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Abstract—BrainScaleS-1 is a wafer-scale mixed-signal ac-
celerated neuromorphic system targeted for research in
the �elds of computational neuroscience and beyond-von-
Neumann computing. The BrainScaleS Operating System
(BrainScaleS OS) is a software stack giving users the possibil-
ity to emulate networks described in the high-level network
description language PyNN with minimal knowledge of the
system. At the same time, expert usage is facilitated by
allowing to hook into the system at any depth of the stack.
We present operation and development methodologies im-
plemented for the BrainScaleS-1 neuromorphic architecture
and walk through the individual components of BrainScaleS
OS constituting the software stack for BrainScaleS-1 plat-
form operation.

I. Introduction
State-of-the-art neuromorphic architectures pose many

requirements in terms of system control, data preprocessing,
data exchange and data analysis. In all these areas, software
is involved in satisfying these requirements. Several neuro-
morphic systems are directly used by individual researchers
in collaborations, e.g., [1–4]. In addition, some systems
are operated as experiment platforms providing access for
external users [1–3, 5].

Especially systems open for a broader range of users
require clear and concise interfaces. Neuromorphic platform
operators have additional requirements in resource manage-
ment, runtime control and —depending on data volumes—
“grid-computing”-like data processing capabilities. At the
same time, usability and experiment reproducibility are
crucial properties of all experiment platforms, including
neuromorphic systems.

Modern software engineering techniques such as code
review, continuous integration as well as continuous de-
ployment can help to increase platform robustness and
ensure experiment reproducibility. Long-term hardware
development roadmaps and experiment collaborations draw

attention to platform sustainability. Technical decisions need
to be evaluated for potential future impact; containing and
reducing technical debt is a key objective during planning
as well as development. Regardless of being software-driven
simulations/emulations, or being physical experiments, mod-
ern experiment setups more and more depend on these
additional tools and skills in order to enable reproducible,
correct and successful scienti�c research.

This paper describes the results of a ten-year project
delivering the software environment and platform operation
tools for the BrainScaleS-1 neuromorphic system. The
following sections describe the hardware substrate and give
a general overview. Section II introduces the methods and
software tools we employ. In section III, the scopes and
implementation details of the main software layers and
libraries are explained, followed by an overview over the
operation of the platform in section IV. Section V exempli�es
the usage of the BrainScaleS Operating System on a simple
experiment and describes larger experiments carried out in
the past. We close in section VI with an overview over future
developments and discuss our endeavor and the lessons
learned in section VII.

A. The BrainScaleS-1 Neuromorphic System

Classical neuromorphic systems make use of VLSI to imple-
ment electronic analog circuits mimicking neuro-biological
architectures in the nervous system [6]. Contemporary
systems also employ mixed-signal techniques to enable
�exible system connectivity based on conventional digital
interfaces [7]. Recently, purely digital systems emerged [1,
3, 4]. Compared to the analog approach typical advantages
of such systems are: deterministic behavior and arbitrarily
programmable neuron dynamics. However, when comparing
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Fig. 1: (a) 3D-schematic of a BrainScaleS Wafer Module (dimensions:
50 cm × 50 cm × 15 cm) hosting the wafer (A) and 48 FPGAs (B).
The positioning mask (C) is used to align elastomeric connectors
that link the wafer to the large main PCB (D). Support PCBs provide
power supply (E & F) for the on-wafer circuits as well as access (G)
to analog dynamic variables such as neuron membrane voltages.
The connectors for inter-wafer and o�-wafer/host connectivity
(48 × Gigabit-Ethernet) are distributed over all four edges (H) of
the main PCB. Mechanical stability is provided by an aluminum
frame (I). (b) Photograph of a fully assembled wafer module.

at the same technology node the energy as well as area
consumption is increased.

Based on the ideas of a single-chip implementation called
Spikey [8], BSS-1 is a mixed-signal architecture providing
accelerated Adaptive Exponential Integrate-and-Fire (AdEx)
neuron dynamics and plastic synapses [5, 9, 10]. While many
neuromorphic systems target biological real-time execution
(i.e. model time constants in the same order as their biological
counterpart) [11], BSS-1 evolves in continuous time, typically
at a speed-up factor of 1000–10 000 faster than biological real
time. Consequently, real-time interfacing to, e.g., sensors and
robotic applications are not the main goal of the architecture.
The design focuses on fast model dynamics, controllable
model parameters and system scalability, thereby allowing
for time-compressed emulations of longer experiment time
scales. Plasticity and learning processes can therefore be
investigated in manageable time frames.

Figure 1 depicts a BSS-1 wafer module. The main con-
stituent is a silicon wafer, manufactured in 180 nm Comple-
mentary Metal Oxide Semiconductor (CMOS) technology,
carrying 384 HICANN chips that are interconnected via an
on-wafer bus network. Each chip hosts up to 512 AdEx
neurons and 113k plastic synapses. 48 Xilinx Kintex-7
Field Programmable Gate Arrays (FPGA) provide an I/O
interface for con�guration, stimulus and recorded data. The
connection between these FPGAs and the control cluster
network is established via 1-Gigabit and 10-Gigabit Ethernet,
cf. Schmitt et al. [12].

B. Performing Experiments

Providing access to and experimenting with neuromorphic
systems is an active �eld of research [13–16]. In 2017 Schu-
man et al. [17] highlighted that:

Supporting software will be a vital component in
order for neuromorphic systems to be truly successful
and accepted both within and outside the computing
community.

We second this statement and this paper details our approach
on how to tackle the software challenge in the context
of BSS-1 in particular. However, many of the developed
solutions are of general scope and should be applicable to
other systems that have similar features and targets.

Di�erent approaches to user interfaces are viable, e.g.,
the interface for Spikey —a previous chip developed by the
Heidelberg group— mainly used Python for con�guration
and experiment description [18]. In contrast, BrainScaleS
OS provides only thin Python wrappers for all user-facing
Application Programming Interfaces (API) while the core
software is written in C++, cf. section II-B2. Spikey focused
on PyNN as the experiment description language [19], see
section II-B1. As of today, common spiking neural network
simulators and a few hardware emulators support PyNN [13,
19]. Further work investigated the typical work�ow when
porting experiments from pure software simulations to
neuromorphic platforms [20].

BSS-1 has a fairly large parameter space, O(50 MiB per
wafer) of static con�guration data, and the analog char-
acteristics of the system require expert knowledge when
con�guring the system on a low abstraction level. Thus, an
easy-to-use interface and the support of non-expert users
are the main objectives of the BSS-1 software development
e�ort. In addition to the neuroscienti�c API, the current
BSS-1 software stack provides access a multitude of inter-
faces to manipulate the experiment description and system
con�guration on lower level, cf. sections III-A and III-B. For
example, con�guring certain hardware entities in a manual
fashion but still being able to rely on the automated process
in other areas facilitates the commissioning of new systems.
This approach allows for exposing expert-level manipulation
of the complex neuromorphic substrate without giving up all
bene�ts of automation. Finally, increasing numbers of plat-
form users, the parallel operation of production-type systems
as well as commissioning future hardware generations pose
challenges for the development and operation methodologies:
platform robustness, experiment reproducibility and, to a
lesser extent, the reduction of turnaround times between
hardware revisions are essential.

