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ABSTRACT
Due to their simplicity and success in machine learning, gradient-
based learning rules represent a popular choice for synaptic plastic-
ity models. While they have been linked to biological observations,
it is often ignored that their predictions generally depend on a
specific representation of the synaptic strength. In a neuron, the im-
pact of a synapse can be described using the state of many different
observables such as neutortransmitter release rates or membrane
potential changes. Which one of these is chosen when deriving a
learning rule can drastically change the predictions of the model.
This is doubly unsatisfactory, both with respect to optimality and
from a conceptual point of view. By following the gradient on the
manifold of the neuron’s firing distributions instead of one that is
relative to some arbitrary synaptic weight parametrization, natural
gradient descent provides a solution to both these problems. While
the computational advantages of natural gradient are well-studied
in ANNs, its predictive power as a model for in-vivo synaptic plas-
ticity has not yet been assessed. By formulating natural gradient
learning in the context of spiking interactions, we demonstrate how
it can improve the convergence speed of spiking networks. Fur-
thermore, our approach provides a unified, normative framework
for both homo- and heterosynaptic plasticity in structured neurons
and predicts a number of related biological phenomena.
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1 NATURAL-GRADIENT PLASTICITY RULE
In an ongoing effort to provide a normative framework for synap-
tic plasticity, a multitude of top-down computational paradigms
have been developed, which derive adaptation rules for synaptic
weights as gradient descent on a particular objective function of the
studied neural network. However, the exact physical quantity to
which these synaptic weights correspond often remains unspecified.
Depending on the particular choice of the modeler, the network
behavior during learning can be markedly different.

As many aspects of network connectivity that arise during de-
velopment – such as the exact contact point of afferents along the
dendritic tree of a neuron – are largely random, the question of
invariant learning also represents a practical problem for a brain
that strives for optimal learning. What if neurons would seek to
conserve the way they adapt their behavior regardless of, e.g., the
specific positioning of synapses along their dendritic tree? What
synaptic learning rule is able to fulfill this requirement?

First studied byAmari in the context of information geometry [2],
natural gradient learning has the appealing property of alleviating
such parametrization-related concerns by addressing the question
of steepest descent at the level of neuronal outputs. By using the
manifold of neuronal output distributions as a support for the cost
function, parametrization invariance is achieved implicitly.

We consider Poisson neurons with firing rates that are nonlinear
functions ϕ of the somatic membrane potential V =

∑
i wix

ϵ
i , with

synaptic weights wi and inputs xϵi . Given a target spike train Y ∗

provided by a teacher neuron with distribution p∗, synapses should
efficiently minimize the cost function C = DKL(p

∗,p). By choosing
the Fisher informationG as a metric on the space of output distribu-
tions p, we can write the natural gradient as a linear transformation
of the Euclidean gradient: ∇N = G−1∇E . From here, we can derive
a synaptic plasticity rule of the form

Ûw = η γs
[
Y ∗ − ϕ(V )

] ϕ ′(V )

ϕ(V )

(
cϵxϵ

r
− γu + γww

)
, (1)

which recovers the error-correcting dynamics of other gradient
learning frameworks [9, 13], but extends them in several important
respects, as we discuss below. While the coefficients γs,γu,γw are in
general more complex functions of the student neuron’s dynamics,
we have shown that, in many cases, they can be well approximated
by simpler quantities that are locally accessible at every synapse.

2 BIOLOGICAL PREDICTIONS
Fig. 1 shows simulation results for a learning scenario using the
natural-gradient plasticity rule derived above. By performing op-
timization directly on the space of output distributions, it always
follows a locally straight path towards the local optimum (Fig. 1C,D),
which is a hallmark of parametrization invariance. This also helps
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Figure 1: (A) Sketch of the learning task. A student neuron (red) learns to combine its afferents (teal) in a way that optimally reproduces the statistics of a
teacher signal (yellow). (B-D) Spike trains of teacher (B), and student neuron before learning (C) and after learning with the natural gradient rule (D). (E,F) Cost
function contour lines (solid), gradients (arrows) and trajectory (dashed) during learning for Euclidean (blue) and natural (red) gradient learning. (G) Convergence
speed. (H) Sketch of simulated setup for evaluating homo- and heterosynaptic plasticity. Input and teacher signals were Poissonian, with mean rates of 5 and
20Hz, respectively. Stimulated synapses shown in yellow, unstimulated ones in red. (I-K) Instantaneous weight changes (heatmaps) as a function of momentary
stimulated and unstimulated synaptic weights (axes). (I) shows plasticity at stimulated synapses (homosynaptic), (J) at unstimulated ones (heterosynaptic) and (K)
compares the sign of the two, showing that for most of the relevant phase space, homo- and heterosynaptic plasticity oppose each other. (L) Dendritic synapses
exhibit larger weight changes the further they are from the soma (dendritic democracy). (M) Exemplary traces from (L). (N) Synaptic weight changes become
larger, the more reliable (smaller variance) their input is. (O) Exemplary traces from (N).

learning converge significantly faster than with Euclidean gradi-
ents, as shown in Fig. 1E (with optimal learning rates for both
plasticity rules).

Natural-gradient plasticity exhibits distance-dependent scaling,
which can be observed when expressing the weight update directly
in terms of EPSP amplitudes in the dendritic tree, rather than their
somatic counterparts. Since synaptic changes are attenuated on
their way to the soma, in order to evoke the same effect in terms of
adapting the neuron’s firing behavior, changes at distal synapses
must be increased compared to plasticity at proximal synapses with
a similar impact on output firing, as also suggested by dendritic
democracy experiments [5].

Just like in Euclidean gradient descent, our learning rule follows
the postsynaptic error [Y ∗ − ϕ(V )], and its input-adjusted term cϵ xϵ

r
encourages modification of synapses that have recently been ac-
tive. However, in contrast to classical gradient-based learning, this
homosynaptic weight update is complemented by both a uniform
as as well as a weight-proportional heterosynaptic contribution.
This is in line with experimental findings [3, 7], as well as with
computational studies that list heterosynaptic plasticity as a neces-
sary component of stable learning [15]. Similarly to experimental
data [10, 14], our simulations show that under natural gradient
learning, changes of unstimulated synapses often have an opposite
sign compared to those of stimulated synapses, thereby acting as a
homeostatic mechanism that keeps the neuron close to an optimal
operating point.

Furthermore, our learning rule includes a synapse-specific scal-
ing of the homosynaptic contribution by the input rate, similar to
the rescaling observed in a Bayesian plasticity framework [1]. A
further prediction revealed by our simulated stimulation protocol
is that the effective learning rate of our rule is inversely related to
the USP variance. This is also reminiscent of other gradient-based
approaches in machine learning [6].

3 CONCLUSIONS
Our learning rule provides a consistent, normative theory of synap-
tic plasticity that combines fast learning with multiple experimen-
tally testable predictions, including a unified framework for both
homo-and heterosynaptic changes. The bridge to biology also hints
at applications on artificial neuromorphic systems, many of which
offer increasing flexibility with respect to spike-based learning
[12]. Compared to recently demonstrated gradient-based learning
paradigms [4, 8, 11], our framework may improve the robustness
and speed of convergence, ultimately reducing the required time-
and energy-to-solution.
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