-X . 5

2. Methods 7
2.1. PyNN . 7
2.2. HICANN-X Observables . 9
2.3. Event Routing on HICANN-X . 10

2.3.1. Crossbar . 10
2.3.2. PADI-buses, Synapse Drivers 12
2.3.3. Synapse Matrices . 12

3. Results 14
3.1. Placement . 14
3.2. Corner Cases . 17
3.3. PyNN for Hardware-Experts . 18

3.3.1. Cell Types . 18
3.3.2. Synapse Types . 19

3.4. Soft Winner-Take-All Network . 19
3.4.1. Network Topology . 19
3.4.2. Hardware Emulation . 21

4. Discussion 30

5. Outlook 32
5.1. Performance Optimisation and Routing Extension 32
5.2. PyNN-based Calibration and Characterisation 32
5.3. PyNN for Non-Hardware-Experts . 33
5.4. Plasticity . 34

Contents

A. Appendix i
A.1. Calibration Targets . i
A.2. Neuron Parameters . i
A.3. sWTA Program . ii
A.4. Software State . iv

B. Bibliography v

1. Introduction

Neuromorphic computing describes an approach for processing information beyond
traditional von-Neumann computing principles. It is inspired by the human brain,
where billions of nerve cells, also called neurons, are highly interconnected via
synapses. This kind of behaviour can be imitated with mathematical models de-
scribing the dynamics of each single nerve cell which is utilised e.g. by the neural
network simulator NEST. However, trying to scale up the number of neurons and
synapses to the magnitude found in biology quickly becomes very energy and time
consuming in simulation (Jordan et al. [2018], Cremonesi and Schürmann [2020]).
So another strategy is to emulate the biological dynamics in analogue circuits di-
rectly. Scaling down the electronic components, neuromorphic hardware not only is
extremely energy efficient, but also operates on time scales which can be reduced
by orders of magnitude compared to biology (Schmitt et al. [2017]). Such hardware
has been developed in the Electronic Vision(s) Group at the Kirchhoff Institute
for Physics in Heidelberg within the efforts of the European Human Brain Project.
Currently, the accelerated analogue neuromorphic system BrainScaleS-2 exists in its
single chip form which are the HICANN-X Application Specific Integrated Circuits
(ASICs). In order to allow a wide range of users from different fields to perform
their experiments on this substrate, an easy to use interface not requiring precise
hardware knowledge is desirable. The domain-specific language PyNN (Davison
et al. [2009]) provides such an interface. Being based on the programming language
Python which provides a quantity of libraries that allow handling vast amounts of
data, PyNN is embedded in an environment designed for easy data analysis (Muller
et al. [2015]). Furthermore, it is implemented by multiple backends, allowing the
transfer and comparison of experiments between different neural network simulators
and neuromorphic hardware. In this thesis the implementation of PyNN for the
current single chip version of BrainScaleS-2 has been carried out and successfully
used to realise a soft winner-take-all network.

1

1. Introduction

1.1. Biological Background

The human brain consists of∼ 1011 neurons which are connected by∼ 1015 synapses.
Given its extreme low energy consumption of only 20 W considering its incredible
processing capabilities, the brain outperforms every man-made computing device.
This is achieved by a fundamental different way of information transfer (Petrovici
[2016], Gerstner et al. [2014], Grübl and Baumbach [2017]).

Figure 1.1.: Drawing of a single neuron after Ramón y Cajal. The inset shows a
schematic of an action potential. Figure taken from Gerstner et al.
[2014].

In the human brain information are encoded by changes in the neuron’s membrane
potential, representing the voltage difference between the inside of the cell and its
surrounding tissue. There are different neuron types, showing behaviour that varies
in its complexity, so in the following a simple typical neuron is characterised. In
the resting state the membrane potential is found to be Eleak ≈ −70 mV which is
also called the leakage potential, where the sign hints a more negatively charged cell
inside. A neuron can receive synaptic input from other neurons via its dendrites.
One distinguishes between excitatory input, yielding a rise in the membrane poten-
tial, and inhibitory input which causes the opposite. The resulting voltage change
is called postsynaptic potential (PSP) and can be described using a superposition of
exponential functions. At the soma all synaptic input is integrated. If they exceed
a threshold of Vth ≈ −50 mV, the generation of an action potential will be trig-
gered. Voltage-gated ion channels open stochastically, leading to a steep rise of the
membrane potential up to V ≈ +30 mV. This is followed by a hyperpolarisation,
where for a refractory period the membrane voltage is even more negative than in

2

1.2. Modelling Neural Networks

the resting state and does not respond to further stimulation. Afterwards, it charges
back to the leakage potential. This process is stereotypical, meaning the shape of
the action potential is independent of what happened in the sub-threshold regime.
It takes place on a time scale of a few ms and due to its sharp edge, it is also called
a spike. The action potential then travels along the axon to the axon terminals,
where it is connected via synapses to ten thousands of other neurons. Like this, a
very dense and highly parallel network of execution units is created.

A synapse connects a presynaptic to a postsynaptic neuron via its small synaptic
cleft between them. At the arrival of a spike the high membrane potential triggers
the release of neurotransmitter molecules in the presynaptic cell which then diffuse
across the synaptic cleft. At the postsynaptic cell they can dock on to receptors,
causing channel opening and ionic currents to create the PSP. The amplitude of
the postsynaptic potential is not static, but underlies plasticity. This describes the
adjustment of synaptic strength and can be divided into short-term and long-term
plasticity. While the former (STP (Tsodyks and Wu [2013])) caused by the finite
supply of neurotransmitters takes place on a time scale of up to seconds, the latter
(LTP (Sjöström and Gerstner [2010])) may affect neural parameters for longer than
hours. The resulting network of synapses with different strengths is the way our
knowledge and abilities are stored and its high dynamics enables us to learn.

1.2. Modelling Neural Networks

The neuron’s behaviour as described above can be approximated by the
Hodgkin–Huxley model (Gerstner et al. [2014]). It is composed of a set of coupled
nonlinear differential equations, characterising the opening probabilities of different
ion-channels and the resulting membrane potential. Another approach to derive
the neuron’s dynamic is examining the electronic current along neural fibers. This
allows to capture the influence of various participating ionic currents in multiple
compartments, enabling to model the spatial structure of a neuron or differently
immediate input forwarding. Modelling passive neurites by the means of parallel
circuits containing resistors and capacitors leads to a second-order partial differ-
ential equation describing the membrane potential. This so-called cable equation
(Niebur [2008]) is used e.g. by the neural network simulator NEURON (Hines and
Carnevale [2006]) to calculate the dynamics of every single neuron. While these de-
tailed descriptions represent the biological behaviour very accurately, scaling up the
considered number of neurons quickly becomes challenging regarding computational

3

1. Introduction

power and time (Jordan et al. [2018], Cremonesi and Schürmann [2020]). Hence,
functional models focussing on the concepts found in biology are widely used. Jus-
tified by the stereotypical shape of the action potential, a reproduction of the exact
membrane trace often is omitted and simply replaced by only the information of an
elicited spike. Also, any influence of spatial structure might be neglected, resulting
in a point-neuron model. Examples for such functional models are the adaptive
exponential integrate-and-fire model (AdEx) (Gerstner and Brette [2009]) and the
simpler leaky integrate-and-fire model (LIF) (Petrovici [2016]) which the former is
based upon.

1.3. LIF Neuron Model

The leaky integrate-and-fire neuron model is very popular in neuroscience, due to
its simplicity, while at the same time preserving the spiking mode. In the analogue
implementation of this mathematical model, the sub-threshold integration is em-
ulated by an input circuit that is electronically separated from the purely digital
output spiketrain. Figure 1.2 shows an equivalent circuit diagram of a LIF neuron
with current-based synaptic input.

Figure 1.2.: Equivalent circuit diagram of a LIF neuron.

The membrane is represented by a capacitor Cm which is charged by different
sources. On the one hand, a voltage source Eleak connected in series with a con-
ductance gleak causes the membrane potential u, the voltage on the capacitor, to
maintain at the leakage potential in case of no stimulation. On the other hand,
if the neuron receives excitatory or inhibitory synaptic input, current pulses will
charge or discharge the capacitor, respectively, assuming current-based synapses.
Thus, the sub-threshold dynamic can be described via

4

1.4. HICANN-X

Cm
du(t)

dt
= gleak (Eleak − u(t)) + Iexc(t) + Iinh(t) . (1.1)

Additionally, the membrane potential is connected to a comparator, checking if
it exceeds the threshold voltage Vth. In that case, the digital information of an
elicited spike is generated, while the membrane voltage is pulled towards the reset
potential Vreset simultaneously. It is held there during the refractory period, before
it is allowed to charge again.