C. Experiment Platform

Providing the research community with access to neuro-
morphic systems has been an ongoing e�ort pushed by large-
scale research projects, such as the Human Brain Project.
In the case at hand, a large-scale neuromorphic system is
operated in a multi-user setting. From a high-performance
computing (HPC) perspective, “fast” neuromorphic systems
resemble spiking neural network accelerators. To e�ciently
utilize the available hardware systems requires solutions that
are also common in HPC centers: resource management,
time-sharing, fairness, accounting, monitoring and visual-
ization. However, providing access to external researchers



also increases the need for robust operation, experiment
reproducibility and support.

II. Methods and Tools
Performing well-controlled experiments on the BSS-1

system is the main task of BrainScaleS OS. In broad terms,
experiments are de�ned by what and when, representing
the data and the control �ow. APIs for spiking neural
network (SNN) descriptions, e.g., PyNEST or simulator-
agnostic PyNN typically focus on the initial experiment
setup, i.e. network topology, model parameters, plasticity
rules, recording settings and the stimulus de�nition. Similarly,
neuromorphic hardware requires an initial con�guration that
is typically performed before any stimulus is connected to
the SNN.

Neuromorphic hardware is also di�erent, as it often
needs additional —more technical— settings compared to
simulators which numerically calculate the time evolution
of di�erential equations as, e.g., described by Einevoll et al.
[21]. In our case, APIs that solely concentrate on aspects
of neuron and synapse models, network topology and
stimulus are insu�cient, especially during commissioning.
Usability for both experts and non-experts is the key feature
of the software stack. The main points of usability are:
1) encapsulation of domain knowledge into software layers;
2) validity checking of settable parameters; 3) error reporting
and explicit error handling; 4) consistency in the API layers
concepts, and their representation of hardware entities;
5) availability of tested settings and con�guration protocols
to the user; 6) possibility to inject customized behavior at
all levels of the software stack.

The development of the BrainScaleS-1 platform started
already in 2008. Though many hardware and software compo-
nents are now over a decade old, updates and improvements
are continuously being made. In this section, we shortly
describe the development methodology and foundations for
the BrainScaleS OS.

A. Methodology
Compared to previous e�orts made when developing the

software stack for Spikey [18], large-scale neuromorphic
systems introduce additional complexity. For example, multi-
chip setups require more automation and robustness in all
parts of con�guration and runtime control. Hence, more
people collaborate on di�erent aspects of the system which,
in turn, introduces friction in the development and commis-
sioning process. When the development of BrainScaleS OS
started, we employed version control, personal interaction
and test frameworks. Within the �rst four years of develop-
ment, a chat system [22] —also utilized for users support—,
continuous integration [23] and formalized code review [24]
were added to the development process. At the time of
writing, over 10 000 changes were submitted for discussion.
We do not adopt a strict development process framework,
e.g., like scrum, however, we do include ourselves within
the agile movement. Weekly meetings provide the scope
for structured, long-term development, whereas our chat
and code review systems encourage technical discussions of

details. The scenario is similar to CERN-style development
where the developers are also to a large extent the users [25].
Over 120 individuals contributed across various projects. In
the following paragraphs, we introduce the key concepts.
1) Open Source: Open Source software is a vital part in

almost all �elds of research. If not stated otherwise, the
developed libraries and tools are published at https://github.
com/electronicvisions under the LGPL v2.1 [26] license. We
also actively report bugs and push features upstream to
third-party libraries.

2) Software Design: The long-term software and hardware
development roadmaps are aligned to each other. Weekly
software development meetings form the basis of the
collaborative development. Problems and feature requests
are discussed as well as medium-term development planning
is performed. If needed, smaller teams are formed to come
up with proposals that are then discussed in the plenum.
However, the process is not fully democratic and at the end
the maintainers take the �nal decisions.

3) Review: The BrainScaleS hardware and software devel-
opment teams adopted an explicit review-based development
scheme. Tracking of the development history and the
current state of all components is handled by a set of
version-controlled repositories. Developers propose changes
to aspects of this state which are subsequently reviewed by
other developers. At the end, the automated veri�cation of
each change and an iterative review process result in a �nal
version which is then applied to the repository and becomes
the new current state. This enables a rolling release scheme.
4) Veri�cation: Based on the ideas of the continuous

integration development methodology, the BSS veri�cation
methodology consists not only of software tests but also of
hardware-based as well as simulation-based tests. For each
proposed change the test result is fed back into the review
system. When changes to software components are applied
to the current state, the modi�ed software is automatically
deployed. Nightly tests serve as a measure for hardware
platform health. The same experiment protocol can be used
on hardware and in a combined FPGA and digital chip
simulation. The latter is used for pre-tapeout veri�cation
during chip development.
5) Software Environment: Reuse of existing software

packages reduces development costs but also introduces
technical debt in the form of dependencies on external
software packages [27]. BrainScaleS uses a containerized
and explicit software dependency tracking system based
on singularity [28] and spack [29]. Updating the software
environment is based on the same review and veri�cation
system as before: developers propose a change to the
dependency list, a testing container image is built and all
tests are executed using this container image. If the container
has build and code review as well as all tests have passed, the
proposed change can be applied and the modi�ed container
image becomes the new default container image.
B. Foundations
1) PyNN: PyNN [19] is a simulator-agnostic domain-

speci�c language for describing spiking neural network

https://github.com/electronicvisions
https://github.com/electronicvisions


models. Rooted in computational neuroscience, it focuses on
the initial network topology, model parameters and plasticity
rules, de�nition of input stimulus and “recording” settings.

Matching our goal of an backend-independent experi-
ment description language for spiking neural networks,
we adopted PyNN as our high-level API. However, BSS-
1 is not as �exible as a software simulator. For example,
it only supports a �xed neuron model, limited-resolution
synapses and a sparse connectivity matrix. Transforming a
user-de�ned PyNN experiment into a similar, well-�tting
hardware con�guration is challenging task. In particular, it
is a matter of neuron and synapse placement, spike routing
and model parameter translation. Due of imperfections of
the analog substrate and limited resources, like bandwidth,
there will always be di�erences to the user-de�ned target.
For a detailed study, see Brüderle et al. [20].

2) Programming Environment: GNU/Linux is a �exible and
well-supported host environment when developing custom
hardware. In addition, computational neuroscience relies
heavily on libraries and tools that are available for *NIX -like
operating systems. Therefore, we only target Linux.

All core libraries are written in C++ with the exception
of parts of the transport layer that need a tight coupling to
the Linux kernel and are therefore written in C.

