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ABSTRACT
For a biological agent operating under environmental pressure,
energy consumption and reaction times are of critical importance.
Similarly, engineered systems also strive for short time-to-solution
and low energy-to-solution characteristics. At the level of neuronal
implementation, this implies achieving the desired results with
as few and as early spikes as possible. In the time-to-first-spike
coding framework, both of these goals are inherently emerging
features of learning. Here, we describe a rigorous derivation of error-
backpropagation-based learning for hierarchical networks of leaky
integrate-and-fire neurons. This narrows the gap between previous
existing models of first-spike-time learning and biological neuronal
dynamics, thereby also enabling fast and energy-efficient inference
on analog neuromorphic devices that inherit these dynamics from
their biological archetypes.
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1 INTRODUCTION
In many applications, the time and energy to solution represent
essential commodities. For spiking networks, optimal use of these
resources is often equivalent to having as few and as early spikes as
possible. However, the discrete and therefore discontinuous nature
of spikes makes it difficult to apply optimization algorithms based
on differentiable loss functions.
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In the time-to-first-spike (TTFS) coding scheme, a neuron en-
codes a continuous variable as the time elapsed before its first spike.
For such networks, an efficient gradient-descent-based learning
scheme was proposed in [4], using error backpropagation on a
continuous function of output spike times. However, this approach
is limited to a neuron model without leak, which is neither bio-
logically plausible, nor compatible with most analog VLSI neuron
dynamics [8].

We generalize the method to include an exact, closed-form ex-
pression for finite membrane time constants (Section 2), demon-
strate the learning process using a 3-layer network in software simu-
lations (Section 3), and apply this framework to a network emulated
on neuromorphic hardware (Section 4). The latter is particularly
relevant for neuromorphic systems based on analog neurosynap-
tic cores, as it explicitly exploits their inherent parallelism, speed
and/or power efficiency, while ensuring direct compatibility with
the finite time constants of their neuron and synapse dynamics.

2 DIFFERENTIABLE FUNCTIONS FOR ERROR
BACKPROPAGATION

Consider a hierarchical feed-forward network as shown in Fig. 1A.
In our coding scheme, information is provided by the first-spike
times of neurons: input neurons spike earlier for black pixels as
compared to white pixels and the inferred class is given by the first
neuron to spike in the label layer (Fig. 1 B).

Error backpropagation requires a loss function that is differ-
entiable with respect to both synaptic weights and output spike
times. Here, we choose a loss that, when optimized, decreases the
first-spike time of the correct label neuron, while maximizing its
(temporal) distance to the spike times of all other label neurons:

L[t, j] = − log
[ exp(−tj /ξ τs)∑

i exp(−ti /ξ τs)

]
+ α exp

(
tj
τs

)
, (1)

with label spike times ti , the index of the correct label j, synaptic
time constant τs and scaling hyperparameters ξ and α .

The gradient of the loss now depends on the used neuron model.
For leaky integrate-and-fire (LIF) neurons with current-based syn-
apses, spikes occur when the voltage

u(t) ∝
∑
i wiθ (t − ti )

[
exp

(
−
t−ti
τm

)
− exp

(
−
t−ti
τs

)]
(2)

crosses the threshold ϑ . This is markedly different from the much
simpler (non-leaky) integrate-and-fire (IF) model [4], where the
membrane time constant τm is infinite and single post-synaptic
potentials (PSPs) are hence monotonic. Whereas a sequence of
small weight reductions can push individual IF output spikes to
arbitrary points in time, the latest possible spike time of an LIF
neuron is related to the PSP peak, which occurs at a finite time and
is independent of the synaptic weight (Fig. 1C,D). Since the PSP
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Figure 1: (A) Hierarchical network structure and neuron numbers per layer. Colors encode labels. (B) Input (□,■), hidden (◦) and label (▲) spike times. The first
label neuron to spike determines the inferred class (▲). (C) Membrane voltage traces before (top) and after (bottom) training, with input (upward arrows) and
output (downward arrows) spikes. Voltage traces are not used during training, only spike times, given in units of τs. (D) Illustration of a key challenge posed
by finite membrane time constants: small variations of input spike times or synaptic weights (not shown) result in a discontinuity induced by the forgetting
membrane. (E) Input pattern set consisting of four classes. (F) Accuracy increase and corresponding decrease of loss during learning. (G) Evolution of label neuron
spike times during training for the same class as in C. The correct neuron’s spike time decreases while all others are pushed back, producing a distinct gap. (H,I)
Accuracy, loss, spike time evolution during training and raster plot after training on BrainScaleS-1 [6]. (J,K) Same as in (H,I) but on BrainScaleS-2 [1].