1.4. HICANN-X

(a)
(b)

Figure 1.3.: HICANN-X ASIC. (a) Photograph of the chip. Taken from Müller et al.
[2020]. (b) Schematic of the chip. Synapse drivers (black) power the
input rows of the synapse matrices (light grey), passing on stimulation
to the neuron compartments (dark grey).

The HICANN-X ASIC is the current version of the BrainScaleS-2 (BSS-2) system,
designed to emulate spiking neural networks (Schemmel et al. [2020]). It comprises
512 AdEx neuron circuits, however, only their functionality as LIF neurons is rele-
vant to understand the application performed in this thesis. The neuron compart-
ments are arranged in two rows at the center of the chip, getting their input from
the synapse matrix of the respective hemisphere placed vertically towards them.
More precisely, each neuron receives input from its according column of synapses.
Both synapse matrices are divided into two equal parts, allowing the positioning of
synapse drivers between them on the analogue neural network core (anncore). Each
synapse driver powers two input rows and transmits signals from other neurons,
on-chip background generators or external sources to all connected neurons. The lo-

5

1. Introduction

cation of connections and their strength is stored within the synapse matrices. Like
this, the chip has four equal blocks, consisting of 128 neurons with each receiving
input from 256 synapses. In principle, the chip allows to combine multiple neuron
circuits, enabling a logical neuron to obtain input from even more synapses. Also, fi-
nite resistances between neuron circuits can be utilised to realise multi-compartment
neurons. However, the implementation of these functionalities lies beyond the scope
of this thesis, where only single-circuit neurons are considered.

6

2. Methods

2.1. PyNN

Besides neuromorphic hardware, there are multiple simulators operating inspired by
the nervous system each with their own focus points. As a consequence, the balance
between efficiency, flexibility, scalability and user-friendliness differs, offering exper-
imenters to choose the backend best fit for their problem. However, it is necessary
to compare results between hardware and simulation, in order to be convinced of
correct execution. Moreover, cross-checking between different simulators is desir-
able, as well, to rule out bugs and hidden assumptions, thereby reaching a greater
level of confidence in the correctness of one’s results. To do so, the domain-specific
language PyNN (Davison et al. [2009]) was introduced, providing a common inter-
face for modelling spiking neural networks independently of the backend at hand.
It is based on the programming language Python and implements a simple usage,
allowing experimenters from a variety of fields to utilise it. Also, specialised pack-
ages for the representation and analysis of neurophysiology data are incorporated,
like neo (Garcia et al. [2014]) and elephant (Denker et al. [2018]).

PyNN offers both a low-level and a high-level application programming interface
(API). While the former grants access to details of individual neurons and synapses,
the latter allows one to concentrate on the overall network structure. Neurons are
grouped into populations of fixed size with a shared cell type, storing neural param-
eters and allowing individual adjustments. These populations are interconnected via
projections, implementing different connectivity algorithms and establishing the in-
terface for synapse parameters. Like this, the network is represented by a graph data
structure with populations being nodes and projections the edges between them.

During a set runtime, users have the possibility to observe certain neural parame-
ters. For that, PyNN provides recorders which are assigned to populations and have
to be specified before the run call. These recorders take as arguments observables
to be tracked during the run and their data can be read out for analysis after.

7

2. Methods

1 pynn.setup ()
2

3 cell_params = { "tau_m" : 20.0, # (ms)
4 "tau_syn_E" : 2.0, # (ms)
5 "tau_syn_I" : 4.0, # (ms)
6 "e_rev_E" : 0.0, # (mV)
7 "e_rev_I" : -70.0, # (mV)
8 "tau_refrac" : 2.0, # (ms)
9 "v_rest" : -30.0, # (mV)

10 "v_reset" : -75.0, # (mV)
11 "v_thresh" : -50.0, # (mV)
12 "cm" : 0.5} # (nF)
13

14 pop1 = pynn.Population (3, pynn.IF_cond_alpha (** cell_params))
15 cell_params.update ({"v_rest": -70})
16 pop2 = pynn.Population (2, pynn.IF_cond_alpha (** cell_params))
17

18 pop1.record("spikes")
19 pop2.record (["spikes", "v"])
20

21 pynn.Projection(pop1 , pop2 , pynn.AllToAllConnector ())
22

23 pynn.run(1) # ms
24

25 pynn.end()

Figure 2.1.: Example of a PyNN program with corresponding graph.

8

2.2. HICANN-X Observables

2.2. HICANN-X Observables

The set of observables that may be monitored by a recorder is defined by the cell
type. Since each backend can provide a selected mix of standard neuron models
and individual simulator-dependent cell types, the variety of observables is large.
However, there are two properties every neuron model offers to monitor. Portraying
its most relevant parameters, the spike times and the membrane potential of every
neuron can be recorded. Certain cell types provide the monitoring of additional
properties e.g. synaptic conductances in case of a model based on such. Working on
HICANN-X, the available readout sources limit the range of possible observables,
so in the following the hardware capabilities are pointed out (Weis [2020b]).

Of course, spike packages containing the time and neuron id of a triggered event
are provided by the substrate and made use of to record the neurons’ activities. If
the precise timing of action potentials is not relevant and one expects a vast number
of events caused by a high firing rate or a large portion of utilised hardware neurons,
the chip additionally offers spike counters for each neuron. These count the number
of occurred action potentials up reliably independent of the total data traffic. If
their maximum value of 256 spikes is reached, an overflow bit will be set to inform
the experimenter.

To record the membrane potential the membrane voltage analogue-to-digital con-
verter (MADC) is used. Its scanning frequency of ∼ 30 MHz allows precise record-
ings, but it is limited to one single neuron. Apart from the membrane potential, the
MADC can also be utilised to trace excitatory or inhibitory synaptic input. This is
useful for the verification of expected stimulation and to determine the synaptic time
constant. Furthermore, the MADC can be configured to keep track of the adaption
variable in the AdEx neuron model.

Since recording only a single neuron is a severe limitation, the HICANN-X pro-
vides another analogue-to-digital converter, the correlation ADC (CADC). Its main
purpose is to allow the implementation of on-chip plasticity algorithms. In principle,
the CADC is capable of scanning the same parameters as the MADC just for all
hardware neurons in parallel. In exchange the sampling frequency is significantly
lower with only ∼ 500 kHz. An additional feature, giving the CADC its name, are
correlation measurements. Each synapse possesses two sensors, one to measure the
time between spikes from the presynaptic to the postsynaptic neuron, causal spike
pairs, and the other vice versa, acausal spike pairs. On basis of these measurements

9

2. Methods

plasticity rules, e.g. of spike-timing-dependent plasticity (STDP), can be applied.

Lastly, the synapse drivers offer the possibility to keep track of the STP voltage
for a specific label via the MADC. Being directly related to the amplitude of post-
synaptic potentials, it displays the effects of depression and facilitation. This can
be utilised for synapse models implementing this kind of behaviour.

2.3. Event Routing on HICANN-X

Neurons can receive input from other neurons, on-chip Poisson spiketrain generators
or external sources. The central logic for distributing events on chip is the crossbar.
It handles the routing of on-wafer (layer-1/L1) events which are currently restricted
to a single chip, as well as external (layer-2/L2) communication, e.g. with the FPGA
and host computer. The crossbar specifies the assignment of neuron output channels,
L2 events and background generators to Parallel Debug Input buses (PADI-buses)
that transfer data to the synapse drivers, or back to the host computer (Spilger
[2020]).

2.3.1. Crossbar

Figure 2.2 depicts a schematic of the routing crossbar. Input channels are rep-
resented as horizontal lines, while output channels are plotted vertically. An “x“
marks the location of a node, meaning that the involved output channel may receive
events from the specified input channel. Since the position of nodes is static and
intersections without a node cannot be linked, the connectivity is restricted.

Neuron Connections

Output spikes of neurons can be used to stimulate other on-chip neurons. To forward
these events there are four neuron output channels on both sides of the anncore, each
projecting on an own crossbar input channel. A neuron output channel comprises
the events of 32 neuron columns, yielding 64 neurons, due to the two rows. Figure
2.3 shows their mapping. The corresponding crossbar input channels are displayed
in the upper left corner of figure 2.2. Nodes are placed diagonally, thus each neuron
can only pass events to certain synapse drivers. In principle an all to all coverage
per hemisphere is possible like this, however, a vast number of connections from the
same neuron output channel may result in an exceedance of available synapses.

10

2.3. Event Routing on HICANN-X

Figure 2.2.: Schematic of the event routing crossbar. Horizontal input channels are
connected to vertical output channels at locations marked with an “x“.
Figure adapted from (Schemmel et al. [2020]).

External Connections

The HICANN-X communicates with the host computer via an FPGA by the means
of external connections. On the one hand, they can be used to stimulate neurons
with external events, while on the other hand, recorded spikes are returned to the ex-
perimenter. To do so, the crossbar implements four input channels for chip-external
events. Since the position of their crossbar nodes does not yield a restriction, exter-
nal connections will exhaust the number of available synapse drivers later. Apart
from that, the L2 input channel can be chosen arbitrarily, providing an additional
degree of freedom.