We chose C++ because of several reasons that are not
unique to an neuromorphic operating system but apply to
requirements of large software suites that have at least a
modest need for performance and robustness. It is a multi-
paradigm strongly-typed compiled language which leads to
the discovery of many problems at compile time instead of
runtime. C++ supports many low-level manipulations that
are essential when directly communicating with a custom
hardware system. For example, in lower software layers the
in-memory layout of data structures is required to match
the formatting expected by the system. We always use the
latest language standard that typical open-source compilers,
e.g., GCC [30] and LLVM [31] support.
3) Python Wrapping: In experimental usage settings,

scripting languages o�er large advantages compared to
compiled languages. For example, the read–eval–print loop
(REPL) allows for iterative testing of the hardware and
also for exploration of the software itself. Integration with
the broad Python ecosystem of scienti�c libraries, e.g.,
numpy [32] or matplotlib [33], is an advantage in scienti�c
e�ciency. Therefore, we support Python in addition to
C++. To link the Python and the C++ world, we adopted a
fully automated wrapper code generation scheme based on
py++ and pygccxml [34]. The generated wrapper code uses
boost::python [35]. Customizations of the wrapping process
have been collected in a library.
4) Serialization: Serialization describes the process of

transforming in-memory data structures or object states into
a store and loadable format. This format can be written to,
e.g., disk and loaded to restore the in-memory data structures
at a later point in time. Together with a framework for
remote procedure calls, such as RCF [36], this allows for
inter-process communication of higher-level data structures.

Though C++ does not o�er built-in support for serialization,
it can be made available through several third party libraries.
For BrainScaleS OS, we decided to use boost::serialization.

Listing 1: Example for boost serialization.
class Spike
{
// ...
private:
template<typename Archiver>
void serialize(Archiver& ar,

unsigned int const /*version*/)
{
using boost::serialization::make_nvp;
ar & make_nvp("addr", m_addr)

& make_nvp("time", m_time);
}

addr_type m_addr;
time_type m_time;

};

Listing 1 exempli�es the serialization of the two member
variables of the Spike class. More complex serialization
functions are needed, e.g., when references and pointers
are involved or di�erent versions should be considered to
support long-term compatibility for pre-existing data sets.
However, boost::serialization has excellent support for all
these scenarios. The on-disk format ranges from binary to
text-based, such as JSON (custom extension) and XML.
5) Utility Libraries:

a) Ranged enumeration types: In C++ numeric types do
not have built-in support for range checks. Yet, it is bene�cial
to have such concepts, since over and under runs can be a
threat to both correctness and security. The rant [37] library
provides ranged integers and provides compile-time as well
as runtime checking of ranges. In case of compile-time
statements, violations produce compile errors; runtime errors
raise exceptions. Checks are implemented to be lightweight
enough to be included in production code. If required, ranged
types can be replaced by their native counterparts via a
compile �ag to get rid of any remaining overhead. Ranged
integers are heavily used for the coordinates described in the
next section. Listing 2 demonstrates the use on the example
of a ranged integer type.

Listing 2: Example for a ranged type.
rant::integral_range<int, 0, 5> ranged_integer;

// e.g. 6 => throws
ranged_integer = get_large_int();

// fails to compile (constexpr)
ranged_integer = -1;

// works
ranged_integer = 3;

b) Python-style C++ convenience library: pythonic++ [38]
brings some Python-style programming to C++ for ease and
more expressive code. Listing 3 exempli�es this idea on the
enumeration during the iterations over a vector.



Listing 3: The pythonic::enumerate function can be used to count
the iterations over an STL conform container.
using namespace pythonic;

typedef std::vector<int> vec;

for (auto v : enumerate(vec{0, -1337, 42}))
{
std::cout << v.first << " " << v.second << '\n';

}
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Fig. 2: The software stack as layers of abstraction. The core is
the neuromorphic hardware BSS-1. It is followed by physical and
software communication layers, i.e. the FPGAs and communication
layer, followed by hardware abstraction and core functionality like
mapping and routing. Next comes expert-level software used for
blacklisting and calibration and the layer providing the PyNN
abstraction. The last layer are the user-level applications and
experiments.

c) Bit Manipulation Library: bitter [39] provides a
common interface for bit operations on integral types as
well as std::bitset. Operations like reversal or cropping to
ranges are implemented.

III. Implementation
The BrainScaleS OS consists of several software compo-

nent categories which are described in the following sections,
see �g. 2 for an overview. At the end, the user is enabled to
describe and execute a neuromorphic experiment without
detailed knowledge of the underlying parts.

A. Con�guration

The correct con�guration of any hardware is a non-trivial
task, e.g., one needs to ensure to write the correctly formatted
command to the correct memory location, while taking
into account other subtleties as, e.g., con�guration order. In
addition, there can be a mismatch between the addressing
of individual circuit instances and their physical or logical
placement. Another aspect is con�guration timing as some

entities require settling times that have to be taken into
account. To address the issues raised, the BrainScaleS OS
comprises of several libraries that allow for an easy and
correct con�guration and control �ow.
1) Coordinate System: In natural sciences, the proper

choice of a coordinate system often strongly contributes
to a simple and clean solution for a problem. We argue that
this applies also to the usage of hardware in general and
in particular to neuromorphic computing. The myriad of
components on a wafer lead to a con�guration space in doe
order of 50 MiB [20]. The memory for 4-bit weight and 4-bit
address �lter of the 384 chips × 113k synapses per chip alone
amounts to 41 MiB per wafer. One needs a representation
of those components in software [40].

Many symmetries in chip layout combined with wafer-
scale integration naturally lead to abstraction on di�erent
scales. Figure 3 gives an overview of a BSS-1 wafer and
the structure of its components. Framed in blue one can
see the layout of a single HICANN chip and its high
degree of self-similarity. In the background one silicon wafer
containing 384 of those chips is shown. This translational
symmetry is re�ected in a hierarchical structure of the
coordinates. For each component we de�ne a coordinate
with the smallest granularity which then can be combined
to de�ne a higher hierarchical layer. We will illustrate this
exemplarily with the coordinate for neuron circuits. First, we
represent one neuron circuit on a chip: NeuronOnHICANN.
This can then be combined with HICANNOnWafer resulting
in NeuronOnWafer representing a speci�c neuron circuit
on a wafer. Finally, NeuronGlobal can be composed from
NeuronOnWafer and Wafer to uniquely identify one neuron
circuit in the whole BSS-1 system. It is also possible to
cast down to lower levels of representation, e.g., NeuronOn-
Wafer::toNeuronOnHICANN(). Besides “lateral” conversions
between hierarchical layers it is also possible to translate
“horizontally” among coordinates on the same level. For
example SynapseOnHICANN::toNeuronOnHICANN() yields
the matching Neuron of a Synapse. See listing 4 for additional
examples.

