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Control of criticality and computation in spiking
neuromorphic networks with plasticity
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The critical state is assumed to be optimal for any computation in recurrent neural networks,

because criticality maximizes a number of abstract computational properties. We challenge

this assumption by evaluating the performance of a spiking recurrent neural network on a set

of tasks of varying complexity at - and away from critical network dynamics. To that end, we

developed a plastic spiking network on a neuromorphic chip. We show that the distance to

criticality can be easily adapted by changing the input strength, and then demonstrate a clear

relation between criticality, task-performance and information-theoretic fingerprint. Whereas

the information-theoretic measures all show that network capacity is maximal at criticality,

only the complex tasks profit from criticality, whereas simple tasks suffer. Thereby, we

challenge the general assumption that criticality would be beneficial for any task, and provide

instead an understanding of how the collective network state should be tuned to task

requirement.
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A central challenge in the design of an artificial network is
to initialize it such that it quickly reaches optimal per-
formance for a given task. For recurrent networks, the

concept of criticality presents such a guiding design principle1–7.
At a critical point, typically realized as a second-order phase
transition between order and chaos or stability and instability, a
number of basic processing properties are maximized, including
sensitivity, dynamic range, correlation length, information
transfer, and susceptibility8–12. Because all these basic properties
are maximized, it is widely believed that criticality is optimal for
task performance1,2,4–7,9.

Tuning a system precisely to a critical point can be challenging.
Thus ideally, the system self-organizes to criticality autonomously
via local-learning rules. This is indeed feasible in various manners
by modifying the synaptic strength depending on the pre- and
postsynaptic neurons’ activity only6,9,13–19. The locality of the
learning rules is key for biological and artificial networks where
global information (e.g., task-performance error or activity of
distant neurons) may be unavailable or costly to distribute.
Recently, it has been shown that specific local-learning rules can
even be harnessed more flexibly: a theoretical study suggests that
recurrent networks with local, homeostatic learning rules can be
tuned toward and away from criticality by simply adjusting the
input strength17. This would enable one to sweep the entire range
of collective dynamics from subcritical to critical to bursty, and
assess the respective task performance.

Complementary to tuning collective network properties such as
the distance to criticality, local-learning also enables networks to
learn specific patterns or sequences20,21. For example, spike-
timing dependent plasticity (STDP) shapes the connectivity,
depending only on the timing of the activity of the pre- and
postsynaptic neuron. STDP is central for any sequence learning—
a central ingredient in language and motor learning20,21. Such
learning could strongly speed up convergence, and enables a
preshaping of the artificial network—akin to the shaping of
biological networks during development by spontaneous activity.

Given diverse learning rules and task requirements, it may be
questioned whether criticality is always optimal for processing, or
whether each task may profit from a different state, as hypothe-
sized in ref. 10. One could speculate that, e.g., the long correlation
time at criticality on the one hand enables long memory retrieval,
but on the other hand could be unfavorable if a task requires only
little memory. However, the precise relation between the collec-
tive state, and specific task requirements is unknown.

When testing networks, the observed network performance is
expected to depend crucially on the choice of the task. How can
one then characterize performance independently of a specific
task, such as classification or sequence memory? A natural fra-
mework to characterize and quantify processing of any local cir-
cuit in a task-independent manner builds on information
theory22,23: classical information theory enables us to quantify the
transfer of information between neurons, the information about
the past input, as well as the storage of information. The storage of
information can be measured within the network or as read out
from one neuron. In addition, most recently classical mutual
information is being generalized to more than two variables within
the framework of partial information decomposition (PID)23–26.
PID quantifies the unique and redundant contribution of each
source variable to a target, but most importantly also enables a
rigorous quantification of synergistic computation, a key con-
tributor for any information integration23–25,27,28. Thereby
information theory is a key stepping stone when linking local
computation within a network, with global task performance.

Simulations of recurrent networks with plasticity become very
slow with increasing size, because every membrane voltage and
every synaptic strength has to be updated. Here, neuromorphic

chips promise an accelerated and scalable alternative to neural
network simulations29–35. To achieve an efficient implementa-
tion, physical emulation of synapses and neurons in electrical
circuitry are very promising36. In such “neuromorphic chips,” all
neurons operate in parallel, and thus the speed of computation is
largely independent of the system size, and is instead determined
by the time constants of the underlying physical neuron and
synapse models—such as in the brain. Realizing such an imple-
mentation technically remains challenging, especially when using
spiking neurons and flexible synaptic plasticity. The BrainScaleS 2
prototype system combines physical models of neurons and
synapses37 with a general purpose processor carrying out plasti-
city38. In this system, the analog elements provide a speedup,
energy efficiency, and enable scaling to very large systems,
whereas the general purpose processor enables to set the desired
learning rules flexibly. Thus with this neuromorphic chip, we can
run the long-term learning experiments—required to study the
network self-organization—within very short compute-time.

In the following, we investigate the relation between criticality,
task-performance and information-theoretic fingerprint. To that
end, we show that a spiking neuromorphic network with synaptic
plasticity can be tuned toward and away from criticality by
adjusting the input strength. We show that criticality is beneficial
for solving complex tasks, but not the simple ones—challenging
the common notion that criticality in general is optimal for
computation. Methods from classical information theory as well
as the novel framework of PID show that our networks indeed
enfold their maximum capacity in the vicinity of the critical point.
Moreover, the lagged mutual information between the stimulus
and the activity of neurons allows to establish a relation between
criticality (as set by the input strength) and task performance.
Thereby, we provide an understanding how basic computational
properties shape task performance.