11

2. Methods

Figure 2.3.: Schematic of mapping of crossbar input channels. Figure inspired by an
idea of Philipp Spilger.

2.3.2. PADI-buses, Synapse Drivers

On chip there are four PADI-buses per hemisphere connected to 32 synapse drivers
each. Fulfilling the purpose of linking synapse driver crossbar output channels to
synapse drivers, there is a one-to-one relation between the former and PADI-buses.
Like this, PADI-events are transmitted to synapse drivers which then power the
input rows of the synapse matrices. The mapping of synapse drivers to PADI-buses
is alternating and can schematically be viewed in figure 2.4. In order for synapse
drivers to only forward a filtered set of events, their row address compare mask
needs to be defined. For all enabled bits of the 5-bit wide mask the static index
of the synapse driver on its PADI-bus is compared to the corresponding bits of the
incoming spike label and only if they match, the stimulus will be forwarded. Events
transmitted from a synapse driver are passed to both synapse rows connected to it
and reach all their synapses. Each row can be configured to interpret the stimulation
either as excitatory or inhibitory.

2.3.3. Synapse Matrices

For both neuron rows on chip there is an associated 256x256 synapse matrix, man-
aging connection labels and weights for the synapses of all neurons in that row.
Since all synapses in one row receive the same input from their synapse driver, but
not all neurons are specified by the experimenters network to be connected to it,
the synapse label of a matrix entry must match the address label of the incoming
stimulus. For both chip-internal and -external events this address label can be set
individually for every presynaptic neuron. Being 6-bit wide, the synapse label allows
to distinguish between 64 different input sources. In addition to choosing the origin

12

2.3. Event Routing on HICANN-X

Figure 2.4.: Schematic of allocation of synapse drivers to PADI-buses. Note that the
actual synapse row index on hemisphere is swapped for the rows on each
driver which is not displayed here and in the following for simplification.
Figure inspired by an idea of Philipp Spilger.

of a stimulus, the connection strength for synapses can be configured individually,
too. Again, the weight value is 6-bit wide, offering the division in 64 strength steps.
Updating the weights, e.g. according to plasticity rules, is the underlying concept
of training neural networks.

13

3. Results

3.1. Placement

Using PyNN as an interface to communicate with the neuromorphic BrainScaleS-2
system does not require precise hardware knowledge. In particular, this means that
the experimenter does not need to know what the underlying technical implementa-
tion is or how to obey the event routing rules on HICANN-X. Offering an abstract
toplevel, all of the placement on chip is handled automatically by the PyNN imple-
mentation hidden from the user. The algorithms utilised for this are explained in
detail in this section.

Firstly, all neurons of the created populations are configured on chip. The de-
fault for this is a linear placement, meaning their network neuron id matches the
hardware neuron id. However, there is also the possibility to determine specific
hardware neurons to be utilised. The pynn.setup() call takes a permutation list
as an optional argument, stating the hardware neuron ids to be used. Like this,
the experimenter doesn’t need to take into consideration which hardware neurons to
use, while at the same time the employed neurons can be chosen arbitrarily if desired.

Secondly, chip-internal connections are configured. Since neurons project stati-
cally to crossbar input channels and, therefore, can only power a subset of synapse
drivers, on-chip connections are established before external connections, where this
constraint does not apply. When defining a projection, the user must specify a
connectivity algorithm. The upstream PyNN implementation then automatically
creates connections between pairs of neurons of the stated populations accordingly
which the backend implementations then realise. For BSS-2 connections are config-
ured in the order of their construction. Every input row is responsible for forwarding
events stemming from one presynaptic neuron. It is memorised which presynaptic
neuron is assigned to the synapse driver row, what the receptor type is, i.e. whether
the input is to be interpreted as excitatory or inhibitory, and which postsynap-
tic neurons are connected, thus, which synapse matrix entries need to be written.

14

3.1. Placement

Applying this bookkeeping, all internal connections are spread over the available
synapse drivers. If there is a synapse driver row already allocated with the same
presynaptic neuron and receptor type and the synapse to the postsynaptic neuron
of the connection is not utilised yet, the given input row will be used for the new
connection, too. Otherwise the next available synapse driver row on the associated
PADI-bus will be utilised. Of course this procedure yields some constraints of which
the most severe are discussed in the next section. Afterwards, the synapse matrices
are configured. For every connection the label and weight must be set in the corre-
sponding matrix entry. In order for events to be transmitted, the synapse filter label
needs to match the address label of the presynaptic on-chip neuron. The weight is
set to the value specified by the synapse type of the projection. Like indicated in
section 2.3.3, the weight is an integer value with a maximum of 63. However, the
experimenter is offered the possibility to declare larger weight values. If this is done,
the input will be distributed over several synapse driver rows. The synaptic weight
values then are sequentially filled up, until their sum corresponds to the strength
specified by the user. Consequently, the number of necessary synapses scales linearly
with the multiple of 63 declared as weight value.

Lastly, chip-external connections are configured. In order to have synapse drivers
forward exclusively either internal or external events, already allocated synapse
drivers are determined and their row address compare mask is updated. To al-
low synapse drivers transferring only on-chip events to do so for all incoming events
irrespective of their exact origin, the lower bits up to the position of the synapse
driver are disabled. Hence, the row address compare mask must be updated for all
synapse drivers in a block of the size of a power of two. Its new value has the upper
bits enabled and the lower bits disabled. This causes the upper bits of the synapse
driver’s position to be compared to those of the incoming spike label. For chip-
internal events the corresponding spike label bits are zero like those of the synapse
driver’s location on its PADI-bus, since they are allocated beginning with the lowest
one. For chip-external events the corresponding bits are set to one, thus they are not
forwarded by those synapse drivers. The row address compare masks of the synapse
drivers transferring chip-external events have all bits enabled, leading to synapse
drivers accepting exactly those events with the compared spike label bits being the
same as the synapse driver’s position. Due to the free configurability of the spike
label of external events, this does not pose any limitations. Thereafter, the distri-
bution of events over synapse driver input rows is handled again. Like for internal
events, the goal is for a presynaptic neuron to have all its outgoing synapses in the

15

3. Results

same synapse driver row, however, now multiple presynaptic sources may share the
same input row. The differentiation is achieved by the synapse labels, since the
address of the incoming external event is free configurable. Only the size of the
label limits the number of presynaptic neurons sharing the same synapse driver row
to 64. Similar to the placement of on-chip events, the already allocated synapses of
each input row are stored and used to decide whether the row will be configured to
implement additional connections or if a new one will be used. This is performed
successively for both receptor types and hemispheres on chip. Finally, the synapse
matrices are updated, including the entries for external events.

1 pop1 = pynn.Population (1, pynn.cells.HXNeuron)
2 pop2 = pynn.Population (2, pynn.cells.HXNeuron)
3 pop3 = pynn.Population (1, pynn.cells.HXNeuron)
4

5 source_int1 = pynn.Population (1, pynn.cells.HXNeuron)
6 source_int2 = pynn.Population (1, pynn.cells.HXNeuron)
7

8 source_ext1 = pynn.Population(
9 2, pynn.cells.SpikeSourceArray ,

10 cellparams ={"spike_times": spiketimes1 })
11 source_ext2 = pynn.Population(
12 1, pynn.cells.SpikeSourceArray ,
13 cellparams ={"spike_times": spiketimes2 })
14

15 synapse = pynn.standardmodels.synapses.StaticSynapse(weight =63)
16

17 pynn.Projection(source_int1 , pop1 , pynn.AllToAllConnector (),
18 synapse_type=synapse)
19 pynn.Projection(source_int1 , pop1 , pynn.AllToAllConnector (),
20 synapse_type=synapse , receptor_type="inhibitory")
21 pynn.Projection(source_int1 , pop2 , pynn.AllToAllConnector (),
22 synapse_type=synapse)
23

24 pynn.Projection(source_int2 , pop2 , pynn.AllToAllConnector (),
25 synapse_type=synapse , receptor_type="inhibitory")
26 pynn.Projection(source_int2 , pop3 , pynn.AllToAllConnector (),
27 synapse_type=synapse)
28

29 pynn.Projection(source_ext1 , pop1 , pynn.AllToAllConnector (),
30 synapse_type=synapse)
31 pynn.Projection(source_ext2 , pop3 , pynn.AllToAllConnector (),
32 synapse_type=synapse)
33 pynn.Projection(source_ext2 , pop2 , pynn.AllToAllConnector (),
34 synapse_type=synapse , receptor_type="inhibitory")

16

3.2. Corner Cases

Figure 3.1.: Example of connection placement on chip. The shapes denote vari-
ous sources, colours hint different presynaptic neurons within the same
stimulating population. Thus, synapse labels can be distinguished.
Triangle: source_int1, circle: source_int2, square: source_ext1,
diamond: source_ext2.