shape is a difference of exponentials, a general closed-form solution
for u(T ) = ϑ does not exist. However, for special cases, we can find

T
τs = ln

[
a1

a∞+ϑ

]
, τm = ∞ (IF) ; (3)

T
τs =

b
a1 −W

[
−
дLϑ
a1 exp

(
b
a1

)]
, τm = τs (LIF) ; (4)

T
τs = 2 ln

{
2a2/

[
a1 +

(
a21 − 4a2дLϑ

)1/2]}
, τm = 2τs (LIF) ; (5)

where дL is the leak conductance towards a resting potential EL = 0
andW the LambertW function,an =

∑
i wie

ti /nτs ,b =
∑
i wi

ti
τs e

ti /τs

with summation over all i with ti < T . Eq. (3) is the solution dis-
cussed in [4]. All these equations now allow a recursive calculation
of the required ∂L/∂ti and ∂ti/∂wik . While both new rules for
finite τm work well in practice [3], we found that learning is more
robust for τm = τs, so we focus on this scenario in the following.

3 CLASSIFYING A SIMPLE DATASET
We showcase the above framework in a pattern classification task
(Fig. 1E), with the spiking network simulated in NEST [2]. To assist
learning, the updates were normalized, and for layers with too few
output spikes the weights were increased to have sufficient activity.

Fig. 1F shows the evolution of the loss during training, along
with the associated classification accuracy. As misclassifications
are given disproportionate weight, the loss continues to decrease
long after perfect accuracy is achieved.

While not used for training, voltages help understand the learn-
ing process. Fig. 1C shows voltages in the label layer for one class
(orange) before and after training, illustrating how the trained
weights make the correct neuron spike earliest by a large margin.

4 FAST NEUROMORPHIC CLASSIFICATION
In this framework, classification speed is a function of the network
depth and the time constants τm and τs. Assuming typical biological
timescales, most input patterns in the above scenario are classified
within several ms. By leveraging the speedup of neuromorphic sys-
tems such as BrainScaleS [1, 7], with intrinsic acceleration factors
of 103-104, the same computation can be achieved within µs. The
robustness of our framework for the given task is evidenced by the
clear separation of first-spike times (Fig. 1G,H,J).

However, the speed advantages of such analog systems com-
pared to software simulations come at the cost of reduced control,
and training needs to cope with phenomena such as spike time jitter
and neuron parameter variability. In particular, this implies τm , τs,
so the derived learning rule is only an approximation of true gradi-
ent descent in these systems. Nonetheless, we found that, on both
BrainScaleS generations, the application of the ideal learning rule
still leads to good results for the chosen task (Fig. 1H-K). The num-
ber of training steps can only be compared roughly because of the
critical dependence on the learning rate, but when using similar
hyperparameters, we observe convergence after a similar number
of training steps in both software simulations and hardware emu-
lations (Fig. 1F,H,J). Since the dynamical timescales directly affect
the duration of the network emulation between synaptic updates,
the hardware acceleration provides a corresponding reduction of
the total training time.

5 DISCUSSION AND OUTLOOK
Building on work from [4], our model extends the backpropagation-
based time-to-first-spike learning framework to include more bi-
ologically plausible and neuromorphic-hardware-compatible neu-
ronal dynamics. As the algorithm minimizes the time before the
first spike in the label layer, the trained network needs less than
2τs to classify an input pattern, using, on average, less than one
spike per neuron in the network. Importantly, synaptic updates
only require access to spike times and no other variables such as
voltages, which are not easily accessible on most analog substrates.

The speed and sparsity enforced by the learning paradigm is
particularly beneficial for neuromorphic systems when consider-
ing the critical aspects of time-to-solution, energy-to-solution and
I/O bandwidth. On the accelerated BrainScaleS systems, a single
classification takes less than 10 µs of wall-clock time. Taking into
consideration relaxation times between patterns, our setup is able
to handle a pattern throughput of at least 20 kHz, independently of
emulated network size. The complexity of the learned dataset was
mostly limited by the size of the used substrate and we expect the
framework to scale to significantly more challenging problems, as
suggested by the FPGA-based experiments in [5].
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