Results
Model overview. We emulate networks of leaky integrate-and-fire
(LIF) neurons on the mixed-signal neuromorphic prototype
system BrainScaleS 2, which has N= 32 neurons (Fig. 1 a, b).
Future versions of the BrainScaleS 2 chip will feature 512 neuron
circuits with adaptive-exponential LIF dynamics and inter-
compartmental conductances. We use the term emulation in
order to clearly distinguish between the physical implementation,
where each observable has a measurable counterpart on the
neuromorphic chip, and standard software simulations on con-
ventional hardware. The system features an array of 32 × 32
current-based synapses, where 20% of the synapses are pro-
grammed to be inhibitory. Synaptic plasticity acts equally on all
synapses and is composed of a positive drift and a negative
anticausal STDP term. In conjunction both terms lead to
homeostatic regulation and thus stable network activity of about
20 Hz per neuron (Supplementary Fig. 1a). Plasticity is executed
by an on-chip general purpose processor alongside to the analog
emulation of neurons and synapses. This allows for an unin-
terrupted and fast data acquisition. Even for the small prototype
system, the advantages of neuromorphic computing in terms of
speed and energy efficiency become important as depicted in
ref. 39.

Neurons are potentially all-to-all connected, but Kext out of the
N synapses per neuron are used to inject external Poisson or
pattern input. Effectively, Kext quantifies the input strength with
the extreme cases of Kext/N= 1 for a feed-forward network and
Kext/N= 0 for a fully connected recurrent network, which is
completely decoupled from the input. Depending on the degree of
external input Kext, the network shows diverse dynamics (Fig. 1c,
d). As expected17, Kext shapes the collective dynamics of the
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network from synchronized for low Kext to more asynchronous
irregular for high Kext.

Critical dynamics arise under low input Kext. The transition to
burstiness for low Kext suggests the emergence of critical
dynamics, i.e., dynamics expected at a nonequilibrium second-
order phase transition. Indeed, as detailed in the following, we
find signatures of criticality in the classical avalanche distribu-
tions (Figs. 2 and 3) as well as in the branching ratio (Fig. 4a), the
autocorrelation time (Fig. 4b), the susceptibility, and in trial-to-
trial variations (Fig. 4d).

To test whether the network indeed approaches criticality, we
assume the established framework of a branching process8,40–42.
In branching processes, a spike at time t triggers on average m
postsynaptic spikes at time t+ 1, where m is called the branching
parameter. For m= 1 the process is critical, and the dynamics
give rise to large cascades of activity, called avalanches8,43. The
size s of an avalanche is the total number of spikes in a cluster and
is power law distributed at criticality. The binwidth for the
estimation of the underlying distributions is set to the mean inter-
event interval following common methods44. Our network shows
power law distributed avalanche sizes s over two orders of
magnitude for low Kext (Fig. 2a). For almost any Kext, the
distribution is better fitted by a power law than by an exponential
distribution45 (Fig. 2d). However, only for low Kext the exponent
of the avalanche distribution is close to the expected one, αs ≈ 1.5
(Fig. 2c), and the power law shows the largest cutoff scut (Fig. 2b).
For low Kext, the networks tend to get unstable due to the limited
number of neurons explaining the decline in scut (Fig. 2b) and in
the maximum-likelihood comparison (Fig. 2d). Together, all the
quantitative assessment of the avalanches indicate that a low
degree of input Kext produces critical-like behavior.

In a control experiment, we investigate finite-size scaling in
software simulations, as the current physical system features only
32 neurons. Therefore, a network with the same topology,
plasticity rules, and single-neuron dynamics (though without
parameter noise and hardware constraints) is simulated for

various system sizes N. The resulting avalanche distributions
show power laws for any system size (Fig. 3a), and the cutoff scut
scales with N as expected at criticality (Fig. 3b). The scaling
exponent is 1.6 ± 0.2. Together, these numerical results confirm
the hypothesis that for low degrees of input Kext, the small
network that is emulated on the chip self-organizes as close to a
critical state as possible.

The implementation on neuromorphic hardware promises fast
emulation. Already for N= 32, the neuromorphic chip is about a
factor of 100 faster than the Brian 2 simulation. To give numbers,
a single plasticity experiment with a duration of 600 s biological
time is simulated in 570 s on a single core of a Intel Xeon E5-2670
CPU in Brian 2, but emulated in only 6 s on the neuromorphic
chip. Hence, a neuromorphic implementation is very promising
especially for the future full size chip: When running such
detailed networks as classical simulations, the computational
overhead scales with OðN2Þ due to the all-to-all connectivity and
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synaptic plasticity on conventional hardware. In contrast, for the
neuromorphic system, the execution time is largely independent
of the system size N, as long as the network can be implemented
on the system.

The assumption that the critical state of the network
corresponds to the universality class of critical branching
processes is tested further by properly inferring the branching
parameter m (Eq. (17)), the autocorrelation times, and the
response to perturbations. First, the branching parameter m
characterizes the spread of activity and is smaller (larger) than
unity for subcritical (supercritical) processes. For our model, it is
always in the subcritical regime, but tends toward unity for low
Kext (Fig. 4a). Second, the autocorrelation time τcorr is expected to
diverge at criticality as τbranchðmÞ � lim m!1ð�1=log ðmÞÞ ¼ 142.
Indeed, τcorr as estimated directly from the autocorrelation of the
population activity is maximal for low Kext (Fig. 4b). Third, the
estimates of m and τcorr are in theory related via the analytical
relation τbranchðmÞ � �1=log ðmÞ. This relation holds very pre-
cisely in the model (Fig. 4c, correlation coefficient ρ= 0.998, p <
10−10). Fourth, toward criticality, the response to any perturbation
increases. The impact of a small perturbation is quantified by a
variant of the van-Rossum distance ΔVRD (Eq. (15)). It peaks for
low degrees of the external input Kext (Fig. 4d). Last, one
advantage of operating in the vicinity of a critical point is the
ability to enhance stimulus differences by the system response.
This is reflected in a divergence of the susceptibility at the critical
point. The susceptibility χ (Eq. (16)), quantified here as the change
in the population firing rate in response to a burst of Npert= 6
additional spikes, is highest for low Kext (Fig. 4d). Thus overall, the
avalanche distributions as well as the dynamic properties of the
network all indicate that it self-organizes to a critical point under
low degree of input Kext.