3.2. Corner Cases

After explaining the placement algorithm in detail, some corner cases of large net-
works shall be examined here. Firstly, an all to all connection between all neurons
on chip is not possible, since there are only 256 input rows for each of the 512 neu-
rons. Nevertheless, every neuron may receive synaptic input from 256 freely chosen
presynaptic neurons. Moreover, it is possible to have an all to all connection for each
hemisphere, holding only half of the total hardware neurons. However, this assumes
every presynaptic neuron to have only either excitatory or inhibitory connections.
Requiring separate input rows, if the experimenter wants every presynaptic neuron
to have both excitatory and inhibitory connections, twice as much synapse driver
input rows will be needed. Thus, each neuron per hemisphere will only be able to
receive synaptic input from 128 different sources. Wanting to use chip-internal, as
well as chip-external connections, the smallest number of input rows for external
connections per hemisphere is 32, allowing internal input from 224 rows. Offering
64 different external input neurons per row, this case yields up to 2048 sources which
may be distributed over the synapses. Having said this, of course each neuron can
only receive input from 16 to 32 different sources, depending on the specified re-
ceptor types. However, the number of external/internal sources per PADI-bus may

17

3. Results

be varied between 0/64, 32/32, 48/16, 56/8 and 64/0 for all four PADI-buses per
hemisphere, allowing a flexible distribution of input sources between chip-internal
and -external events.

All of these considerations only apply for weight values not exceeding the maxi-
mum synaptic strength of one synapse matrix entry and unique connections between
the same pre- and postsynaptic neuron. If these conditions are not met, the number
of available input sources per neuron will decrease accordingly.

3.3. PyNN for Hardware-Experts

The upstream PyNN code provides a broad library of commonly used neuron models,
alongside different synapse types and synaptic plasticity rules. While their imple-
mented subset varies already slightly between simulators, restrictions increase even
further going to hardware. Due to the analogue implementation of neuron circuits,
the cell model cannot be chosen arbitrarily. Similar constraints apply to synapses.
Recording the membrane trace of a neuron, the MADC’s maximum sample number
poses an additional limitation. In combination with the average time between a
pair of measurement points, the runtime may not exceed a value of approximately
2.23 ms, if a membrane voltage is recorded. Otherwise, a higher maximum of MADC
samples would be needed, in order to maintain its precise resolution over a longer
timescale.

3.3.1. Cell Types

So far, two cell models are implemented. The first holds the configurable parameters
of hardware neurons, while the second is utilised to inject external spiketrains.

HXNeuron The HXNeuron is a BrainScaleS-2 specific cell type intended to be
used by hardware experts only. It comprises the analogue and digital parameters of
the neuron circuits in their raw form, meaning there neither is a translation to the
biological domain, nor actual currents and voltages in physical units are stated, but
digital configuration values. Its detailed implementation can be found in Czierlinski
[2020].

SpikeSourceArray The abstract cell type SpikeSourceArray is part of the com-
mon PyNN API and implemented individually by the backends to fulfil their specific
requirements. Its purpose is to stimulate neurons from a population it projects onto
at given spike times which it stores in a list. Otherwise, a population of this cell

18

3.4. Soft Winner-Take-All Network

type doesn’t have any recordables that can be monitored, since it only serves to
inject external input to hardware neurons.

3.3.2. Synapse Types

Synapse types may vary in their synaptic strength and how it is updated according to
different plasticity rules. For the time being, the STP functionality of the synapse
driver circuits is not exposed to the PyNN user. Nonetheless, a hardware-expert
user is in no way obstructed to implement plasticity features in a lower level of
software. The synapse type currently provided by the toplevel is the StaticSynapse
of upstream PyNN, offering an interface with the parameters weight and delay.
While the former takes positive numbers which will be rounded to integer values, if
they aren’t already given as such, the latter is constant zero. Setting a delay can
be used by simulators to emulate spatial distances between neurons, however, this
functionality is not implemented by the analogue BSS-2 backend. So if a user wants
to change the delay parameter, an error will be raised.

3.4. Soft Winner-Take-All Network

To prove the functioning of PyNN on HICANN-X a soft winner-take-all (sWTA)
network is implemented. It is a commonly examined network on neuromorphic
systems, since it is suspected to be an underlying principle of cortical processing
(Maass [2000]). One of its main applications is the classification of inputs. The
presented implementation is inspired by the work of Pfeil et al. [2013] on Spikey, an
older neuromorphic chip developed in the Electronic Vision(s) group.

3.4.1. Network Topology

The sWTA network consists of a ring of 50 excitatory neurons which are all con-
nected to their neighbours. In the course of this, the recurrent connection strength
decreases with the distance between neurons according to a Gaussian distribution
with a standard deviation σrec of five neurons. The weights are calculated up to a
distance of three sigma, yielding 15 neurons, and defined as zero thereafter. Ad-
ditionally, all neurons project onto a pool of 10 inhibitory neurons which in turn
project back to all excitatory neurons of the ring. Inhibitory connections have a
strength of w = 60, while the maximum weight for excitatory connections is only a
quarter of it. The projections use an all to all connector. Due to the interaction by
means of the inhibitory population, an activity stabilisation is achieved if a subset of

19

3. Results

Figure 3.2.: Topology of a soft winner-take-all network. Excitatory neurons (grey
circles) form a ring around the inhibitory pool. Excitatory and in-
hibitory projections are schematized by solid and dotted arrows, respec-
tively. The recurrent connection strength profile is indicated in blue, the
external in red. Figure taken from Pfeil et al. [2013].

neurons takes over almost all activity. The "winning" neurons depend on the input
which is how the classification is realised. Here, the neurons on opposite sides of the
ring are stimulated by five independent external Poisson sources. Their maximum
connection strength is the maximum synaptic weight of one synapse (w = 63) and
it decreases following a Gaussian distribution up to three sigma with standard de-
viation σext = 3 going to more remote neurons in relation to the mean stimulated
neuron. The input frequency on both sides of the ring varies, leading to different
neuron firing rates. While the absolute sum of input frequencies remains constant
at 50 kHz, the frequencies per side are swept from zero to the maximum and vice
versa. The network topology is depicted in figure 3.2 and a shortened version of the
PyNN program is shown in A.3. It is expected that the side of the ring with larger
input takes over the activity, but that its spiking decreases continuously, thus the
name soft WTA, as both sides approach the same input frequency of 25 kHz, until
the other side receives a higher input and becomes the winner.

20

3.4. Soft Winner-Take-All Network

3.4.2. Hardware Emulation

Implementing the soft winner-take-all network on hardware raises some challenges.
On the one hand, the sWTA is intrinsically not arbitrarily stable which is further
enhanced using an analogue substrate. So firstly, chip parameters need to be found
that enable the behaviour of the network, i.e. allowing the stimulation to elicit spikes
of the neurons, while at the same time preventing them from firing continuously.
During the search process, a crucial parameter turned out to be the synapse DAC
bias current: Synapses can be viewed as digital-to-analogue converters, regulating
the amount of current flowing towards the membrane capacitors. This is realised
by the means of binary weighted transistors whose enabling depends on the config-
ured synaptic weight. The synapse parameter syn_i_bias_dac regulates the gate
potential of all these transistors and, thereby, scales the current output. So simply
put, the effect of a single stimulus can be amplified varying this parameter. On
the other hand, even though designed to be identical, neurons on hardware differ.
This is caused by imperfections of the analogue substrate arising in the production
process. However, since these faults are constant over time, this fixed-pattern-noise
can be counteracted by calibration. The way of finding a suitable parameter set is
described in the following. Thereafter, the results executing the soft winner-take-all
network on hardware are studied, as well as the effect of an altered neuron place-
ment on chip. All measured data presented here were recorded on chip 09 (setup
69, HICANN-X v1).

