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We augment the information extractable from a single absorption image of a spinor Bose-Einstein
condensate by coupling to initially empty auxiliary hyperfine states. Performing unitary transforma-
tions in both, the original and auxiliary hyperfine manifold, enables the simultaneous measurement
of multiple spin-1 observables. We apply this scheme to an elongated atomic cloud of 87Rb to simul-
taneously read out three orthogonal spin directions and with that directly access the spatial spin
structure. The readout even allows the extraction of quantum correlations which we demonstrate
by detecting spin nematic squeezing without state tomography.

Ultracold atomic systems have proven to be a power-
ful platform for implementing quantum technologies such
as quantum simulation [1] and quantum enhanced sens-
ing [2]. For all experimental implementations efficient
readout is essential to extract the properties of interest.
In fact, advances in readout techniques have paved the
way to new discoveries. This includes absorption imaging
to observe Bose-Einstein condensation [3, 4], the quan-
tum gas microscope uncovering spatial correlations in
Hubbard models [5] and dispersive methods to observe
spin textures in spinor BECs [6].

Here, we show a readout technique to simultane-
ously access noncommuting spin-1 observables and de-
tect quantum correlations such as coherent spin squeez-
ing. For this we couple the original system to a set of
auxiliary states which, combined with unitary transfor-
mations, enables the simultaneous readout by projective
measurements of all populations in the enlarged Hilbert
space [7] (see Fig. 1(a)). Our readout is especially ad-
vantageous in systems with additional spatial degrees of
freedom. There, a measurement in a single global ba-
sis setting for each experimental realization may not be
sufficient to capture all relevant aspects of the quantum
state. A prime example is the cluster state, a valuable
resource for measurement based quantum computing [8],
which features spatial correlations between noncommut-
ing observables [9].

For demonstration, we realize our technique in a spinor
Bose-Einstein condensate (BEC) of 87Rb in the F = 1
hyperfine manifold. The initially unoccupied F = 2 hy-
perfine states serve as the auxiliary states to which we
couple via microwave (mw) pulses (see Fig. 1(b)). In or-
der to selectively couple the magnetic sublevels in the two
manifolds we use two orthogonal radiofrequency (rf) coils
which generate a rotating magnetic field [10, 11]. This
exploits the different signs of the corresponding mag-
netic moments to independently induce spin rotations
(see Fig. 1(c)).

(a) (b)

(c)

FIG. 1. Schematics of the readout technique. (a) Coupling
(red squares) the system (blue) to auxiliary states (green) en-
larges the Hilbert space. Applying independent unitaries in
both subspaces (red circles) allows choosing the measurement
bases individually. From the measured populations (p0,...,p7)
one infers the corresponding observables of the original sys-
tem. (b) Level scheme of the electronic groundstate of 87Rb in
a magnetic field. Coupling the two manifolds with mw pulses
we experimentally realize the extension of the Hilbert space.
Rotating magnetic fields selectively couple the magnetic sub-
states in each manifold. (c) Using two rf coils we generate a
rotating magnetic field. For a relative phase of ∆θ = −0.7π
we induce spin rotations only in F = 1 [12]. For this we mea-
sure the z-projections Sz and SF=2

z of the spin normalized
to the atom numbers N1 and N2 detected in the F = 1 and
F = 2 manifold, respectively.
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Together with mw coupling between the manifolds this
gives full control over the measurement basis [10] and in
principle allows the simultaneous measurement of 7 spin-
1 observables out of the 8 needed to completely describe
a single particle state [13]. Such a readout scheme con-
stitutes a generalized measurement where the formalism
of positive operator valued measures (POVMs) [14] al-
lows relating the measured populations to the expecta-
tion value of spin operators acting on the original system.

To demonstrate the possibility to spatially resolve a
complex spin structure in a single realization with this
readout, we prepare an elongated BEC of≈ 40, 000 atoms
in a dipole trap with trapping frequencies (ωy, ω⊥) =
2π · (2.3, 170) Hz. All atoms are initialized in the state
(F,mF) = (1,−1) in a magnetic field of B = 0.884 G
along the z-direction. Using spin-rotations induced by
the rf coils and a magnetic field gradient along the lon-
gitudinal direction of the BEC we generate a spin wave
involving the three spin directions Ŝx, Ŝy and Ŝz (see sup-
plemental material (SM) [12] for details). To read out all
three spin directions in a single experimental realization
we use the following scheme. We first apply three mw
pulses coupling (1, j) ↔ (2, j) (j = 0,±1) to split the
state between the F = 1 and F = 2 manifold. Selective
π/2 spin-rotation in F = 1 around the y-axis maps the
spin observable Ŝx onto the populations (p0, p1, p2). In
order to extract Ŝy as well as Ŝz we apply a π/4 spin-
rotation around the x-axis in the F = 2 manifold. We
ensure the phase coherence of all these pulses by active
magnetic field stabilization and GPS locking of the rf and
mw sources.