Network properties have to be tuned to task requirements. It is
widely assumed that criticality optimizes task performance.
However, we found that one has to phrase this statement more
carefully. While certain abstract computational properties, such

as the susceptibility, sensitivity, or memory time span are indeed
maximal or even approaching infinity at a critical state, this is not
necessary for task performance in general5,11,42,46. We find that it
can even be detrimental. For every single task complexity, a dif-
ferent distance to criticality is optimal, as outlined in the
following.

We study the performance of our recurrent neural network in
the framework of reservoir computing: the performance of a
recurrent neural network is quantified by the ability of linear
readout neurons to separate different sequences47–49. To that end,
it is often necessary to maintain information about past input for
long time spans. To test performance, we specifically use a n-bit
sum and a n-bit parity task and trained a readout on the activity
of Nread= 16 randomly chosen neurons of the reservoir. For the
two given tasks complexity increases with n: to solve the tasks, the
network has to both memorize and process the input from the n
past steps. As reservoirs close to a critical point have longer
memory as quantified by the lagged mutual information (Iτ,
Fig. 7), one expects that particularly the memory intensive tasks
profit from criticality (tasks with high n are better at low degrees
of input Kext). In contrast, simple tasks (low n) might suffer from
criticality because of the maintenance of memory about
unnecessary input. Since the estimation of parity, in contrast to
the sum, is fully nonlinear, their direct comparison allows to
further dissect task complexity. Thus, depending on the task
complexity, there should be an ideal Kext, leading to maximal
performance.

For our network, we find indeed that maximal task
performance depends on both, task complexity and distance to
criticality: simple sum tasks (n= 5) are optimally solved away
from criticality, whereas complex sum tasks (n= 25) profit from
the long timescales arising at criticality (Fig. 5a). The nonlinear
parity task profits even more from criticality: even for n= 5
networks closer to the critical point promote task performance
(Fig. 5b). Hence, we are capable of adapting the networks
computational properties to task complexity by fine-tuning the
strength of the input.

Likewise, we investigated the ability of our networks to do
combinations of operations by considering the classic nonlinear
autoregressive moving average (NARMA) task48. The network’s
peak performance again moves toward criticality with higher task
complexity (Fig. 5e).

To further tune the difficulty of task, we reduced the number
of neurons visible to the readout Nread. We expect that in
principle information about, e.g., parity could be available in a
single neuron if the network is sufficiently close to criticality,
because critical network dynamics are not only characterized by
temporal, but also spatial correlations. The ability to condense
information about extended stimuli in the activity of few neurons
can be valuable. To quantify the effect of spatial correlations on
computation, we trained linear classifiers on the activity of a
subset of neurons for the 5-bit sum and the parity task. When
lowering Nread from 8 to 4, only the nonlinear parity tasks
increasingly profits from critical network dynamics (Fig. 5c, d). In
contrast, the information necessary to solve the linear sum task
seems to be globally available in the network response even for
subcritical dynamics. The ability to locally read out global
information from the network is of equal importance for both,
large neuromorphic systems29 and living networks50,51.

Adaptation to task by dynamic switching of input strengths.
We know from the previous experiments that for high n, the n-bit
parity task is solved best at criticality, whereas for low n, the
subcritical regime leads to best performance. In the following, we
investigate how to transit between both states. To achieve this, we
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take the state of a critical network and switch the degree of the
input Kext to a subcritical configuration and vice versa. The
performance is evaluated after various numbers of synaptic
updates. This task switch generates the same working points as
the previous emulations that start with synaptic weights wij=
0 ∀ i, j and have a long adaptation phase (red stars in Fig. 6).

A fast adaption to different input strengths is required to
switch between tasks of different complexity. The transition from
critical to subcritical is achieved after the application of about
50 synaptic updates corresponding to 50 s biological time,
whereas going from subcritical to critical takes about 500 updates
and therefore 500 s (Fig. 6). However, due to the speedup of the
neuromorphic chip, the adaptation takes only about 0.5 s wall
clock time and can even be lowered by decreasing the integration
time over spike pairs in the synaptic update rule. As alternative
strategies, one could switch between saved configurations, or run
a hierarchy of networks with different working points in
parallel52.

Task-independent quantification of computational properties.
While task performance is the standard benchmark for any
model, such benchmark tasks have two disadvantages: in many
biological systems, such as higher brain areas or in vitro pre-
parations, such tasks cannot be applied. Even if tasks can be
applied, the outcome will always depend on the chosen task. To
quantify computational properties in a task-independent manner,
information theory offers powerful tools23. Using the Poisson
noise input, we find that the lagged mutual information Iτ
between the input si and the activity of a neuron after a time lag τ,
aj predicts the performance on the parity task. Here, at high Kext

(away from criticality) information about the input is maximal
for very short τ, but decays very quickly (Fig. 7a). This fast for-
getting is important to irradiate past, task-irrelevant input that
would interfere with novel, task-relevant input. At small Kext, the
recurrence is stronger and input can be read out for much longer
delays (20 ms vs. 60 ms). This active storage of information is
required in a reservoir to solve any task that combines past and
present input, and hence the more complex parity task also
profits from it. However, the representation of input in every
single neuron becomes less reliable (i.e., Iτ is smaller). A measure
for the representation of the input in the network could be
obtained by integrating Iτ over τ. Interestingly, this memory
capacity (MC) stays fairly constant (Fig. 7b). Note that we only
quantified the representation of the input in a single neuron, a
measure very easily accessible in experiments; obviously the
readout can draw on the distributed memory across all neurons,
which jointly provide a much better readout.