Neuron Calibration

To achieve a homogeneous behaviour the neurons are calibrated making use of the
framework calix (Weis [2020a]). Its neuron calibration takes target values for pa-
rameters with biological counterparts and returns digital values for the technical
parameters controlling them. In search of a parameter set with reasonable response
those target values were varied. The synaptic and membrane time constant were
both chosen to be 10 µs and a refractory period of 2 µs was aimed for. Recording
the membrane potential, a stimulation was visible, but it wasn’t sufficient to elicit
spikes of the neurons. Therefore, the target value of the synaptic input bias current
controlling the amplitude of synaptic stimulation was increased to a digital CapMem
value of 500. Additionally, the membrane capacitance was reduced, resulting in a
stronger excitability. However, this also increased the level of noise, wherefore it
was settled at a digital value of 10. Lastly, the reset, leak and threshold potential
were set, defining the critical value at which a stimulus causes a spike. Here, the
difference between leak and threshold voltage needed to be small enough, in order

21

3. Results

2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23
time

0

100

200

300

400

500

600

700

ca
lib

ra
tio

n
re

su
lts

 [d
ig

ita
l C

ap
M

em
 v

al
ue

]

v_leak
v_reset
v_thres
exc_v_syn
inh_v_syn
leak_i_bias
exc_i_bias_gm
inh_i_bias_gm
exc_i_bias_res
inh_i_bias_res

(a)

2020-09-19 2020-09-20 2020-09-21 2020-09-22 2020-09-23
time

0

100

200

300

400

500

600

700

800

ca
lib

ra
tio

n
re

su
lts

 [d
ig

ita
l C

ap
M

em
 v

al
ue

]

v_leak
v_reset
v_thres
exc_v_syn
inh_v_syn
leak_i_bias
exc_i_bias_gm
inh_i_bias_gm
exc_i_bias_res
inh_i_bias_res

(b)

Figure 3.3.: Results of calix’ neuron calibration over several days for neuron (a) 0
and (b) 42. The errors originate from executing it three times in a row.

for the membrane potential to cross it being stimulated adequately, but at the same
time sufficiently large to avoid coming in a continuously firing regime. The param-
eter set satisfying these requirements best was found using CADC target values of
50 for the leak and reset potential and 80 for the threshold.

Although a reasonable neuron response was observed with the stated target pa-
rameters, it varied executing the same calibration repeatedly. To further investigate
this the calibration results were monitored over a longer course of time. Figure 3.3
displays the outcome for two randomly chosen neurons, where the error bars arise
from executing the calibration three times in a row. The reason for variations in

22

3.4. Soft Winner-Take-All Network

the network response is easily spotted: While most parameters show insignificant
differences between runs, exc_i_bias_gm and inh_i_bias_gm not only vary largely
over time, but also within the scope of minutes. Comparing the target value to
the calibration results, it becomes apparent that the former was chosen too high,
causing noise to avert a reasonable setting of the bias currents for synaptic inputs.
Determining the strength of excitatory and inhibitory input, in spite of having the
same calibration targets, these variations lead to a completely different neuron re-
sponse and, hence, a completely different network behaviour. So in order to increase
the calibration stability, the digital CapMem target value for the synaptic current
needs to be chosen lower, e.g. 200, as this is value within the range of the calibration
algorithm.

Analysis

Applying a suitable set of neuron parameters found with the initially stated cali-
bration targets, the sWTA network is abstractly defined in PyNN. Firstly, the one
neuron populations of the ring are constructed. According to the placement algo-
rithm, they are linearly placed on hardware, i.e. their network neuron id matches
their hardware neuron id. Their cell type is HXNeuron and the calibrated param-
eters are handed over as initial values. Additionally, every neuron gets assigned a
recorder to monitor its spikes. This is followed by the creation of the inhibitory
pool, again of cell model HXNeuron, and the external sources whose cell type is
SpikeSourceArray. The latter hold as a cell parameter a list of Poisson distributed
spike times with settable frequency which is created using a seeded PyNN random
generator. Thereafter, the recurrent and external connection strengths following a
Gaussian distribution are calculated up to three sigma and synapses with accord-
ing weights are defined. They are used in the following construction of projections,
besides the pre- and postsynaptic populations, the receptor type and an all to all
connector as connectivity algorithm. After all recurrent projections are created
as explained in 3.4.1, the external projections are generated with their connection
strength maximum at neuron id 12 and 37. When all of this is done, the emulation
runs for 2 ms on hardware. As a result the number of spikes of each excitatory
neuron is read back.

The experimenter has to wait approximately six seconds for the outcome of one
run. Table 3.1 shows the distribution of time needed for various operations. It be-
comes apparent that the BrainScaleS-2 PyNN implementation takes less than 30 %
of the total runtime, the remaining time is consumed by upstream PyNN. There,

23

3. Results

the majority is spent creating neuron connections in software. The reason for this
is the moderate performance of Python in combination with their vast number: In-
ternal projections yield 1600 neuron connections and external further 180. So of the
combined rounded four seconds, the creation of a single connection only takes ap-
proximately 2.3 ms. The construction of populations, as well as the spike readout,
setup and end call don’t contribute significantly. Concerning the time consumed
by the BSS-2 backend implementation, the configuration of synapses makes up for
approximately a third of it. Other configurations and the preparation of the ex-
periment execution on hardware take rounded 10 %. The bulk is made up by a
lower-level part which cannot be influenced by the PyNN backend implementation
and the actual experiment execution on hardware. The emulation time of 1 ms,
however, does not contribute significantly to this part which is dominated by the
connection establishment, being three orders of magnitude larger. The time distri-
bution is additionally depicted in figure 3.4.

task absolute time relative time

pynn.setup, creation of pynn.Populations 0.12 s 2.0 %
creation of pynn.Projections 4.11 s 67.6 %
pynn.run 1.78 s 29.3 %

creation of lower-level software data structures
for hardware configuration excluding synapses 0.15 s 2.5 %

creation of lower-level software data structures
for hardware configuration of synapses 0.55 s 9.0 %

creation of lower-level software data structures
for experiment execution on hardware 0.03 s 0.5 %

lower-level software and
experiment execution on hardware 1.05 s 17.3 %

spike readout, pynn.end 0.07 s 1.2 %

Table 3.1.: Representative overview of time spent on different operations in the soft
winner-take-all network. The total time amounts to 6.08 seconds, how-
ever, variations of 5-10 % between runs can be observed.

To analyse the network’s behaviour for each half of the ring all spikes are summed
up. The experiment is repeated 25 times for each external stimulus configuration,
respecting statistical variations. The result for sweeping the input frequency of one
side from 0-50 kHz, i.e. for the other side from 50-0 kHz, in steps of 2.5 kHz is shown
in figure 3.5a. The green trace shows the sum of spikes of the lower index half of

24

3.4. Soft Winner-Take-All Network

Figure 3.4.: Representation of time distribution for different operations in the soft
winner-take-all network. Upstream PyNN calls and functions of the
backenend implementation for BSS-2 are displayed in red and blue, re-
spectively. Data listed in table 3.1.

the ring, the orange trace those of the upper index side. They are plotted over the
input frequency of the latter, i.e. while the stimulus of the orange curve matches
the abscissa label, the stimulus for the green one is 50 kHz subtracted by it. One
can see that the qualitative course meets the expectations: For a large difference in
input frequencies the more stimulated side of the ring takes over almost all activity.
As the inputs approach one another the imbalance shrinks, until the spiking rates
of both sides match within the frame of their uncertainties at 25 kHz. Thereupon,
with a larger input on the opposite side than before the second half of the ring be-
comes the winner. In spite of the overall agreement with the theoretical prediction,
slight asymmetries are apparent. On the one hand, the number of spikes for each
side of the ring being the clear winner does not correspond exactly. On the other
hand, the mean values at an input frequency of 25 kHz on both side of the ring do
not agree completely as one would expect. To investigate this further in figure 3.5b
the number of spikes for each excitatory neuron is plotted for an input frequency
on the upper index half of the ring of 0 kHz, 25 kHz and 50 kHz in blue, pink and
red, respectively. If only one side of the ring receives the full 50 kHz stimulation,
it will show a Gauss-like activity distribution with its mean at neuron 12 or 37 as
expected. However, the profiles of both sides show slight variations in width and
amplitude. While the distribution of the lower index half of the ring is broader, the
upper index half shows single neurons with a higher activity. Especially neuron 48
displays a spiking behaviour significantly higher than expected. Since this is also

25

3. Results

0 10 20 30 40 50
frequency [kHz]

0

500

1000

1500
sp

ik
es

(a)

0 10 20 30 40 50
neuron id

0

20

40

60

80

100

sp
ik

es

(b)

Figure 3.5.: Soft winner-take-all results with linear neuron placement. (a) Total
number of spikes for lower (green) and upper (orange) index half of
the ring plotted over the input frequency of the latter. (b) Firing rate
distribution over network neurons for stimulation of 0 kHz, 25 kHz and
50 kHz in blue, pink and red, respectively.

the case if only the opposite side of the ring is stimulated, it indicates an outlier
caused by insufficient calibration. These observations explain the asymmetry con-
cerning the total number of spikes in the cases of a clear winner: In the low activity
regime, the orange curve is shifted up relatively towards the green one, because the
second half of the ring contains the extraordinarily active neuron 48. Examining
the high activity regime, its spiking rate doesn’t contrast that significantly from
the mean anymore, but rather the broadness of the spiking distribution of the first
half of the ring determines the dominance of the green curve. In order to explain
the asymmetry when it comes to the transition of the winning side, the pink profile
in figure 3.5b needs to be contemplated. Besides the outstanding activity of neu-
ron 48 which may explain an early on takeover of the second half of the ring, the
spiking distribution between the two sides varies. As seen before, the activity on
the lower index side is spread more widely, whereas on the upper index side fewer
neurons show higher spike rates. These aspects cause the transition not to be per-
fectly at 25 kHz and the traces of both sides of the ring not to be exactly symmetric.