Another important feature is the possibility to create two
dimensional grids that also have a notion of orientation,
e.g., north and south. SynapseOnHICANN for example
is structured in a grid of neurons per chip hemisphere
and synapses per neuron. Grid coordinates also provide
enumeration which is done in row-major order as shown
in orange in �g. 3. Enumeration enables iteration of all
coordinates which is supported in both, C++ and Python,
cf.listing 5 and listing 5. A string serialization exists that
serves as both, convenient short format for logging and
for argument parsing, cf. section III-C1. An example for
this functionality can be found in listing 7. The consistence
of this hierarchical structure is essential for a descriptive,
reliable and maintainable low-level code base. About 80
distinct coordinate types are used to describe elements of a
wafer module.

2) Bit Formatting: Typically, to con�gure a hardware
entity a pair of an address and its content is needed.



Listing 4: Example coordinate conversion.
nrn = NeuronOnWafer(NeuronOnHICANN(Enum(5)),

HICANNOnWafer(Enum(5)))↪→

nrn.toNeuronOnHICANN()
nrn.toHICANNOnWafer()

Listing 5: Example coordinate iteration in C++.
for(auto nrn : iter_all<NeuronOnHICANN>()) {

std::cout << nrn << '\n';
}

Listing 6: Example coordinate iteration in Python.
for nrn in iter_all(NeuronOnHICANN):

print(nrn)

Listing 7: Example coordinate short formatting.
h = HICANNGlobal(HICANNOnWafer(Enum(5)), Wafer(6))
print(short_format(h))
# W006H005
print(from_string("W3"))
# Wafer(3)

Fig. 3: Chip structure and coordinate system of a BSS-1 wafer: the
background shows a silicon wafer with highlighted structures of
chips grouped in units of 4-by-2. The zoom-in shows one single
HICANN chip layout. Framed in white are various component
categories. Black lines illustrate the structure of intra- and inter-chip
event buses. The row-major ordering scheme of a two-dimensional
coordinate is shown in orange over a synapse array.

Addresses are used to identity writable and/or readable
memory locations. The formatting of the content may
depend on various aspects, e.g., the entity’s physical location
on the chip. Therefore, functionality to address hardware
entities and to format bits is an essential part of the
software [41]. We use coordinates, section III-A1, to logically
represent addresses. The content is represented as data
structures encapsulating functionality of the underlying
entity, cf. listing 8.

During development, for commission, expert use and
debugging, an iterative & interactive usage is facilitated by
Python bindings for the lower-level con�guration functions.

Listing 8: Excerpt of the data structure SynapseDriver.
struct SynapseDriver {
public:

bool is_enabled() const { return enable; }
...

private:
bool enable = false
...

};

Listing 9: Example for a pair of getter and setter functions of the
stateless hardware abstraction layer.
void set_synapse_driver(

Handle::HICANN& handle,
SynapseDriverOnHICANN const& sdoh,
SynapseDriver const& driver);

SynapseDriver get_synapse_driver(
Handle::HICANN& handle,
SynapseDriverOnHICANN const& sdoh);

This allows to, e.g., change parts of the con�guration —also
out of order w.r.t. the canonical �ow— and directly observe
the e�ects.

Listing 9 gives an example for a pair of getter and
setter functions. The handle represents the backend, either
accessing the hardware, the simulation backend described
in section III-B3, or other debug facilities. The coordinate
SynapseDriverOnHICANN speci�es for which synapse driver
the settings in the SynapseDriver container driver should be
applied. The getter function is the same in reverse. Here,
only the handle and the coordinate are passed. The bits read
back from the hardware are decoded into and returned as a
SynapseDriver object.
3) High-level Con�guration: The core principal of the

con�guration of the neuromorphic hardware is that the user
�rst speci�es the desired state to which then the hardware
is con�gured to [42]. Then, the hardware is con�gured to
this state. To facilitate this user-driven con�guration, all
con�gurable settings have functional names, e.g., the neuron
con�guration. By this, a viable level of “self-documentation”
is achieved. The user-facing con�guration does not necessar-
ily re�ect the exact granularity in which the hardware can
be con�gured, however, it does re�ect, as stated above, an
achievable �nal state which then also allows validity checks.

Listing 10: Example for the stateful hardware abstraction layer.
sthal::Wafer wafer;
auto& hicann = wafer[HICANNOnWafer(Enum(5))];
hicann.synapses[SynapseOnHICANN(Enum(123))].weight

= SynapseWeight(3);↪→

Listing 11: Example for per-FPGA parallelism via OpenMP.
#pragma omp parallel for schedule(dynamic)
for (size_t fpga_enum = 0; fpga_enum <

FPGAOnWafer::end; ++fpga_enum) {↪→

...
}

Listing 10 demonstrates how to set the weight of a single
synapse. The needed objects and bookkeeping structures are
created on the �y. Also, checks on the availability database,



see section III-C1, are performed and raise exceptions if the
requested resources are not available.

The con�guration is carried out with the maximum
parallelism supported by the system, e.g., on a per-FPGA-
basis with the help of OpenMP, see listing 11.

B. Control

1) Experiment Control Flow: The BSS-1 platform supports
two distinct operation modes, both relying on FPGAs for
data I/O and for control �ow. Figure 4 illustrates the control
�ow for the primarily used mode, the batch mode, which
suits independent pre-de�ned experiments.

In either case, the �rst step is con�guring the neuromor-
phic hardware. Many con�guration register accesses on the
chip use a non-blocking access scheme requiring correct
timing. This is implemented by inserting wait instructions
between con�guration commands; the time intervals use
a static worst-case timing model. It is also important to
con�gure hardware entities in a valid order. This is especially
relevant when entities are con�gured in parallel, e.g., per
FPGA. Synchronization barriers must then be added to the
con�guration �ow so that only when all entities have reached
a certain stage, con�guration is continued. Another point to
take care of is enabling triggers for, e.g., the recording of
analog membrane traces which are supposed to start with
the experiment; it is the point in time when the stimulus
begins and recording of spike events is enabled.

Timed spike event release as well es recording is handled
by 48 FPGAs on each wafer module. Each FPGA has accesses
to 1.25 GiB of DRAM providing bu�er memory for, e.g., input
stimulus and recorded data. In case of the batch mode, the
complete input to the network is prede�ned on the host,
then sent to the FPGA and released upon experiment start.
Simultaneously, spikes generated by the neuromorphic chips
are recorded. At the end of the experiment, the recorded
spikes and analog membrane traces are sent back to host. One
typical application of this mode are deep neural networks
where synaptic weights are optimized by an o�ine learning
algorithm. If the hardware is allocated for a longer time
period, the experiment framework also supports selectable
automatic di�erential con�guration reducing con�guration
overhead in later iterations.

In the other so called hybrid operation mode parts of
the network or a virtual environment are simulated on the
control cluster and interact with the spiking neural network
running on BSS-1. This mode of operation is also known as
real-time closed-loop. Control �ow di�ers compared to the
aforementioned mode as spike events sent by the host are
not pre-bu�ered and timed by the FPGA but instead, they
are directly injected into the chip upon arrival. Vice versa,
emitted spikes from the network are directly sent to host
and reacted upon. The challenge is to match the acceleration
factor in both realms and keep the latency of the network
communication as low as possible, see section III-B2.