With a Stern-Gerlach pulse we spatially separate the
different mF states and use hyperfine selective absorp-
tion imaging to measure the population in all magnetic
substates with a spatial resolution of ≈ 1.2µm as shown
in Fig. 2(a). After this sequence the three spin direc-
tions are extracted from the measured atom numbers as
follows

Sx(y) =〈Ŝx(y)〉δy = n1,+1(y)− n1,−1(y)

Sy(y) =
4√
6

(n2,+1(y)− n2,−1(y))

Sz(y) =
√

2 [2n2,+2(y)− n2,+1(y)

+ n2,−1(y)− 2n2,−2(y)],

(1)

where nF,m(y) is the local atom number in the evalua-
tion interval of δy ≈ 5µm in the state (F,m). Here, 〈·〉δy
denotes the local mean corresponding to an average over
≈ 700 particles. This measurement yields at every po-
sition the three components of the collective spin-vector
from which we reconstruct the spin wave as shown in
Fig. 2(b) and (c).

In order to benchmark the capabilities of our readout
scheme to extract quantum correlations we prepare an
entangled state in our spin-1 system using spin mixing.
The resulting spin-nematic squeezed state features corre-

(b)

(a)

(c)

FIG. 2. Spatially resolved readout of three spin components.
Using magnetic field gradients and spin rotations we generate
a spin wave along the longitudinal direction of an elongated
BEC. (a) Populations of the magnetic substates measured
via absorption imaging after Stern-Gerlach separation. (b)
All three spin directions inferred from the measured popula-
tions at each position. The spin observables are normalized
to the local atom number nF (y) in the corresponding hyper-
fine manifold. (c) Reconstructed spin vector in space and its
distribution on a spin sphere.

lated fluctuations in two noncommuting observables Ŝx
and Q̂yz [15]. Here, Q̂yz is a so-called quadrupole op-
erator which captures an additional degree of freedom
inherent to a spin-1 system [12].

In order to constrain the dynamics to the spin degree
of freedom we change the trap geometry for this exper-
iment to (ωy, ω⊥) = 2π · (40, 170) Hz by confining the
atomic cloud with an additional crossed dipole beam.
We prepare ≈ 20.000 atoms in the state (1, 0) in the spa-
tially symmetric ground state mode. Spin mixing leads
to pairwise creation of particles in the states (1,±1) and
the energy of (1, 0) is tuned such that this process is in
resonance with the first excited spatial mode of the ef-
fective external potential for (1,±1) [16]. This mode is
spatially antisymmetric which leads to the characteristic
double-peak structure of the density in the states (1,±1)
(see Fig. 3(a)). This feature combined with our spatially
resolved readout allows the implementation of common
mode technical noise rejection as detailed below. To fa-
cilitate the absorption imaging we switch off the crossed
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Initial(a) (b) (c)

FIG. 3. Efficient detection of spin mixing dynamics. (a) Using off-resonant mw dressing we tune spin mixing into resonance
between the ground mode of (1, 0) (gray) and the first excited spatial mode of (1,±1) (red). The lower panel shows an
absorption image of the density distributions after 2 s of spin mixing evolution time where the populations in (1,±1) feature
the characteristic double peak structure. (b) After the readout sequence the observables Sx and Qyz are extracted from the
population differences of the states (2,±2) and (1,±1), respectively. Here the absorption images have been taken after 800 ms
of evolution time for better visibility of the mode structure. (c) By plotting the two values for each experimental realization
we directly visualize the spin-mixing dynamics in the spin-nematic phase space. The lines correspond to the mean field energy
contours of the phase space. For an evolution time of 500 ms a non-Gaussian shape has emerged.

dipole beam and let the atomic cloud expand in the re-
maining ωy = 2π · 2.3 Hz trapping potential for 10 ms.