The memory maintenance for task processing has to be
realized mainly by activity propagating on the recurrent
connections in the network. Therefore, it is often termed active
information storage (AIS)53. The recurrent connections become
stronger closer to criticality, and as a consequence we find that
the lagged mutual information between pairs of neurons in the
reservoir also increases (Fig. 7c). As a result the MC of the
reservoir increases over almost two orders of magnitude when
approximating criticality (lower Kext, Fig. 7d). This increase in
internal MC carries the performance on the more complex
parity tasks.
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When assessing computational capacities, information theory
enables us to quantify not only the entropy (H) and mutual
information (I) between units, but also to disentangle transfer and
storage of information, as well as unique, redundant, and
synergistic contributions of different source neurons23–25,27,54.
We find that all these quantities increase with approaching
criticality (smaller Kext, Figs. 8b and 9c). This indicates that the
overall computational capacity of the model increases, as
predicted for the vicinity of the critical state1,2,7,11.

In more detail, the AIS of a neuron, as well as the I and the
transfer entropy (TE) between pairs of neurons increase with
lower Kext (Fig. 8b). In our analysis, these increases reflect
memory that is realized as activity propagation on the network,
and not storage within a single neuron, because the binsize used
for analysis is larger than the refractory period τref, synaptic τsyn,
and membrane-timescales τm. Information theory here enables us
to show that active transfer and storage of information within the
network strongly increases toward criticality. A similar increase in
I, AIS, and TE has been observed for the Ising model and
reservoirs at criticality1,11, and hence supports the notion that
criticality maximizes information processing capacity. Note
however, that this maximal capacity is typically not necessary;
as shown here, it can even be unfavorable when solving
simple tasks.

Very recently, it has become possible to dissect further the
contributions of different neurons to processing, using PID24.
PID enables us to disentangle for a target neuron ai, how much
unique information it obtains from its own past activity a�i , or the
past activity of a second neuron a�j ; and how much information is
redundant or even synergistic from the two (Fig. 9a). Synergistic
information is that part of information that can only be computed
if both input variables are known, whereas redundant informa-
tion can be obtained from one or the other.

All the PID components increase when approaching the critical
point (low Kext, Fig. 9c). Quantitatively, the redundant and the
synergistic information are always stronger than the unique ones
that are about ten times less. The shared information dominates
closer to criticality, mirroring the increased network synchrony
and redundancy between neurons. Further, the synergistic
contribution, i.e., the contributions that rely on the past of both
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neurons slightly increases, and is indeed the largest contribution
for high Kext. This reflects that typically the joint activity of both
neurons is required to activate a LIF neuron. Interestingly, the
strong increase in shared information (i.e., redundancy) does not
seem to impede the performance at criticality (small Kext).
However, for even higher synchrony, as expected beyond this
critical transition, the shared information might increase too
much and thereby decrease performance.

Discussion
In this study, we used a neuromorphic chip to emulate a network,
subject to plasticity, and showed a clear relation between criti-
cality, task-performance and information-theoretic fingerprint.
Most interestingly, simple tasks do not profit from criticality
while complex ones do, showing that every task requires its own
network state.

The state and hence computational properties can readily be
tuned by changing the input strength, and thus a critical state can
be reached without any parameter fine-tuning within the net-
work. This robust mechanism to adapt a network to task
requirements is highly promising, especially for large networks
where many parameters have to be tuned and in analog neuro-
morphic devices that are subject to noise in parameters and
dynamics.

It has been generally suggested that criticality optimizes task
performance1,9. We show that this statement has to be specified:
indeed, criticality maximizes a number of properties, such as the
autocorrelation time (Fig. 4b), the susceptibility (Fig. 4d), as well
as information-theoretic measures (Figs. 7–9). However, this
maximization is apparently not at all necessary, potentially even
detrimental, when dealing with simple tasks. For our simple task,
high network capacity results in maintenance of task-irrelevant
information, and thereby harms performance. This is underlined
by our results that clearly show that all abstract computational
properties are maximized at criticality, but only the complex tasks
profit from criticality. Hence, every task needs its own state and
therefore a specific distance to critical dynamics.

The input strength could not only be controlled by changing
Kext, the number of synapses of a neuron that were coupled to the
input. An equally valid choice is a change of external input rate to
each neuron. In fact, we showed that changing the input rate has
the same effects on the relation between criticality (Supplemen-
tary Figs. 1–3), task performance (Supplementary Fig. 4), and
information measures (Supplementary Figs. 5 and 6) as changing
Kext. Moreover, in this framework the lowest input rates even
allow to cross the critical point (Supplementary Figs. 3 and 4).
Thus for both control mechanisms or a combination, there exists
an optimal input strength, where the homeostatic mechanisms
bring the network closest to critical. This optimal input strength
has been derived analytically for a mean-field network by Zier-
enberg et al.17, and could potentially be used to predict the
optimal input strength for other networks and tasks as well.

Not only the input strength, but also the strength of inhibition
can act as a control parameter. Inhibition plays a role in shaping
collective dynamics and is known to generate oscillations55,56. For
a specific ratio of excitation and inhibition, criticality has been
observed in neural networks18,19,57,58. Likewise, our networks has
20% inhibitory neurons. However, inhibition would not be
necessary for criticality13,42. Nevertheless, the existence of more
than one control parameters (degree of input, input rate, and
inhibition) allows for flexible adjustment even in cases where only
one of them could be freely set without perturbing input coding.