2) Communication Layer: There are two main categories of
data which need to be transferred between the neuromorphic
hardware and conventional compute nodes. On the one hand

FPGA

static
configuration

Host

spike-train
upload

end of
configuration

spike-train
download

end of
experiment

start of
experiment

experiment
runtime

input
stimulus
(spikes)

Fig. 4: Control �ow of a typical experiment in batch mode. Black
boxes indicate activity of host and FPGA during the di�erent steps.

there is con�guration data, e.g., neuron parameters, network
topology, and on the other hand the activity of the network,
i.e. spike events. Due to the accelerated operation of the
BSS-1 system typical neuron activities of O(100 Hz) result in
on-wafer event rates exceeding Tera-Events per second. This
demands high-throughput data exchange between BSS-1 and
cluster control nodes. Ethernet was chosen as conventional
data network equipment is readily available and, at the time
of writing, commercial hardware supports bandwidths of up
to 100 GiB/s. On BSS-1, the external connectivity is provided
by 48 1-Gigabit Ethernet links. However, this bandwidth is
still not su�cient to completely monitor the aforementioned
on-wafer activity. The FPGAs provide an additional bu�er
stage for input and output data, but �ltering and selecting
in- and outputs is still needed. In the case of a deep neural
network this would for example simply be the in- and output
layers.

Furthermore, transfer of data, especially con�guration
data, needs to be robust. For Ethernet-based communication
the Transmission Control Protocol (TCP) on top of the
Internet Protocol (IP) is most commonly used as a reliable
secure transport layer protocol. At the time of development
there where no open source FPGA implementations of TCP
available and even now available solutions are very resource
demanding [43]. Hence, the BSS-1 FPGAs implement a
custom sliding-window protocol with an automatic resend
mechanism (ARQ) on top of the unreliable User Datagram
Protocol (UDP) over IP. The software implementation has
been open-sourced in the past [44]. Additional features anal-
ogous to congestion control, like roundtrip-time estimation
as well as the slow start algorithm have been implemented
in both, software and hardware.

However, the hybrid operation mode, cf. section III-B1,
demands low-latency and low-jitter transport of spike events;
con�guration data is still transmitted via the reliable custom
transport layer protocol but spike events are transferred
best-e�ort facilitated by memory-mapped zero-copy receive
and transmit ring bu�ers based on PACKET_MMAP [45].

Additional measures like setting CPU core a�nity are
taken to reduce jitter to a minimum on the host side.

3) Hardware Simulation: The so-called “executable system
speci�cation” [46] (ESS) is a hardware simulator of the
BSS-1 system implemented in C++/SystemC. It contains
behavioral, timing-accurate models of the digital components



and functional models of the analog neural components,
e.g., the hardware neurons are numerically simulated AdEx
neurons. O�ering the same con�guration interface as the
real hardware and being fully executable, the ESS has been
essential for the hardware-software co-design [20] and still
serves as a validation tool for the software stack, especially
for the mapping, con�guration and experiment execution
steps. In addition, the ESS allows to evaluate the e�ect of
BSS-1 design-speci�c constraints (e.g., limited stimulation
and recording bandwidth, spike time jitter, reduced parameter
resolution) on neuromorphic experiments in isolation from
distortions due to the mismatch of the mixed-signal circuits.
For a detailed study see Petrovici et al. [47].

C. Conditions Support

Wafer-scale hardware operates under the assumption that
individual components can be switched o� and circumvented.
In addition, the analog nature makes it necessary to, at
least, apply a working point calibration. For this, conditions
support libraries are put in place and described below.

1) Availability Database: Errors during the manufacturing
process and the assembly of the wafer lead to varying
conditions of individual components. Moreover, modifying
hardware parameters may lead to a change in the response
of these components. Disregarded, they might either distort
simulation results or make the execution of experiments
impossible in the �rst place. Consequently, it is mandatory
to be aware of the state of the components and handle
it dynamically. Therefore, the availability database was
developed [48].

Combined with digital tests, cf. section IV-C1, this allows
for storing and handling of the used components. It is
implemented in C++ and uses XML with boost::serialization
as the storage backend. Based on the coordinate system it
stores a sparse representation of the �agged components
without the notion of reasons as a whitelist or a blacklist.
By this, the natural hierarchy of the system is mapped to
the database. Thus, e.g., HICANNOnWafer �ags the full chip
and NeuronOnHICANN �ags only a single neuron circuit of
the chip. Subsequently, using the database, other parts of
the software can simply avoid the �agged components.

This also allows for the second use case of the availability
database. Components can be marked arti�cially as not
available to manipulate the hardware resources of an exper-
iment without the requirement of an additional interface.
Python bindings allow to construct convenience tools like
a command line interface, cf. listing 12. As a result, a per
experiment set of usable components can be generated and
adapted dynamically.

Listing 12: Availability database command line interface.
redman_cli.py . W33H0 has neuron 0
# True

redman_cli.py . W33H0 disable neuron 1

2) Parameter Translation and Calibration Database: Mi-
croelectronics’ manufacture deals with non-uniformities in
the circuits produced across a silicon wafer. These transistor
mismatches result in varying response from neuron to
neuron circuit. To compensate, a calibration framework [49]
maps high-level parameters to the hardware parameter space,
homogenizing the response of neuron circuits.

First, the biological units are converted to the hardware
compatible range. For time constants, the acceleration factor
α = 1000 . . . 10 000 is taken into account:

τhardware = α · τbiology.

Voltages also need to be scaled by s and shifted by o,
respectively:

Vhardware = s · Vbiology + o,

with typical values s = 10 and o = 1.2V Similar conversions
are needed for synaptic weights.

Now that the desired hardware values are known in
physical units, the conversion to the digital domain can
happen. This step does two things. The translation from
physical units to digital units while at the same time taking
into account variations from circuit to circuit, i.e. it applies
calibration data. For this, the calibration database allows
to store parameters for a set of pre-de�ned functions, e.g.,
polynomials. In addition, the transformation classes provide
a numerical function inversion.

Also, the input values can be checked to lie within a
given range of validity. The returned value can then be
either clipped, an exception can be thrown or the validity
range can be ignored.

Listing 13 demonstrates the usage of the library on the
example of a linear function.