To investigate the role of utilised hardware neurons and their calibration further,
the same experiment is repeated with the inverse placement of the excitatory neu-
rons on chip, i.e. network neuron 0 now has hardware id 49, network neuron 1 has
hardware id 48 and so on. The result is depicted in figure 3.6. Note that in 3.6b the
network neuron id is plotted. As expected the network shows the inverse behaviour:
Now the first half of the ring has a smaller dynamic range and a slimmer spiking

26

3.4. Soft Winner-Take-All Network

0 10 20 30 40 50
frequency [kHz]

0

250

500

750

1000

1250

1500

1750
sp

ik
es

(a)

0 10 20 30 40 50
neuron id

0

20

40

60

80

100

sp
ik

es

(b)

Figure 3.6.: Soft winner-take-all results with inverse neuron placement. (a) Total
number of spikes for lower (green) and upper (orange) index half of
the ring plotted over the input frequency of the latter. (b) Firing rate
distribution over network neurons for stimulation of 0 kHz, 25 kHz and
50 kHz in blue, pink and red, respectively.

distribution than the second half. Moreover, the extremely active neuron seems to
have a larger effect, shifting the transition to a higher frequency. However, the ex-
pected value is still within the scope of trial-to-trial variability which can be traced
back to the low stability of the network at this point.

Hardware Neuron Permutation

Since the previous inspection showed differences changing the order of utilised hard-
ware neurons, this aspect is to be examined further. To additionally rule out any
crosstalk between adjacent neuron circuits random permutations are applied.

A first observation is that the transition frequency varies for different neuron
placements (figure 3.7). Looking at the corresponding firing rate distributions, it
becomes apparent that the closer the outlying hardware neuron 48 is to a mean
network neuron of external stimulation, the more the transition frequency deviates
from its expected value of 25 kHz. Spreading from the stimulated neurons, the side
of the ring containing the overly active hardware neuron holds the activity for a
longer range, resulting in a shift of the transition frequency. This dislocation didn’t
become that apparent before, due to the previously remote positioning of the poorly
calibrated hardware neuron in relation to the stimulated neurons.

27

3. Results

0 10 20 30 40 50
frequency [kHz]

0

200

400

600

800

1000

1200

1400
sp

ik
es

(a)

0 10 20 30 40 50
neuron id

0

20

40

60

80

100

120

140

sp
ik

es

(b)

0 10 20 30 40 50
frequency [kHz]

0

250

500

750

1000

1250

1500

sp
ik

es

(c)

0 10 20 30 40 50
neuron id

0

20

40

60

80

100

120

140

sp
ik

es

(d)

Figure 3.7.: Soft winner-take-all results with random neuron placements, causing a
shift of the transition frequency. (a), (c) Total number of spikes for
lower (green) and upper (orange) index half of the ring plotted over
the input frequency of the latter. (b), (d) Firing rate distribution over
network neurons for stimulation of 0 kHz, 25 kHz and 50 kHz in blue,
pink and red, respectively.

Another observation is the effect of the broadness of the firing rate distribution.
Figure 3.8 shows the results of a placement, where on one side of the ring the
stimulated neurons aren’t as responsive as on the other. Besides the shift of the
transition frequency caused again by the placement of the extremely active hardware
neuron, the differences concerning the dynamic spiking range catch the viewers
attention. Also originating from an uneven calibration, the response to stimulation
varies between neurons. If sparsely spiking neurons are presented with external
input, they will pass on less activity, leading to an inequality between the spiking
distributions of both halves of the ring. As observed before, this causes differences
in the dynamic spiking range and, consequently, asymmetries.

28

3.4. Soft Winner-Take-All Network

0 10 20 30 40 50
frequency [kHz]

0

500

1000

1500

sp
ik

es

(a)

0 10 20 30 40 50
neuron id

0

20

40

60

80

100

120

140

sp
ik

es

(b)

0 10 20 30 40 50
frequency [kHz]

0

250

500

750

1000

1250

1500

sp
ik

es

(c)

0 10 20 30 40 50
neuron id

0

20

40

60

80

100

sp
ik

es

(d)

Figure 3.8.: Soft winner-take-all results with random neuron placements, causing
differences in the dynamic spiking range. (a), (c) Total number of spikes
for lower (green) and upper (orange) index half of the ring plotted over
the input frequency of the latter. (b), (d) Firing rate distribution over
network neurons for stimulation of 0 kHz, 25 kHz and 50 kHz in blue,
pink and red, respectively.

29

4. Discussion

The examined soft winner-take-all network demonstrates the working state of PyNN
for BrainScaleS-2 and presents the first demo experiment using this API on this
hardware platform. Before, the utilisation of this neuromorphic substrate required
a profound understanding of hardware details. Programs were written in lower-level
software, requiring to manually handle the configuration of every single parameter
deviating from its default, as well as the settings for recording and the control flow.
Furthermore, even for hardware-experts the event routing happened in a black box,
where only static connections were allowed. Now, PyNN provides an interface to
communicate with the HICANN-X chip even for users who are not familiar with
the hardware in detail. The abstract toplevel allows experimenters to define neural
networks represented by a graph structure. The configuration on chip, including the
setting of neural, synapse, routing and general network parameters, alongside the
setup of recording routines and the overall control flow, then happens automatically.
As a result, the current BrainScaleS-2 version now is accessible to a wider range of
users who might even never have heard of neuromorphic hardware before.

Nevertheless, being subject to fixed-pattern noise, in order to achieve reasonable
result on hardware, a good working calibration presents a necessity. Deficits in the
utilised set of parameters obtained by the calix neuron calibration arouse from a
target value for the synaptic input current exceeding the range the applied algorithm
was designed for. As a consequence, input strengths were not distributed uniformly,
resulting in varying neuron responses. Endeavouring an improvement for this issue,
the target value should either simply be chosen lower, or a more suitable algorithm
allowing such high bias currents needs to be developed. Moreover, it would be help-
ful, if the calix calibration communicated better with the user, warning that stated
target values are out of range.

Concerning the outlying hardware neuron 48, showing an extraordinary activity, it
was tried to neglect it from the set of utilised neurons for the experiment. However,
this yielded an even worse overall network response, so the decision was made to

30

analyse its effect at different locations in the network instead.

31

5. Outlook

5.1. Performance Optimisation and Routing

Extension

The work accomplished within the frame of this thesis constitutes the first step to-
wards a PyNN interface for BrainScaleS-2. Focussing on the applicability of this
API, capacities regarding performance optimisation have not been fully exploited.
The implementation is written in the Python programming language, allowing its
functioning to be comprehended easily. However, this poses issues concerning ef-
ficiency that can be prevented e.g. by using native C++ implementations and
Python wrapper functions. This can be viewed as a starting point to improve the
performance of the BSS-2 PyNN backend implementation. Furthermore, the cur-
rent neuron placement on chip, as well as the routing algorithm for events present
a working state that doesn’t claim to be the best for every network. While not a
lot of thought was put into the canonical neuron placements, efforts were invested
to allow as many synapses as possible to be allocated on chip. Nevertheless, the
routing was not optimised to distribute connections in a way resulting in a balanced
spread of data over resources, e.g. all PADI-buses transferring the same amount of
events, instead of one bus handling everything. Here, further efforts can be invested.
Beyond that, users should be offered the possibility to define their own placement
algorithms. A lot of existing applications use for example a static routing and ac-
cess synapses via matrix entries, so the possibility for such a placement should be
supported, allowing experimenters to easily transfer their programs to the PyNN
toplevel.

5.2. PyNN-based Calibration and Characterisation

It has become quite evident how crucial a good calibration is for the successful be-
haviour of a neural network. Even imperfections in the calibration of a single neuron
can have severe repercussions on the overall network response. Operating on a very
low software level, the applied calix neuron calibration can be hard to comprehend

32

5.3. PyNN for Non-Hardware-Experts

especially for users not being familiar with all hardware details. But having exactly
this aspiration, PyNN now provides a tool to perform calibrations that are easily
traceable not coming from a hardware, but neuroscientific point of view. Being able
to record the spike times of neurons, characteristics like their refractory period or
interspike interval can be calibrated by sweeping to the population handed neuron
parameters influencing them. This needs to be done by the PyNN user directly, so
at all times it is apparent what happens and the membrane voltage can be recorded
simultaneously to monitor the effect of changes. The same argument also holds for
other characteristics, e.g. the synaptic efficacy or time constant. Observing the
influence of simple parameter changes is a common way to get familiar with neuro-
morphic hardware. It is for example taught in the advanced lab course at Heidelberg
university (Grübl and Baumbach [2017]) to get physics students in touch with this
field of research. However, of course only parameters having a representation in
PyNN can be calibrated reasonable using this toplevel. Purely technical properties,
e.g. the CADC measurement arrangement, will still need a calibration functioning
on a lower level hidden from the PyNN user.

