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ABSTRACT
To achieve their goal of realizing fast and energy-efficient learning,
neuromorphic systems require computationally powerful models
that obey the constraints imposed by a physical implementation of
neural network structure and dynamics, such as the inevitability
of relaxation times or the locality of plasticity. In this work, we
provide a first-principles derivation of a mechanistic model for cor-
tical computation based on the premise of "neuronal least action".
The resulting time-continuous neuron and synapse dynamics real-
ize gradient-descent learning through error backpropagation both
in supervised and in reinforcement learning scenarios. In partic-
ular, the derived equations of motion reproduce well-established
microscopic phenomena such as neuronal leaky integration of af-
ferent signals, while enabling synaptic learning using only locally
available information. Our principled framework can thus serve
as a starting point for hardware-focused models of highly efficient
time-continuous learning.
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1 INTRODUCTION
Neuromorphic engineering promises fast and energy-efficient hard-
ware realizations of neural networks that utilize novel computing
paradigms inspired by the brain [1, 6, 8, 16, 18]. A special interest
lies in systems that are capable of learning from continuous data
streams and can therefore adjust to changes in the environment
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[2, 5]. However, the brain’s solution for the credit assignment prob-
lem remains elusive, mainly due to the locality of information in
physical systems [21]. The error backpropagation algorithm [12],
for example, explicitly violates this principle of locality. While sev-
eral efforts have been made to reconcile this paradigm with local
synaptic plasticity, existing solutions either require a separation of
time scales, with neuronal dynamics occurring much faster than
or separately from synaptic weight changes [14, 20], or with multi-
phased learning rules [7, 13, 15].

In this work, we introduce a new model that derives a time-
continuous version of error backpropagation from a least-action
principle [3] that can be used in supervised and reinforcement
learning scenarios. More specifically, we show how learning can
happen without separate phases and both with and without an
external supervisor. The derived model is compatible with cortical
structure and dynamics, suggesting that it can also be ported to
brain-inspired neuromorphic systems, which often inherit many
physical constraints from their biological archetype.

2 RESULTS
2.1 Neuronal least action principle (NLA)
For simplicity, we derive the neuronal dynamics for a feedforward
network with N layers, but the approach can be used for arbitrary
network topologies. We start by defining the Lagrangian

L(ũ, Û̃u,W ) =
1
2

N∑
k

∥ f (ũk , Û̃uk ) −W k r̄k−1∥
2 + βC , (1)

with ũ implicitly defined by uk = f (ũk , Û̃uk ) = ũk − τ Û̃uk . Here,
uk is the vector containing the membrane potentials of neurons
in layer k , τ the respective membrane time constant andW k the
synaptic connections projecting into layer k . The stationary rate
r̄k−1 = φ(uk−1) is given by the activation functionφ. The Euclidean-
norm cost function C = 1

2 ∥uN −yN ∥2, which compares the label
layer activity to some target yN , enters the Lagrangian with a
scaling factor β .

Neuronal dynamics are derived from a least-action principle, i.e,
from the requirement of the action being stationary: δ

∫
Ldt !
= 0.

The solution is provided by the Euler-Lagrange equations
( ∂
∂ũ

−

d
dt

∂
∂ Û̃u

)
L = 0 and yields

τ Ûuk = −uk +W krk−1 + ek , (2)

wherein leaky integrator dynamics are easily recognizable. Two
components in this equation are particularly relevant for the realiza-
tion of phase-free error backpropagation. First, the neuronal activity
rk−1 = r̄k−1 + τ Û̄rk−1 is a high-pass, nonlinearly filtered version of
the respective membrane potential that effectively undoes the low-
pass filtering induced by the leaky-integrator membrane dynamics
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Figure 1: Neuronal least action principle. A) Cortical microcircuit used for er-
ror calculation and representation. Backpropagated errors are locally calcu-
lated by substracting bottom-up prediction from top-down feedback. B) The
neuronal activity r is a non-linearly advanced version of the respectivemem-
brane potential that effectively undoes low-pass filtering caused by leaky in-
tegration. C) A network of 786 - 800 - 10 neurons learns MNIST from a con-
tinuousmovie, where each digit is only shown briefly (time scale of themem-
brane time constant τ ).