Plasticity plays a central role in self-organization of network
dynamics and computational properties. In our model, the

plasticity, neuron and synapse dynamics feature quite some level
of biological detail (Table 1), and thus results could potentially
depend on them. All synaptic weights are determined by the
synaptic plasticity. Here, we showed results for homeostasis and
STDP that implement the negative (anticausal) arm only. When
implementing the positive (causal) arm of STDP in addition, the
network destabilized, despite counteracting homeostasis. This is a
well known problem59. Our implementation is still similar to full
STDP, because anticausal correlations are weakened and the
causal ones are indirectly strengthened by homeostasis. With its
similarity to STDP and its inherent stability, our reduced
implementation may be useful for future studies.

The characterization of the network in a task-dependent as well
as in a task-independent manner is essential for understanding the
impact of criticality on computation. The computational proper-
ties in the vicinity of a critical point have been investigated by the
classical measures AIS, I, and TE alone5,60, or by PID alone27,61. In
this paper, we indeed showed that criticality maximizes capacity,
but this does not necessarily translate to maximal task perfor-
mance. Moreover, the lagged I between the stimulus and the
activity of neurons allows to estimate memory timescales required
to solve our tasks. This enables us to understand how task com-
plexity and the information-theoretic fingerprint are related. Such
understanding is the basis for well-founded design decisions of
future artificial architectures.

Table 1 Overview of the model parameters.

Parameter Symbol Value

Threshold potential uthresh (554 ± 21) mV
Leak potential uleak (384 ± 79) mV
Reset potential ureset (319 ± 18) mV
Membrane capacitance Cm (2.38 ± 0.02) nF
Membrane time constant τmem (1.6 ± 1.0) ms
Refractory period τref (4.9 ± 0.5) ms
Synaptic time constant τexcsyn (3.7 ± 0.5) ms

τ inhsyn (2.8 ± 0.3) ms
Synaptic delay dsyn (1.9 ± 0.1) ms
Weight scaling γ (8.96 ± 0.13) μA
Inhibitory synapses per neuron Ninh 6
Neurons N 32
Degree of input Kext 6–32
Input rate ν 29 Hz
STDP time constant τSTDP (6.8 ± 1.2) ms
STDP amplitude η 0.071 ± 0.023
Correlation scaling λstdp 11/128
Drift parameter λdrift 1/512
Range of random variable namp 15/16
Bias of random variable 〈n〉 3/16
Burn-in experiment duration Tburnin 625 s
Static experiment duration Texp 104 s
Static trial experiment duration Tstatic 1 s
Training experiment duration Ttrain 104 s
Testing experiment duration Ttest 21 s
Perturbation experiment
duration

Tpert 2 s

Perturbation time tpert 1 s
Initial weight winit

ij 0 μA
Plasticity update period T 1 ms
Embedding dimension l 4
Delay steps Nτ 100

All time constants are given in biological time. Spike-timing dependent plasticity (STDP)
amplitudes as well as time constants were measured using 20 spike pairs. The errors indicate
the standard deviation.
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The presented framework is particularly useful for analog
neuromorphic devices as analog components have inherent
parameter noise as well as thermal noise, which potentially
destabilize the network. Here, the synaptic plasticity plays a key
role in equalizing out particularly the parameter noise, as also
demonstrated for short-term plasticity62, and thus makes
knowledge about parameter variations, as well as specific cali-
bration to some extend unnecessary.

Despite the small system size (N= 32 neurons only), the net-
work not only showed signatures of criticality, but also developed
quite complex computational capabilities, reflected in both, the
task performance and the abstract information-theoretic quan-
tities. We expect that a scale-up of the system size would open
even richer possibilities. Such a scale-up would not even require
fine-tuning of parameters, as the network self-tunes owing to
the local-learning rules. As soon as larger chips are available, we
expect that the abilities of neuromorphic hardware could be
exhausted in terms of speed and energy efficiency allowing for
long, large-scale, and powerful emulations.

Overall, we found a clear relation between criticality, task-
performance and information-theoretic fingerprint. Our result
contradicts the widespread statement that criticality is optimal for
information processing in general: while the distance to criticality
clearly impacts performance on the reservoir task, we showed that
only the complex tasks profit from criticality; for simple ones,
criticality is detrimental. Mechanistically, the optimal working
point for each task can be set very easily under homeostasis by
adapting the mean input strength. This shows how critical phe-
nomena can be harnessed in the design and optimization of
artificial networks, and may explain why biological neural net-
works operate not necessarily at criticality, but in the dynamically
rich vicinity of a critical point, where they can tune their com-
putational properties to task requirements10,63.

Methods
We start with a description of the implemented network model, followed by a
summary of the analysis techniques. All parameters are listed in Table 1 and all
variables in the Supplementary Tables 1 and 2.

Model. The results shown in this article are acquired on the mixed-signal neu-
romorphic hardware system described in ref. 38 (Fig. 1b). In the following a brief
overview of the model, which is approximated by the physical implementation on
the hardware, and the programmed plasticity rule is given. Since the neuromorphic
hardware system comprises analog electric circuits, transistor mismatch causes
parameter fluctuations, which can be compensated by calibration37. Here, no
explicit calibration on the basis of single neurons and synapses is applied. Instead,
only parameters common to all neurons/synapses are set such that all parts behave
according to the listed equations, especially that all parts are sensible to input but
silent in the absence of input. This choice leads to uncertainties in the model
parameters as reported in Table 1.

Neurons: Implemented in analog circuitry, the neurons approximate current-
based LIF neurons. The membrane potential uj of the j-th neuron obeys

τmem

duj
dt

¼ � ujðtÞ � uleak
h i

þ IjðtÞ
g leak

; ð1Þ

with the membrane time constant τmem, the leak conductance gleak= Cm/τmem, the
leak potential uleak, and the input current Ij(t). The k-th firing time of neuron j, tkj ,
is defined by a threshold criterion

tkj : ujðtkj Þ≥ uthresh : ð2Þ

Immediately after tkj , the membrane potential is clamped to the reset potential

uj(t)= ureset for t 2 tkj ; t
k
j þ τref

� i
, with the refractory period τref. The

neuromorphic hardware system comprises N= 32 neurons, operating in
continuous time due to the analog implementation.