5.3. PyNN for Non-Hardware-Experts

Currently, only the HXNeuron is available to configure hardware neurons. Since
it displays a direct translation of all settable digital and analogue parameters as
integer DAC values, it doesn’t provide an intuitive interface for experts from other
fields. Thus, it is desirable to add higher level cell types, allowing a broader range
of experimenters to operate on the BrainScaleS-2 hardware using PyNN. A first
approach to do so is characterising the analogue circuitry. Due to fixed-pattern
noise, this should be automated, providing a reliable mapping. Expressing neural
parameters in measurable currents and voltages on chip offers an easier intuition and
the possibility of directly verifying if stated values are set correctly. Nevertheless,
modelling biological behaviour, in the long run the goal is to have a cell model
accepting parameters in biological domain. This translation again will require data
from a calibration or to perform one itself. Accessing homogeneous neurons via
biological parameters will provide neuroscientists with the opportunity of running
emulations on the analogue substrate without making significant adjustments to
their code. Also, this will be the easiest way to allow users that are new to this field
of research to access BrainScaleS-2.

33

5. Outlook

5.4. Plasticity

Short-Term Plasticity

Depending on the availability of neurotransmitters, a spike from the same presynap-
tic neuron can affect biological neurons in significantly different ways. If the total
utilisation of participating neurotransmitter molecules in a synapse is constant over
time, an accumulation of quickly incoming action potentials will lead to a depressing
response. This means there are less deliverers available for later on spikes, causing
the amplitude of postsynaptic potentials to decrease. However, also the opposite has
been observed, i.e. an increase of excitability for a burst of spikes. This facilitation
can be explained by a time-dependent utilisation of neurotransmitters.

Both of these modes can be emulated on HICANN-X making use of STP circuits in
the synapse drivers. By the means of different voltages on a capacitor the plasticity
state is encoded, affecting the time a synapse is active. So far, this functionality is
not explicitly included in the current backend version. Introducing a new synapse
type possessing this behaviour is one of the next steps in the implementation of
PyNN for BrainScaleS-2.

Spike-Timing-Dependent Plasticity

A popular model for long-term plasticity is spike-timing-dependent plasticity. As
suggested by the name, synaptic weights are updated depending on the timing of
pre- and postsynaptic spikes. Spike pairs with the presynaptic neuron firing before
its postsynaptic partner are classified causal, whereas the opposite is called acausal.

Also this functionality is implemented on HICANN-X. CADCs allow the mea-
surement of correlation between pre- and postsynaptic spikes of all neurons on chip.
This is done by causal and acausal capacitors whose charging corresponds to the
time between respective spike pairs. Attempting to utilise the CADCs in PyNN for
updating synaptic weights according to STDP algorithms comes with the challenge
of real-time requirements: The communication between chip and host computer is
significantly slower than an emulation run on hardware. Since STDP weights need
to be updated during the run, typically the on-chip plasticity processing unit (PPU)
is used for that. It is a general-purpose processor with a vector unit, allowing effi-
cient control of synaptic plasticity. In order to incorporate the PPU in PyNN, it is
necessary to pass on the placement result for synapses, so the PPU knows about the
plasticity characteristics of each synapse. Furthermore, the placement routine may

34

5.4. Plasticity

need to be adapted if STDP is used: The vector unit works most efficient if synapses
are placed in a rectangle with maximised width. Thus, an uneven placement may
cause the update cycle to be carried out too slow, leading to a non-converging learn-
ing behaviour. The parameterised PPU program then needs to be handed from
PyNN to the plasticity processing unit, where it is executed. The PyNN user can
read the weights at the end of the experiment, but is not able to access them during
the run, due to the PPU-based plasticity. However, a recorder could be introduced
that monitors the weight trace over the runtime, allowing experimenters to observe
the learning process of their neural networks.

35

A. Appendix

A.1. Calibration Targets

target parameter target value

leak 50 CADC value
reset 50 CADC value
threshold 80 CADC value
tau_mem 10 µs
tau_syn 10 µs
i_syn 500 digital CapMem value
membrane_capacitance 10 digital value
refractory_time 2 µs

Table A.1.: calix neuron calibration targets.

A.2. Neuron Parameters

neuron parameter value

threshold_enable True
leak_reset_reset_i_bias 950 digital CapMem value
leak_reset_leak_enable_division True
leak_reset_reset_enable_multiplication True
membrane_capacitance_capacitance 10 digital value
excitatory_input_enable True
inhibitory_input_enable True

Table A.2.: Common parameters for all HXNeurons.

i

A. Appendix

A.3. sWTA Program

1 import pynn_brainscales.brainscales2 as pynn
2 import numpy as np
3

4 ### define helper functions (e.g. Gauss) and variables
5

6 pynn.setup ()
7

8 # create excitatory populations
9 pops_exc = np.zeros (50, dtype=pynn.Population)

10 for i in range (50):
11 pop = pynn.Population (1, pynn.cells.HXNeuron ,
12 initial_values=calibrated_values)
13 pop.record("spikes")
14 pops_exc[i] = pop
15

16 # create inhibitory pool
17 pop_inh = pynn.Population (10, pynn.cells.HXNeuron ,
18 initial_values=inh_values)
19

20 # create external Poisson input for one side
21 pops_stim_ref = np.zeros(5, dtype=pynn.Population)
22 for i in range (5):
23 spiketimes_ref = poisson_spiketimes(freq_ref , seed_ref , 2)
24 stim_ref = pynn.Population(
25 1, pynn.cells.SpikeSourceArray ,
26 cellparams ={"spike_times": spiketimes_ref })
27 pops_stim_ref[i] = stim_ref
28 ### same for the other side of the ring
29

30 # calculate weights for populations up to a distance of 3 sigma
31 weights_rec = np.round(Gauss(np.arange(1, 16), 0, 5)
32 / Gauss(0, 0, 5) * 15)
33 weights_ext = np.round(Gauss(np.arange (10), 0, 3)
34 / Gauss(0, 0, 3) * 63)
35

36 # define synapses
37 synapse_exc = pynn.standardmodels.synapses.StaticSynapse(weight =15)
38 ### same for inhibitory , lists for recurrent and external
39 ### with according weights
40

41 # create projections
42 for index , pop in enumerate(pops_exc):
43 # recurrent projections

ii

A.3. sWTA Program

44 for i in range(1, 16):
45 ### calculate post_ind_clkw and post_ind_cclkw to realise
46 ### ring structure
47 pynn.Projection(pop , pops_exc[post_ind_clkw],
48 pynn.AllToAllConnector (),
49 synapse_type=synapses_rec[i - 1])
50 pynn.Projection(pop , pops_exc[post_ind_cclkw],
51 pynn.AllToAllConnector (),
52 synapse_type=synapses_rec[i - 1])
53

54 # exc -inh projections
55 pynn.Projection(pop , pop_inh ,
56 pynn.AllToAllConnector (),
57 synapse_type=synapse_exc)
58 pynn.Projection(pop_inh , pop ,
59 pynn.AllToAllConnector (),
60 synapse_type=synapse_inh ,
61 receptor_type="inhibitory")
62

63 # external projections
64 ref_mean = 12
65 var_mean = 37
66 for stim_ref in pops_stim_ref:
67 pynn.Projection(stim_ref , pops_exc[ref_mean],
68 pynn.AllToAllConnector (),
69 synapse_type=synapses_ext [0])
70 for i in range(1, 10):
71 pynn.Projection(stim_ref , pops_exc[ref_mean + i],
72 pynn.AllToAllConnector (),
73 synapse_type=synapses_ext[i])
74 pynn.Projection(stim_ref , pops_exc[ref_mean - i],
75 pynn.AllToAllConnector (),
76 synapse_type=synapses_ext[i])
77 ### same for other side of the ring
78

79 pynn.run(2) # ms
80 ### retrieve spikes
81 pynn.end()

iii

A. Appendix

A.4. Software State

repository commit-hash

calix 8cda016c664bc73e5dc3b63a5666a184f9f950f0 (CS 11349)
code-format 5c6f43059feb748d495a4c29455b622f0020a28c
fisch 1817be3015635a0dc99d5e6db86d994a7dc07504
flange af4b6838c4a2164890d911abdf02158025d7955a
halco 1badfa8d1d92e98e967a129d8a328df5e0758ada
haldls 7f072ffd61d97f6d0a95544c069da5442111cc53
hate 8b87284f92d3d493566586d929a863c832ae870e
hwdb 1eed94db6b20ce60d49621d1056cc57ec5555519
hxcomm a5f1d352fdfc4dfcac27433c8b397ca9ab367b96
lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb
lib-rcf aad007af401087a32e8ba387824239cbc5f1b222
logger bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd
pynn-brainscales d49ff59f7ed68b4d05c4f2cfbc1c19688b092262 (CS 12030)
pywrap 550051ab0faad678e58cb456079b1ba45ad2230a
rant 4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d
sctrltp 5449e22242308a7751712c49a5b76ac2cead4fd3
visions-slurm 3777a9dc36a7067be3657ce06253efec32db260e
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6

Table A.3.: Applied software state. Unmerged changes are identified via the change
set (CS) number.

iv

B. Bibliography

F. Cremonesi and F. Schürmann. Understanding computational costs of cellular-
level brain tissue simulations through analytical performance models. Neu-
roinformatics, 2020. ISSN 1559-0089. doi: 0.1007/s12021-019-09451-w. URL
https://doi.org/10.1007/s12021-019-09451-w.