Listing 13: Example for a linear calibration function.
// linear transformation from, e.g., 0 - 1.8 V to 0

- 1023 DAC↪→

Polynomial linear({0.0, 1023./1.8}, 0.0, 1.8);
linear.apply(0.9);
// 511.5
linear.reverseApply(256);
// 0.450
linear.apply(2); // defaults to clipping
// 1023

D. Network Description

1) PyNN Interface: We implement the PyNN -API as a thin
C++ library for which Python bindings are generated [50].
Compared to a Python-based implementation, this allows
for a memory-e�cient handling of larger data sets such
as weight matrices of large neural networks, stimulus or
recorded data. For the user, however, it appears like any
other PyNN implementation, e.g., PyNN.nest. Internally, it
translates from the PyNN ’s imperative experiment descrip-
tion to an object-oriented description in the underlying
C++ layer. The individual elements, e.g., populations and
projections, are similar in their structure to PyNN. However,
if found necessary, we restructure the data to our liking as



it is decoupled from the user-facing API. Also, pure C++
usage is supported in a structured way.

2) Map & Route: Mapping and routing of neural networks
described in PyNN to the neuromorphic hardware is a non-
trivial task. The complexity and scope of the problem is
similar to the synthesis of FPGA bit�les. Therefore, the
process is only described brie�y. The full implementation
can be found at [51]. Also, the map & route implemen-
tation undergoes substantial changes as new features and
improvements are being developed.

In its simplest form, we implement a greedy strategy
without back tracking. First, we place neurons from PyNN
populations to hardware neuron circuits. Hereby, di�erent
neurons may be represented by a di�erent number of neuron
circuits on the hardware. Insertion points for spike input
from the FPGAs are placed as well. The user has the option
to constrain the automatic placement of neurons and spike
sources. User parametrization is facilitated by a custom class
that works aside from PyNN. Listing 14 shows how a user can
restrict the placement of a population to a certain HICANN
or to a list of allowed options.

Listing 14: Example for constraining placement.
pop = pynn.Population(...)
marocco.manual_placement.on_hicann(pop,

HICANNOnWafer(Enum(42)))↪→

pop2 = pynn.Population(...)
marocco.manual_placement.on_hicann(pop2,

[HICANNOnWafer(Enum(23)),
HICANNOnWafer(Enum(24))])

↪→

↪→

Listing 15: Example for querying a mapping result, where the
hardware neurons corresponding to PyNN neurons are retrieved.
pop = pynn.Population(5, ...)
for pynn_neuron in enumerate(pop):
items =

runtime.results().placement.find(pynn_neuron)↪→

for item in items:
for hardware_neuron in item.logical_neuron():

...

After the placement of neurons, the PyNN projections
are transformed into synapses and on-chip routes on the
hardware. This is the most time-consuming step as several
hardware constraints must be taken into account, e.g., the
limited number of allowed switches per route.

Listing 15 shows how to retrieve information on the
allocated hardware after the placement: the hardware neuron
circuits are looked up for all neurons of a PyNN population.
This is useful for, e.g., directly manipulating low-level
hardware parameters. The link between PyNN and the result
of the map & route step is stored into an intermediate
representation format, cf. �g. 5.

The on-chip bus network is represented as a graph using
the boost::graph [52] library, where bus lines are vertices
and switches are edges. During the creation of the graph,
hardware availability data is already taken into account,
i.e. hardware components that should not be used are not
included in the graph representation. On-wafer routes can

Fig. 5: The transformation of PyNN to a hardware con�guration
(container) makes use of intermediate representations (IR). The IR
also links PyNN and hardware entities and allows for look-ups in
both directions.

Fig. 6: Screenshot of the web-based visualization. Chips are colored
with increasing opacity proportional to the number of placed
neurons. On-chip routes are also colored and can be click-selected
to reveal more details.

be found by custom traversal algorithms of the graph or by
using graph search algorithms like Dijkstra.

Being able to have a visual representation of the found
hardware con�guration is important for both, debugging
and understanding possible improvements of manual or
automatic placement. For this, a web-based visualization
has been developed. Based on previous e�orts to build
visualization tools, the main requirement is to not replicate
any code paths that are already part of the software stack.
Another requirement is the possibility to run the tool
locally and standalone, i.e. without the need for a server
and the availability of the full software stack. This is
possible by transpiling parts of the BrainScaleS OS C++
libraries to JavaScript, including classes representing the
map & route intermediate representation and its serialization
implementation. Now, only the transpiled JavaScript libraries
and the output of the mapping must be at hand. The top-level
code is written in TypeScript [53].

We rely on Pixi.JS [54] for a fast 2D graphics engine
supporting WebGL. It is capable of rendering large networks
with many details of the hardware con�guration. The tool
o�ers di�erent levels of details where, e.g., by zooming in
all used synapses and neurons become visible. An example
is shown in �g. 6.



IV. Operation
A. Resource Management and System Access

BrainScaleS neuromorphic platform resources are time-
shared and partitioned between multiple experiments and/or
users. In contrast to typical digital systems, analog neuro-
morphic hardware substrates are not homogeneous. Users
need to be able to request speci�c hardware instances
when running experiments. We use SLURM [55] —a HPC
job scheduler— to handle resource requests for hardware
components.
SLURM was extended utilizing its plugin API to handle

various requirements related to inhomogeneous hardware
resources. Being a mixed-signal neuromorphic system, in-
dividual BrainScaleS systems behave slightly di�erently
which is why experimenters need a way to explicitly
specify individual resource instances. The coordinate system
described in section III-A1 is used to provide a familiar
interface to the user. Di�erent hardware components have
varying degrees of granularity that can overlap and have
interdependencies. We allocate the smallest needed subset
of resources inferred from the user request. In principle, the
Ethernet-based communication described in section III-B2
allows access to each FPGA from any conventional compute
node in the same network. To prevent accidental clashes
between concurrent experiment runs we separate individual
BSS-1 modules into IPv4 subnets and deny access based on
default �rewall settings. When a user speci�es a hardware
resource for a SLURM job a �rewall rule to accept tra�c is
automatically added during job runtime. Experiment software
also compares its own resources with the allocated SLURM
resources to detect possible mismatch.

On top of the direct access to the system as explained
above, we provide access via HBP’s collab infrastructure [56].
Jobs are fetched from the HBP neuromorphic platform
queuing service with the help of [57] and passed on to
SLURM. Every few seconds, the job states of our scheduler
and the upstream queue manager are synchronized.

B. Monitoring

Managing a large complex hardware system is unfeasible
without extensive monitoring, as malfunction of any individ-
ual component can be fatal for operation. Monitoring can
generally be split into three steps: aggregation, storage and
visualization. Likewise there are two di�erent types of data
to be gathered, time-series data (e.g., voltage, temperature)
and event data (e.g., powering o� components).