Synapses: Like the membrane dynamics, the synapses are implemented in
electrical circuits. Each neuron features N= 32 presynaptic partners (in-degree is
32). The synaptic input currents onto the j-th neuron enter the neuronal dynamics
in Eq. (1) as the sum of the input currents of all presynaptic partners i,

IjðtÞ ¼
PN

i¼1 IijðtÞ, where Iij(t) is given by

τexcsyn

dIijðtÞ
dt

¼ �IijðtÞ þ Iextij ðtÞ þ Irecij ðtÞ ; ð3Þ

τinhsyn

dIijðtÞ
dt

¼ �IijðtÞ � Iextij ðtÞ � Irecij ðtÞ ; ð4Þ

with the excitatory and the inhibitory synaptic time constants τexcsyn and τinhsyn. Ninh

synapses of every neuron j are randomly selected to be inhibitory. The external
synaptic current Iextij ðtÞ depends on the l-th spike time of an external stimulus i, sli ,
whereas the recurrent synaptic current Irecij ðtÞ depends on the k-th spike time of

neuron i, tki , each of which transmitted to neuron j

Iextij ðtÞ ¼
X
l

γ � wext
ij � δ t � sli � dsyn

� �
; ð5Þ

Irecij ðtÞ ¼
X
k

γ � wrec
ij � δ t � tki � dsyn

� �
; ð6Þ

with the synaptic delay dsyn and the weight conversion factor γ. The synaptic
weight from an external spike source i to neuron j is denoted by wext

ij , and wrec
ij is the

synaptic weight from neuron i to neuron j. Every synapse either transmits external
events sli or recurrent spikes t

k
i , i.e., if w

stim
ij ≥ 0 then wrec

ij ¼ 0 and vice versa.
Network: The LIF neurons are potentially connected in an all-to-all fashion. A

randomly selected set of Kext synapses of every neuron is chosen to be connected to
the spike sources. As every synapse could either transmit recurrent or input spikes,
the Kext synapses do not transmit recurrent spikes.

Plasticity: In the network, all synapses are plastic, the recurrent and the ones
linked to the external input. Therefore, we skip the superscript of the synaptic
weight and drop the distinction of tki and ski in the following description. Weights
are subject to three contributions: a weight drift controlled by the parameter λdrift, a
correlation sensitive part controlled by λstdp, and positively biased noise
contributions. This is very similar to STDP, however with specific depression, but
unspecific potentiation. A specialized processor on the neuromorphic chip is
programmed to update synaptic weights to wij(t+ T)= wij(t) + Δwij according to

Δwij ¼ �λstdpf tki ; t
l
j; t

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

specific depression

� λdriftwij|fflfflffl{zfflfflffl}
decay

þ nijðtÞ|ffl{zffl}
unspecific potentiation

: ð7Þ

The STDP-kernel function f depends on the pre- and postsynaptic spike times in
the time interval [t− T, t)

f tki ; t
l
j; t

� �
¼
X
tki ; t

l
j

ηstdp exp
tlj � tki
τstdp

 !
; ð8Þ

with tki > tlj , and tki ; t
l
j 2 ½t � T; tÞ, and only nearest-neighbor spike times are

considered in the sum. ηstdp and τstdp denote the amplitude and the time constant
of the STDP-kernel. The term nij(t) adds a uniformly distributed, biased random
variable

nij � unif �namp; namp

� �
þ hni ; ð9Þ

where namp specifies the range, while 〈n〉 is the bias of the random numbers.
The parameters λstdp and λdrift are chosen such that the average combined force

of the drift and the stochastic term is positive. Thus, only the negative arm of STDP
is implemented.

Initialization: The synaptic weights are initialized to wij= 0 μA. Afterward, the
network is stimulated by N Poisson-distributed spike trains of rate ν by the Kext

synapses of every neuron. By applying Eq. (7) for the total duration Tburnin weights
wij ≠ 0 μA develop. For every Kext, the network is run 100 times, each with a
different random seed. If not stated otherwise, the resulting weight matrices are
used as initial conditions for experiments with frozen weights (Δwij= 0) for a
duration of Texp on which the analysis is performed.

Simulations: To complement the hardware emulations, an idealized version of
the network is implemented in Brian 264. Specifically, no parameter or temporal
noise is considered, and weights are not discretized as it is the case for the
neuromorphic chip. For simplicity, the degree of the input is implemented
probabilistically by connecting each neuron-input pair with probability Kext/N and
each pair of neurons with probability (N− Kext)/N.

Evaluation. Binning: The following measures rely on an estimate of activity,
therefore we apply temporal binning

~xiðtÞ ¼
X
k

1 xki ≥ t � δt; xki < ðt þ 1Þ � δt� �
; ð10Þ

where δt corresponds to the binwidth, and 1 is the indicator function. With this
definition, we are able to define the binarized activity for a single process i

xiðtÞ ¼ min 1; ~xiðtÞ½ � : ð11Þ
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The variable xi(t) can represent either activity of a neuron in the network ai(t), or of
a stimulus spike train si(t), and correspondingly the spike times xki represent spikes
of network neurons or stimulus (input) spike trains.

The population activity a(t) of the network is defined as

aðtÞ ¼
XN
i¼1

~aiðtÞ : ð12Þ

Neural avalanches: A neural avalanche is a cascade of spikes in neural networks.
We extract avalanches from the population activity a(t), obtained by binning the
spike data with δt corresponding to the mean inter-event interval, following
established definitions. In detail, one avalanche is separated from the subsequent
one by at least one empty time bin43. The size s of an avalanche is defined as the
number of spikes in consecutive non-empty time bins. At criticality, the size
distribution P(s) is expected to follow a power law.