For a simultaneous readout of both observables, Ŝx
and Q̂yz, we implement the following scheme. With an
rf π/2 spin-rotation around the y-direction we map the
observable Ŝx on the population difference of the states
(1,±1). We then use three mw π/2-pulses coupling the
states (1, 0/ ± 1) with (2, 0/ ± 2) to transfer half of the
population to the F = 2 manifold. In order to extract
Q̂yz we first rotate the state back using an additional rf
π/2 spin-rotation around the y-axis in F = 1. At this
stage a spin echo sequence is used to cancel the effect
of fluctuations in the magnetic field. We then imprint
a phase of π/2 on the state (1, 0) by applying two reso-
nant mw π-pulses coupling the states (1, 0)↔ (2, 0) with
a relative phase of π/2. An additional rf π/2-rotation
then maps the observable Q̂yz onto the population dif-
ference of (1,±1) (see [12] for a graphical illustration of
this scheme).

Since the structure of the first excited spatial mode
features an opposite sign between left (L) and right (R)
half of the atomic cloud (see Fig. 3(b)) we evaluate

Sx = SL
x − SR

x

Qyz = QL
yz −QR

yz,
(2)

with

SL/R
x =

(
n
L/R
2,+2 − n

L/R
2,−2

)
QL/R
yz =

(
n
L/R
1,+1 − n

L/R
1,−1

)
.

(3)

This analysis has the additional benefit that it mitigates
fluctuations which are homogeneous over the atomic
cloud such as technical noise induced by the mw and
rf pulses.

For each experimental realization we obtain a point
with coordinates Sx and Qyz in the spin-nematic phase
space and thus efficiently get an insight into the spin
mixing dynamics. In Fig. 3(c) we show the result for an
initial state (1,0), corresponding to the preparation at
the unstable fixed point of this phase space, after differ-
ent evolution times. The state expands along one axis
of the separatrix (black line). For longer evolution times
& 500 ms the state clearly becomes non-Gaussian which
is directly captured with our readout without state re-
construction. Here, we use only ∼300 experimental real-
izations to reveal this feature.

For the short time dynamics one expects to find spin-
nematic squeezing below the initial coherent state fluc-
tuations indicating the creation of an entangled many-
body state [15]. In Fig. 4(a) we plot the values of Sx/N2

vs. Qyz/N1 normalized by the total atom numbers NF
measured in the hyperfine manifold F = 1, 2 after an
evolution time of 100 ms (blue points). The squeez-
ing, i.e. the reduction of fluctuations along one direc-
tion at the cost of enhanced fluctuations along the or-
thogonal direction, is apparent. For a quantitative ana-
lysis, we compute the variance ∆2F (φ) with F (φ) =
cos(φ)Qyz + sin(φ)Sx. Calculating the corresponding
atomic shot noise from a multinomial distribution yields
∆2F (φ)SN = 〈cos2(φ)N1+sin2(φ)N2〉 with which we nor-
malize the variance (see Fig. 4(b)). Note that for per-
fect mw π/2-pulses this term becomes independent of the
phase φ, while in our experimental realization we observe
a small imbalance corresponding to 0.53π-pulses. We in-
fer minimal fluctuations of 0.62± 0.07 clearly below the
standard quantum limit where independently character-
ized imaging noise contributions have been subtracted.
Without subtraction we find a value of 0.81 ± 0.07. By
measuring the fluctuations of a coherent spin state, we in-
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dependently calibrated our imaging for F = 2 and F = 1
corresponding to φ = 0.5π and φ = π, respectively [12]
(gray points in Fig. 4(b)). After Stern-Gerlach split-
ting all relevant densities for extracting Sx and Qyz are
spatially non-overlapping since the magnetic moments of
(2,±2) are twice as large as the ones of (1,±1). Thus,
we extract all populations from a single exposure without
the need for hyperfine selective absorption imaging which
has the additional benefit of reduced imaging noise.

The noise suppression by nearly a factor of 2 (3 dB)
is close to the fundamental limit of our readout method.
This limit results from the mw couplings to empty aux-
iliary states which individually act as beam splitters and
thus each introduces additional binomial atom number
fluctuations between its output ports. In the case of
50/50 beam splitters, the fluctuations that are extracted
from measuring the signal in one port of each beam split-
ter lead to the estimated variance ∆2F (φ) which is then
connected to the variance ∆2Fin(φ) of the input state of
the beam splitters as follows:

ζ(φ) =
∆2F (φ)

∆2F (φ)SN
=

1

2

∆2Fin(φ)

Ntot
+

1

2
(4)

with Ntot = N1 + N2, see SM [12] for details. There-
fore the squeezing measured with this readout cannot
submerge the bound of 1/2 even for vanishing variance
∆2Fin(φ) = 0. From the measurement we infer mini-
mal and maximal fluctuations of ζ(φmin) = 0.62 ± 0.07
and ζ(φmax) = 2.80 ± 0.25. Using Eq. (4) we com-
pute ∆2Fin(φmin)∆2Fin(φmax) = (1.1 ± 0.6)N2

tot consis-
tent with a minimal uncertainty state expected from the
dynamics.