The general �ow for monitoring data of a wafer module
is shown in �g. 7. There are around 1200 time-series
data sources within one wafer module. Important sensors
like wafer temperature are read out every few seconds.
Additionally, events for powering parts on/o� or alerts are
generated. The data aggregation is performed on a Raspberry
Pi via a software daemon handling several communications
channels, e.g., I2C. On the Raspberry Pi a �rst data analysis
is done in order to have a quick response to a dangerous
system state. For example the temperatures are checked to
be in an allowed range, above a given threshold the system
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Fig. 7: Flow of monitoring data from aggregation to storage and
visualization. Grey boxes represent involved devices on which the
corresponding software libraries run. Software responsible for time-
series data is shown in yellow and for event data in green. Arrows
illustrate connectivity between the di�erent components.

is turned o�. Furthermore, all microcontrollers providing
data to the Raspberry Pi perform local data evaluation tests
and, therefore, detect false states faster than the Raspberry
Pi. Time-series data is stored on a central Carbon [58] server
outside the Raspberry Pi. For the conventional compute
nodes we use Ganglia [59] for data aggregation which also
feeds into the Graphite data base. Graphite uses a round-
robin database for automatic data compression after certain
intervals. Event aggregation is done utilizing syslog [60]
which is parsed by Logstash [61]. Filtered events are stored
in an Elasticsearch [62] database. Grafana [63] is used
to visualized time-series data. It allows the creation of
dashboards which give insight to the state of the system
on various levels of detail. This facilitates getting a quick
overview of relevant data from wafer modules and the state
of the conventional compute cluster while simultaneously
allowing to drill down for more details. Additionally, events
like powering on components can also be shown in Grafana
to easily link events and changes in time-series data. In
general we use Kibana [64] to visualize event data.

C. Commissioning

1) Digital memory tests: In large complex hardware
systems, variations of individual components are inevitable.
As already mentioned in section III-C1 the behavior of these
components change due to varying hardware parameters
such as supply voltage and might disturb the execution of
experiments. As a result, it is important to keep track of the
state of the components and be aware of it during experiment
execution. This is achieved by digital memory tests that are
executed after assembly as well as periodically. Here, for a
speci�c hardware con�guration given by, e.g., supply voltage
and clock frequency, each digital memory of every HICANN
is read/write-tested with random values. The results are
compared and if a malfunctioning component is found it
is �agged in the availability management database. The
database re�ects the hierarchical structure of the hardware,
so that always the largest functional unit that exclusively
depends on the malfunctioning components is �agged, shown
in �g. 8. The information can then be extended individually
for each experiment and stored by serializing the updated
database to disk, which is typically an XML-based �le format,
cf. section III-C1. During experiment execution this data is



Fig. 8: Digital test of malfunctioning components highlighted in
grey. After the test (right side) these components are marked
as not available using the hierarchy of the system. As a result,
individual components up to large functional units, consisting of
many components, are marked as not available.

Fig. 9: Three neurons set for continuous spiking activity exhibit
non-uniform threshold voltage under the same �oating gate
con�guration. After applying the per-neuron calibration, parameters
like Vtreshold can be set accurately across di�erent neuron circuits
(Traces were hand-drawn for illustrative purposes, with attention
only to Vthreshold).

then deserialized, which allows for skipping the unavailable
components. Besides the experiment execution, the digital
memory tests are also used in continuous integration to
monitor and store the state of the hardware.

2) Calibration: The one-time circuit characterization [65]
runs sequences of experiments that sweep the neuron
parameters (stored as 10-bit values in analog �oating gates on
the HICANN), measures the changes’ impacts, and employs
di�erent �ts depending on the parameter e�ect’s response.
A calibration database is then �lled with the transformation
data for its utilization on routine hardware usage. The
e�ect of applying such parameter mapping to the neuron
con�guration is exempli�ed in �g. 9.

V. Applications
The previous sections motivated and detailed the status

of the BrainScaleS OS. In the following, �rst a minimal
experiment is demonstrated with the key concepts in
action. It is followed by examples for more complex “full”
experiments.

A. A Minimal Experiment

Listing 16: Example for an experiment.
import numpy as np

# BrainScaleS OS imports
import pyhmf as pynn
import pyhalco_hicann_v2 as C
from pyhalco_common import Enum
import pyhalbe
import pysthal
from pysthal.command_line_util import init_logger
from pymarocco import PyMarocco
from pymarocco.runtime import Runtime
from pymarocco.results import Marocco

init_logger("WARN", [])

marocco = PyMarocco()
runtime = Runtime(C.Wafer(33))

pynn.setup(marocco=marocco, marocco_runtime=runtime)

experiment_duration = 1000 # ms

neuron_parameters = {
'cm': 0.2, # nF
'v_reset': -20., # mV
'v_rest': -20., # mV
'v_thresh': 100, # mV
'e_rev_I': -20., # mV
'e_rev_E': 0., # mV
'tau_m': 10., # ms
'tau_refrac': 0.1, # ms
'tau_syn_E': 2., # ms
'tau_syn_I': 5., # ms

}

pop = pynn.Population(2, pynn.IF_cond_exp,
neuron_parameters)↪→

stimulus = pynn.Population(1, pynn.SpikeSourceArray, {
'spike_times': [0, 5, 10]})

# choose a specific HICANN for given pyNN population
marocco.manual_placement.on_hicann(pop,

C.HICANNOnWafer(Enum(0)))↪→

# record both, neuron membrane trace and spikes
pop.record()
pynn.PopulationView(pop).record_v()

# connect the stimulus
proj = pynn.Projection(stimulus, pop,

pynn.AllToAllConnector(weights=0.001),
target='excitatory')

↪→
↪→

# perform mapping but do not execute on hardware
marocco.backend = PyMarocco.None
pynn.run(experiment_duration)

# hardware-level settings
synapses_result =

runtime.results().synapse_routing.synapses()↪→
proj_items = synapses_result.find(proj)
for proj_item in proj_items:

syn_c = proj_item.hardware_synapse()
hicann = runtime.wafer()[syn_c.toHICANNOnWafer()]
synapse = hicann.synapses[syn_c.toSynapseOnHICANN()]
synapse.weight = pyhalbe.HICANN.SynapseWeight(3)

# run on hardware
marocco.skip_mapping = True
marocco.backend = PyMarocco.Hardware
pynn.run(experiment_duration)

np.savetxt("membrane.txt", pop.get_v())
np.savetxt("spikes.txt", pop.getSpikes())



Listing 16 shows an example experiment. It demonstrates
all software features discussed in the previous sections. First,
a couple of Python modules are imported. The marocco
object is instantiated that allows for custom con�gurations
that are not part of the PyNN API. The runtime object
holds, amongst others, the sthal representation of the wafer
con�guration that will be used for low-level re-con�guration.
Next, parameters like the experiment duration and neuron
parameters are set as variables. A population of neurons as
well as a stimulus are created with two and one neuron,
respectively. The population of neurons is placed on a
speci�c HICANN. If manual placement is not given, the
mapping software will �nd a location depending on the
chosen mapping algorithm. No mapping hint is given for
the stimulus. It will be inserted as close as possible to the
mapped neuron population while adhering to bandwidth
limitations as good as possible. The population is then asked
to record both, its spikes and membrane potential. Next, a
projection is drawn between the stimulus and the neurons.
The projection is stored in a variable for later lookup.