To test for criticality, we compare whether a power law or an exponential
distributions fits the acquired avalanche distribution P(s) better 45. For the fitting,
first the best matching distribution is determined based on the fit-likelihood. The
fit-range is fixed to s∈ {4, 3 ⋅ N} as the system is of finite size. An estimation of the
critical exponent αs and an exponential cutoff scut is obtained by fitting a truncated
power law

PplðsÞ / s�αs exp � s
scut

� �
; ð13Þ

for s ≥ 1. Power law fits are performed with the Python package power law
described in ref. 65.

Fano factor: The variability of the population activity is quantified by the Fano
factor F ¼ σ2a=μa , where σ2a is the variance and μa is the mean of the population
activity a(t), binned with δt= τref.

Trial-to-trial variability and susceptibility: The trial-to-trial distance ΔVRD is
obtained by stimulating the same network twice with the same Poisson spike trains,
leading to two different trials m and n influenced by variations caused by the
physical implementation. The resulting spike times in trial m emitted by neuron i,
termed tji;m , are convolved with a Gaussian

~ti;mðtÞ ¼
X
j

Z Texp

0
exp �ðt � t0Þ2

2σ2VRD

� �
δðt0 � tji;mÞdt0 ; ð14Þ

and likewise for trial n. The width is chosen to be σVRD= τref and the temporal
resolution for the integration is chosen to be 0.1 ms. From different trials m and n
the distance is calculated

ΔVRD ¼ 1
σVRD

X
m; n
m≠ n

XN
i¼1

Z 1

�1

½~ti;mðtÞ �~ti;nðtÞ�2

~ti;mðtÞ þ~ti;nðtÞ
h i2 dt : ð15Þ

To obtain an estimate of the networks sensitivity χ to external perturbations, a
pulse of Npert additional spikes is embedded in the stimulating Poisson spike trains
at time tpert

χ ¼ aðtpert þ δtÞ � aðtpertÞ
K2

ext

; ð16Þ

normalized to the number of external connection K2
ext to compensate for the

decoupling from external input with decreasing Kext. The population activity is
estimated with binsize δt= dsyn. By evaluating χ immediately after the
perturbation, only the effect of the perturbation is captured by minimizing the
impact of trial-to-trial variations.

To calculate χ and ΔVRD, each weight matrix, obtained by the application of the
plasticity rule, is used as initial condition for ten emulations with frozen weights
and fixed seeds for the Poisson-distributed spike trains of duration Tpert and Tstatic.
In addition, a perturbation of size Npert at tpert= Tpert/2 is embedded for the
estimation of χ.

Autoregressive model: Mathematically, the evolution of spiking neural networks
is often approximated by a first-order autoregressive representation. To assess the
branching parameter m of the network in analogy to42,43, we make use of the
following ansatz:

haðt þ 1ÞjaðtÞi ¼ m � aðtÞ þ h ; ð17Þ
where the population activity in the next time step, a(t+ 1) is determined by
internal propagation within the network (m), and by external input h. Here, 〈.∣.〉
denotes the conditional expectation and m corresponds to the branching ratio. For
m= 1, the system is critical, for m > 1 the system is supercritical and activity grows
exponentially on expectation (if not limited by finite-size effects), whereas for m < 1
the activity is stationary. The branching parameter m is linked to the
autocorrelation time constant by τbranch ¼ �δt=ln ðmÞ. To obtain the activity a(t)
the binwidth δt is set to the refractory time τref. Estimating m is straight forward
here, as subsampling66,67 does not impact the estimate. Thus a classical estimator
can be used, i.e., m is equal to the linear regression between a(t) and a(t+ 1). For
model validation purposes, the autocorrelation function ρa,a is calculated on the

population activity a(t) binned with δt= τref

ρa;aðt0Þ ¼
1
σ2a

XTexp=δt�t0

t¼1

ðaðtÞ � μaÞðaðt þ t0Þ � μaÞ ; ð18Þ

where σa is the standard deviation, and μa the mean of the population activity.
Subsequently, ρa,a is fitted by an exponential to yield the time constant τcorr.

Information theory: We use notation, concepts and definitions as outlined in
the review23. In brief, the time series produced by two neurons represent two
stationary random processes X1 and X2, composed of random variables X1(t) and
X2(t), t= 1, . . . , n, with realizations x1(t) and x2(t). The corresponding embedding
vectors are given in bold font, e.g., Xl

1ðtÞ ¼ fX1ðtÞ;X1ðt � 1Þ; :::;X1ðt � l þ 1Þg.
The embedding vector Xl

1ðtÞ is constructed such that it renders the variable X1(t+
1) conditionally independent of all random variables X1ðt0Þ with t0 � l þ 1, i.e.,
pðX1ðt þ 1ÞjXl

1ðtÞ;X1ðt0ÞÞ ¼ pðX1ðt þ 1ÞjXl
1ðtÞÞ. Here, (⋅∣⋅) denotes the

conditional.
The entropy (H) and mutual information (I) are calculated for the random

variables X1 and X2, if not denoted otherwise. This is equivalent to using l= 1
above, e.g., H(X1) and I(X1 : X2)=H(X1)−H(X1∣X2). We abbreviate the past state
of spike train 1 by X�

1 : thus X
l
1ðt � 1Þ ¼ fX1ðt � 1Þ;Xðt � 2Þ; :::;X1ðt � lÞg. The

current value of the spike train is denoted by X1. With this notation the AIS of, e.g.,
X1 is given by

AISðX1Þ ¼ IðX1 : X
�
1 Þ : ð19Þ

In the same way, we define the TE between source X1 and target X2

TEðX1 ! X2Þ ¼ IðX2 : X
�
1 jX�

2 Þ : ð20Þ
The lagged mutual information for time lag τ is defined as IτðX1 : X2Þ ¼

Iτ X1ðtÞ : X2ðt þ τÞð Þ. Integrating the lagged I defines the MC

MCðX1 : X2Þ ¼
XNτ

τ¼1

δt IτðX1 : X2Þ � INτ
ðX1 : X2Þ

h i
; ð21Þ

with a maximal delay Nτ= 100. The I of a sufficiently large Nτ is subtracted to
account for potential estimation biases.