M. Czierlinski. Pynn populations for brainscales-2. Internship Report, Univer-
sity of Heidelberg, 2020. URL https://www.kip.uni-heidelberg.de/vision/

publications/reports/report_milenacz.pdf.

A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Per-
rinet, and P. Yger. PyNN: a common interface for neuronal network simulators.
Front. Neuroinform., 2(11), 2009. doi: 3389/neuro.11.011.2008.

M. Denker, A. Yegenoglu, and S. Grün. Collaborative HPC-enabled work-
flows on the HBP Collaboratory using the Elephant framework. In
Neuroinformatics 2018, page P19, 2018. doi: 10.12751/incf.ni2018.
0019. URL https://abstracts.g-node.org/conference/NI2018/abstracts#

/uuid/023bec4e-0c35-4563-81ce-2c6fac282abd.

S. Garcia, D. Guarino, F. Jaillet, T. Jennings, R. Pröpper, P. Rautenberg,
C. Rodgers, A. Sobolev, T. Wachtler, P. Yger, and A. Davison. Neo: an ob-
ject model for handling electrophysiology data in multiple formats. Frontiers in
Neuroinformatics, 8:10, 2014. ISSN 1662-5196. doi: 10.3389/fninf.2014.00010.
URL https://www.frontiersin.org/article/10.3389/fninf.2014.00010.

W. Gerstner and R. Brette. Adaptive exponential integrate-and-fire
model. Scholarpedia, 4(6):8427, 2009. doi: 10.4249/scholarpedia.8427.
URL http://www.scholarpedia.org/article/Adaptive_exponential_

integrate-and-fire_model.

W. Gerstner, W. Kistler, R. Naud, and L. Paninski. Neuronal Dynamics. Cambridge
University Press, 2014.

v

https://doi.org/10.1007/s12021-019-09451-w
https://www.kip.uni-heidelberg.de/vision/publications/reports/report_milenacz.pdf
https://www.kip.uni-heidelberg.de/vision/publications/reports/report_milenacz.pdf
https://abstracts.g-node.org/conference/NI2018/abstracts#/uuid/023bec4e-0c35-4563-81ce-2c6fac282abd
https://abstracts.g-node.org/conference/NI2018/abstracts#/uuid/023bec4e-0c35-4563-81ce-2c6fac282abd
https://www.frontiersin.org/article/10.3389/fninf.2014.00010
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model

B. Bibliography

A. Grübl and A. Baumbach. F09/f10 neuromorphic computing, 2017. URL https:

//www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F09.pdf.

M. L. Hines and N. T. Carnevale. The NEURON Book. Cambridge University Press,
Cambridge, UK, 2006. ISBN 978-0521843218.

J. Jordan, T. Ippen, M. Helias, I. Kitayama, M. Sato, J. Igarashi, M. Diesmann, and
S. Kunkel. Extremely scalable spiking neuronal network simulation code: From
laptops to exascale computers. Frontiers in Neuroinformatics, 12:2, 2018. ISSN
1662-5196. doi: 10.3389/fninf.2018.00002. URL https://www.frontiersin.org/

article/10.3389/fninf.2018.00002.

W. Maass. On the computational power of winner-take-all. Neural Computation,
12(11):2519–2535, 2000. doi: 10.1162/089976600300014827. URL https://doi.

org/10.1162/089976600300014827.

E. Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig, M. Hines, and A. P. Davi-
son. Python in neuroscience. Frontiers in Neuroinformatics, 9:11, 2015. ISSN
1662-5196. doi: 10.3389/fninf.2015.00011. URL https://www.frontiersin.org/

article/10.3389/fninf.2015.00011.

E. Müller, C. Mauch, P. Spilger, O. J. Breitwieser, J. Klähn, D. Stöckel, T. Wunder-
lich, and J. Schemmel. Extending brainscales os for brainscales-2. arXiv preprint,
Mar. 2020. URL http://arxiv.org/abs/2003.13750.

E. Niebur. Neuronal cable theory. Scholarpedia, 3(5):2674, 2008. doi: doi:10.4249/
scholarpedia.2674. URL http://www.scholarpedia.org/article/Neuronal_

cable_theory.

M. A. Petrovici. Form Versus Function: Theory and Models for Neuronal Substrates.
Springer, 2016.

T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. A. Petrovici, M. Schmuker,
D. Brüderle, J. Schemmel, and K. Meier. Six networks on a universal neu-
romorphic computing substrate. Frontiers in Neuroscience, 7:11, 2013. ISSN
1662-453X. doi: 10.3389/fnins.2013.00011. URL http://www.frontiersin.org/

neuromorphic_engineering/10.3389/fnins.2013.00011/abstract.

J. Schemmel, S. Billaudelle, P. Dauer, and J. Weis. Accelerated analog neuromorphic
computing. arXiv preprint, 2020. URL https://arxiv.org/abs/2003.11996.

vi

https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F09.pdf
https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F09.pdf
https://www.frontiersin.org/article/10.3389/fninf.2018.00002
https://www.frontiersin.org/article/10.3389/fninf.2018.00002
https://doi.org/10.1162/089976600300014827
https://doi.org/10.1162/089976600300014827
https://www.frontiersin.org/article/10.3389/fninf.2015.00011
https://www.frontiersin.org/article/10.3389/fninf.2015.00011
http://arxiv.org/abs/2003.13750
http://www.scholarpedia.org/article/Neuronal_cable_theory
http://www.scholarpedia.org/article/Neuronal_cable_theory
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract
http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract
https://arxiv.org/abs/2003.11996

B. Bibliography

S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Güttler, A. Hartel, S. Hartmann,
D. Husmann, K. Husmann, S. Jeltsch, V. Karasenko, M. Kleider, C. Koke,
A. Kononov, C. Mauch, E. Müller, P. Müller, J. Partzsch, M. A. Petrovici,
S. Schiefer, S. Scholze, V. Thanasoulis, B. Vogginger, R. Legenstein, W. Maass,
C. Mayr, R. Schüffny, J. Schemmel, and K. Meier. Neuromorphic hardware in the
loop: Training a deep spiking network on the brainscales wafer-scale system. In
2017 International Joint Conference on Neural Networks (IJCNN), pages 2227–
2234, 2017.

J. Sjöström and W. Gerstner. Spike-timing dependent plasticity. Scholarpedia, 5(2):
1362, 2010. doi: 10.4249/scholarpedia.1362. URL http://www.scholarpedia.

org/article/Spike-timing_dependent_plasticity.

P. Spilger. personal communication, 2020.

M. Tsodyks and S. Wu. Short-term synaptic plasticity. Scholarpedia, 8(10):3153,
2013. doi: doi:10.4249/scholarpedia.3153. URL http://www.scholarpedia.org/

article/Short-term_plasticity.

J. Weis. Inference with artificial neural networks on neuromorphic hardware. Mas-
ter’s thesis, Universität Heidelberg, 9 2020a.

J. Weis. personal communication, 2020b.

The work carried out in this Bachelor’s Thesis used systems, which received funding
from the European Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreements Nos. 785907 and 945539 (Human
Brain Project, HBP).

vii

http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Short-term_plasticity
http://www.scholarpedia.org/article/Short-term_plasticity

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 02.10.2020,

Milena Czierlinski

ix

	Introduction
	Biological Background
	Modelling Neural Networks
	LIF Neuron Model
	HICANN-X

	Methods
	PyNN
	HICANN-X Observables
	Event Routing on HICANN-X
	Crossbar
	PADI-buses, Synapse Drivers
	Synapse Matrices

	Results
	Placement
	Corner Cases
	PyNN for Hardware-Experts
	Cell Types
	Synapse Types

	Soft Winner-Take-All Network
	Network Topology
	Hardware Emulation

	Discussion
	Outlook
	Performance Optimisation and Routing Extension
	PyNN-based Calibration and Characterisation
	PyNN for Non-Hardware-Experts
	Plasticity

	Appendix
	Calibration Targets
	Neuron Parameters
	sWTA Program
	Software State

	Bibliography