(fig. 1B). Biological neurons can, for example, implement this mecha-
nism by non-linear sodium channel dynamics that depend both onu
and Ûu [11]. This time advancement implements prospective coding
on infinitesimal timescales, enabling neurons to forward-propagate
their own future state, effectively guaranteeing instantaneous prop-
agation of inputs that are smooth in time up to the label layer.
Second, the error term ek = ēk + τ Û̄ek is a similarly time-advanced
layerwise prediction error ēk = r̄ ′k ⊙W

T
k+1(uk+1−W k+1r̄k ), which

can be realized with a stereotypical microcircuit using pyramidal
neurons and interneurons [3, 14], see fig. 1A. Defining plasticity
as gradient descent on the Lagrangian, we obtain a biologically
plausible and, in particular, fully local plasticity rule [19] that acts
on the backpropagated error signal:

ÛW k ∝ −∇W L = (uk −W k r̄k−1)r̄
T
k−1 . (3)

The above equations specify a full model of real-time error back-
propagation in cortical circuits, where plasticity can be shown to
perform gradient descent on the cost function at every point in
time [3]. We demonstrate this in a scenario where the network is
exposed to a continuous stream of MNIST digits, reaching compet-
itive classification results while the network dynamics are never
close to stationarity during learning (fig. 1C).

2.2 Learning without a teaching signal
To remove the teaching signal yN , we combine the NLA princi-
ple with a reinforcement learning paradigm [17]. We associate K
output neurons to actions and the input with the current state of
the environment. The challenge lies in finding a mechanism that
can give rise to a meaningful error signal for learning, while still
harmonizing with error transport in the NLA framework. To this
end, we extend the original NLA framework with lateral interac-
tions in the last layer resembling soft winner-take-all structures.
We postulate the cost function

CRL = M

∫ u

−∞

r̄ (û) dû , (4)

with the lateral interaction matrixmii = 1,mi j = − 1
K−1 , which

leads to recurrent dynamics in the output layer of the network:
τ ÛuN =W N rN−1 −uN + βMrN . The error in the last layer eN =

A
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Figure 2: Reinforcement learning in the NLA framework. A) Lateral somato-
somatic interaction with self-excitation and mutual inhibition gives rise to
an error nudging approximating policy gradient. B) The network successfully
learns on a small time-continuous classification problem based on 3 MNIST
digits. Learning is robust in the presence of delayed rewards, even if the re-
ward delay is stochastic.

βMrN nudges the chosen (winner) action positively and all other
actions negatively (fig. 2A). The microcircuit structure (fig. 1A)
then propagates the errors to the lower layers. Using an eligibility
trace and plasticity modulation via the reward prediction error
[R (t) − ⟨R⟩], which represents a single global signal, we form a
three-factor learning rule [4]:

ÛW k ∝
1

τelig
(R (t) − ⟨R⟩)

∫ t

−∞

κk (t̂) exp

(
−
t − t̂

τelig

)
dt̂ (5)

with κk (t) = (uk −W k r̄k−1)r̄
T
k−1. Using eN as a target error real-

izes hill-climbing on the mean expected reward as can be shown
by comparison to direct policy gradient [22]. Such a network suc-
cessfully learns with both immediate and delayed rewards from a
continuous stream of inputs in a classification scenario (fig. 2).

3 SUMMARY
We show how real-time error backpropagation with and without
an external supervisor can be implemented in a biologically plausi-
ble architecture. Our normative framework creates a bridge from
the simple, but powerful least-action principle to the detailed mor-
phology and physiology of a cortical circuitry model. An essential
feature of this model is that the key requirements for its function-
ality can be realized by mechanisms available to both brain and
brain-inspired hardware. Both forward and backward information
streams, required for computing inference and errors, happen si-
multaneously in the network, relying on time-continuous and local
dynamics. By utilizing prospective coding implemented through
look-ahead neuronal responses, the framework avoids a separation
of timescales or of dynamical phases. Unlike other recently devel-
oped algorithms that train deep networks with so-called synthetic
gradients [9, 10], our framework backpropagates the true error
generated at the output layer at all times.
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