To access the information modification the novel concept of PID is
applied24,25,27. Intuitively, information modification in a pairwise consideration
should correspond to the information about the present state of a process only
available when considering both, the own process past and the past of a source
process. Therefore, the joint mutual information IðX1 : X

�
1 ;X

�
2 Þ is decomposed by

PID into the unique, shared (redundant), and synergistic contributions to the
future spiking of one neuron, X1, from its own past X�

1 , and the past of a second
neuron or an input stimulus X�

2 : In more detail, we quantify

(1) The unique information IunqðX1 : X
�
1 n X�

2 Þ that is contributed from the
neurons own past.

(2) The unique information IunqðX1 : X
�
2 n X�

1 Þ that is contributed from a
different spike train (neuron or stimulus).

(3) The shared information IshdðX1 : X
�
2 ;X

�
1 Þ that describes the redundant

contribution.
(4) The synergistic information IsynðX1 : X

�
2 ;X

�
1 Þ, i.e., the information that can

only be obtained when having knowledge about both past states.

Isyn is what we consider to be a suitable measure for information modification27.
The joint mutual information as defined here is the sum of the AIS and the TE

IðX1 : X
�
1 ;X

�
2 Þ ¼ IðX1 : X

�
1 Þ þ IðX1 : X

�
2 jX�

1 Þ : ð22Þ
We calculated H, AIS, I, and TE with the toolbox JIDT68, whereas the PID was

estimated with the BROJA-2PID estimator69. The activity is obtained by binning
the spike data with δt= τref and setting l to 4 to incorporate sufficient history. I and
TE as well as the PID were calculated pairwise between all possible combinations of
processes. Results are typically normalized by H to compensate for potential
changes in the firing rate for changing values of Kext (Supplementary Fig. 1). For
the pairwise measures, H of the target neuron is used for normalization.

Reservoir computing: The performance of the neural network as a reservoir47,48

is quantified using a variant of the n-bit parity task. The network weights are frozen
(i.e., plasticity is disabled) to ensure that the network state is not changed by
the input.

To solve the parity requires to classify from the network activity aj(t), whether
the last n bits of input carried an odd or even number of spikes. The network is
stimulated with a single Poisson-distributed spike train of frequency ν acting
equally on all external synapses, i.e., the input spike times are ski ¼ sk 8 i. Spike
times are binned according to Eq. (11) with binwidth δt to get a measure of the n
past bits. The resulting stimulus activity s(t) is used to calculate the n-bit parity
function according to

pn sðtÞ½ � ¼ sðtÞ � sðt � 1Þ � :::� sðt � nþ 1Þ ; ð23Þ
with pn sðtÞ½ � 2 f0; 1g and the modulus 2 addition ⊕ , i.e., whether an odd or even
number of spikes occurred in the n past time steps of duration δt.
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On the activity aj(t) of a randomly selected subset U of neurons with cardinality
Nread a classifier is trained

vðtÞ ¼ Θ
X
j2U

wjajðtÞ �
1
2

 !
; ð24Þ

where Θ(⋅) is the Heaviside function, and v(t) is the predicted label. The weight
vector wj of the classifier is determined using linear regression on a set of training
data strain of duration Ttrain

wj ¼ argmin
wj

XT train=δt�1

t¼0

pn strainðtÞ½ � � wjajðtÞ
			 			2

 !
: ð25Þ

The network’s performance on the parity task is quantified by I pn stestðtÞ½ �; vðtÞ� �
on

a test data set stest of duration Ttest. The performance I is offset corrected by
training the very same classifier on a shuffled version of pn[s(t)]. Moreover, we
weighted each sample in the regression in Eq. (25) with the relative occurrence of
their respective class to compensate for imbalance. Temporal binning with δt=
1 ms is applied to strain, stest, as well as aj(t).

In a second task, the stimulus activity s(t) is used to calculate the n-bit sum
according to

zn sðtÞ½ � ¼ sðtÞ þ sðt � 1Þ þ :::þ sðt � nþ 1Þ ; ð26Þ
i.e., how many spikes occurred in the n past time steps of duration δt. Here, the
classifier described above is extended to multiple classes by adding readout units.
The decision of the classifier is implemented by a winner-take-all mechanism
across units.

In a third task, the readout is trained to calculate the NARMA system xn(t)

xnðtÞ ¼ α � xnðt � 1Þ
þ β � xnðt � 1Þ � 1n

Pn
i¼1

xnðt � iÞ
þ γ �~sðt � nÞ �~sðt � 1Þ þ δ ;

ð27Þ

with α= 0.3, β= 0.05, γ= 1.5, δ= 0.170, and the normalized stimulus activity

~sðtÞ ¼ sðtÞ �min sðtÞð Þ
2 �max sðtÞð Þ : ð28Þ

Again, a linear classifier is trained on the network activity

yðtÞ ¼
XN
j¼1

wjajðtÞ : ð29Þ

Here, the performance is quantified by the normalized root-mean-square error
(NRMSE)

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnðtÞ � yðtÞh it

σy

s
; ð30Þ

with the standard deviation of the vote of the linear classifier σy.

Data availability
Data available on request from the authors.

Code availability
Code available on request from the authors.
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