Now that the network is completely setup, the mapping
can be carried out, but it is not yet executed (backend=None).
By this, the user can look up the hardware synapse between
the stimulus and the neurons. Doing so we set manually
a digital weight of 3. Then we skip the mapping, set
the backend to hardware and execute. After pynn.run the
resulting membrane trace and spikes can be read out.

Listing 17: Example for an experiment invocation.
# allocate the full module
srun -p experiment --wafer 33 experiment_example.py

# allocate only HICANN 0 (with analog readout and
trigger by default)↪→

srun -p experiment --wafer 33 --hicann 0
experiment_example.py↪→

The network execution is then invoked by calling listing 16
with a SLURM command like srun, see listing 17. The system
on which the experiment is conducted is given as well as
the partition which is used for accounting and priority.

B. Examples for Full Experiments

In the simple example explained above, the split between
mapping and execution is only necessary if low-level access
is wished. However, an important application are chip-in-
the-loop experiments where it is crucial that an iterative
re-con�guration is possible to, e.g., compensate for trial-to-
trial variations.

An experiment where this was used is detailed in [10] for
training of a deep network for digit classi�cation. Figure 10
shows the concept. After training an arti�cial neural network,
the weights of a matching hardware network are set
accordingly. However, due to both, trial-to-trial variations
and di�ering responses of the arti�cial w.r.t. the hardware
neurons, the classi�cation performance is diminished. By
continuing the training in the loop, the performance can
be restored. For this, the response of all neurons in the

Fig. 10: Each iteration of in-the-loop training consists of two passes.
In the forward pass, the output �ring rates of the LIF network are
measured in hardware. In the backward pass, these rates are used to
update the synaptic weights of the LIF network by computing the
corresponding weight updates in the ReLU network and mapping
them back to the hardware. Adapted from Schmitt et al. [10].

hardware network is fed back into the training loop of the
arti�cial network.

Accelerated physical emulation of Bayesian inference
in spiking neural networks was demonstrated in Kungl
et al. [66] where the full BrainScaleS OS was used as
well. A network of spiking neurons was set up to sample
from a Boltzmann distribution. The network was also
trained iteratively, however, not in companion with an
arti�cial network. Classi�cation and pattern completion were
demonstrated on two datasets.

Another example is Göltz et al. [67] that demonstrates
classi�cation based on spike timing only. Again, the hardware
in-the-loop approach was used to train a network classifying
images on BSS-1.

VI. Future Developments
A. Separation of Experiment Con�guration and Execution

The experiment demonstrated in section V-A executed the
mapping and the neuromorphic emulation in one process.
Most importantly, the requested hardware resources had to
be speci�ed prior to the mapping. This is an unfortunate
order as it does not allow for, e.g., choosing the system
dynamically or specifying only a subset of the wafer for
running experiments in parallel. However, the necessary
ingredients to overcome this problem are in place and
work is currently carried out to implement a solution based
on the serialization capabilities of the data structures, see
section II-B4.

B. Next-generation Python Binding Generation

The design and development of the BrainScaleS OS started
in 2009. In the meantime, several external dependencies have
been deprecated. In particular, our auto-generated Python
wrapping depends on gccxml where development stopped
in 2015. It depends on gcc ≤ 4.9.3 blocking the usage of
the latest C++ features from the 14, 17 and 20 standards in
header �les. We evaluated several approaches, including the
usage of LLVM’s castxml, but resorted to developing a new



wrapper code generator —genpybind [68]— which is based
on LLVM libraries. The transition from the py++-based to
genpybind is now in progress. In addition, genpybind also
attacks binding generation from a di�erent angle with a
more �ne-grained and explicit approach.

C. Towards BrainScaleS-2

Software development for BSS-2 started in 2016 and builds
upon the results —the BrainScaleS OS— presented in this
work. We try to re-use and adapt as much as possible from
the existing code base. Especially the coordinate system, cf.
section III-A1, has proven bene�cial. However, early in the
design phase we decided to improve the hardware abstraction
layers by introducing structured types encapsulating all on-
chip and on-FPGA con�gurable hardware entities. These
types also provide explicit implementations for encoding
to and decoding from hardware con�guration bitstreams.
In conjunction with a timer-based execution �ow on the
FPGA, this allows for experiments being described as an
timed event sequence. The C++ API makes heavy use
of std::future-like interfaces to expose an asynchronous
interface to the experiment control �ow. Additionally, a
fast experiment scheduler has been developed for BSS-2.
It allows for approximately ten experiments per second
where —due to the neuromorphic speed-up factor— each
experiment represents up to 100 s of emulated time in the
biological model. Based on this, restructuring work on BSS-1
started and a corresponding implementation was developed.
Similarly, the genpybind tool was created during BSS-2 low-
level software development. See Müller et al. [69] for a
detailed description.

VII. Discussion

This work describes the latest version of BrainScaleS OS,
the software stack operating the BSS-1 platform. It allows
to accomplish the main goal of the wafer-scale mixed-signal
neuromorphic system BrainScaleS-1: designing and running
wafer-scale experiments. The software stack aims for non-
expert usage, e.g., by neuroscientists, while maintaining
access to all other abstraction levels for expert users. We
give a detailed overview of the individual software com-
ponents and describe di�erent aspects. From the hardware
con�guration, over the interaction with the system, e.g.,
setup, runtime control and result read out. We describe
the transformation of user-de�ned experiments into a valid
hardware con�guration, as well as the necessary resource
management and monitoring.

BrainScaleS adopted development methodologies and tools
originating in software engineering to improve platform
robustness and experiment reproducibility. BSS-1 is operated
as a platform which is available for the research community.

Several experiments [12, 66, 67] demonstrate that
BrainScaleS OS is a viable basis for using BSS-1. In addition to
the publications, several thesis in our group made use of it for
conducting neuromorphic experiments and commissioning
work.
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main contributor to the BSS-1 PyNN API implementation.
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the main developer of the system-level operation software,
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to low-level �rmware. D. Husmann is the main developer
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the communication layer and the analog readout framework.
S. Jeltsch is the main developer of the map & route layer.
J. Kaiser contributed to speed-up the synapse con�guration.
J. Klähn contributed to the map & route layer. M. Kleider
contributed to the calibration of the system. C. Koke is the
main developer of the stateful con�guration layer and the
calibration framework. J. Montes contributed to calibration
scalability. P. Müller evaluated the performance of the
BSS-1 neuromorphic circuit implementation. J. Partzsch
contributed software for the low-level system con�guration.
F. Passenberg optimized the map & route algorithms to
enable successful topology mapping to wafer modules
with non-ideal blacklisting state. H. Schmidt contributed
to digital blacklisting. B. Vogginger is a main developer
to the simulation backend and contributed to the map
& route layer. J. Weidner contributed to the web-based
con�guration visualization and acquired con�guration results
for the Jülich cortical column network. C. Mayr contributed
to the system design (hardware and software) of the o�-
wafer communication stack. J. Schemmel is the lead designer
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