In summary, we demonstrate a new technique for the
simultaneous readout of multiple spin components of a
trapped atomic spinor gas. In situations where a com-
plex valued order parameter arises whose spatial cor-
relations are of interest the simultaneous determination
of orthogonal spin-components can access these correla-
tions. For example the easy-plane ferromagnetic phase
of a spinor gas is characterized by the order parameter
Sx + iSy [6, 17, 18]. Furthermore, our readout allows
the direct extraction of phase space distributions without
state tomography even below the shot noise limit reveal-
ing genuine quantum correlations. The ability to extract
spatially resolved information about phase space distri-
butions of a state is crucial in situations where a priori
knowledge about the quantum state is missing. Espe-
cially in situations of complex multimode dynamics our
technique can assess the usefulness of the emerging states
for quantum information processing applications such as
one-way computation.
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the connection to POVMs. This work was supported
by the ERC Advanced Grant Horizon 2020 Entangle-
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FIG. 4. Detection of spin-nematic squeezing. (a) In each
experimental run we obtain a pair of values Sx/N2 and
Qyz/N1. After 100 ms of evolution time the resulting scatter
plot clearly indicates correlated fluctuations between the two
observables compared to the initial state (inset). The blue
and black line depict the 2 standard deviation (s.d.) inter-
val. (b) For each projection axis parameterized by the angle
φ we compute the variance. We infer ∆2F (φ) by subtracting
imaging noise and normalize to the expected coherent state
fluctuations ∆2F (φ)SN resulting in the blue line and 1 s.d. er-
ror band. The prepared state shows reduced fluctuations of
0.62 ± 0.07 (blue point) along the maximally squeezed direc-
tion. The red shading indicates the fundamental limit of 0.5
of the readout scheme. The two gray points correspond to the
imaging calibration of the F = 1 and F = 2 manifolds using
a coherent spin state. The error bars correspond to the 1 s.d.
interval.

Research Center SFB1225 (ISOQUANT), by Deutsche
Forschungsgemeinschaft (DFG) under Germany’s Excel-
lence Strategy EXC-2181/1 - 390900948 (the Heidelberg
STRUCTURES Excellence Cluster) and the Heidelberg
Center for Quantum Dynamics. P.K. acknowledges sup-
port from the Studienstiftung des deutschen Volkes.



5

∗ fullspinreadout@matterwave.de
[1] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8,

267 (2012).
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SUPPLEMENTAL MATERIAL

Selective addressing of F = 1 and F = 2

An important prerequisite for our readout technique
is the ability to selectively induce spin rotations in both
hyperfine manifolds which allows setting a different mea-
surement basis in each of them. In our experiment we
apply a constant magnetic field of 0.884 G in z-direction.
Linearly oscillating magnetic fields perpendicular to the
offset field are routinely used to couple the magnetic
substates, i.e. induce spin rotations, where the reso-
nance frequency corresponds to the energy splitting of
the magnetic substates with ∆mF = ±1. At our mag-
netic field the resonance frequency for the two hyperfine
manifolds differs by ≈ 2.5 kHz which is smaller than the
Rabi frequencies used in our experiment. Therefore, in
terms of resonance frequencies a resonant coupling within
one manifold leads to an off-resonant coupling within the
other manifold.

An important difference, however, between the two
manifolds is the different signs of the g-factors. Because
of this the spins in the two hyperfine manifolds couple to
different directions of rotation of an oscillating magnetic
field. To exploit this difference we use two rf coils at an
angle of 90◦. Each of the two coils generates a linearly os-
cillating magnetic field at the position of the atoms where
we matched the amplitudes by matching the respective
resonant Rabi frequencies induced by each coil.

Tuning the phase ∆θ between the two rf fields allows
the generation of a rotating magnetic field and the con-
trol its direction of rotation. Depending on ∆θ the Rabi
frequency in each manifold is given by

ΩF = 2Ω0

∣∣∣∣sin(∆θ − θ0,F
2

)∣∣∣∣ (S1)

with some offset phase θ0,F for F = 1, 2.

To measure these phases for both manifolds we pre-
pare half of the atoms in (1,−1) and the other half in
(2,−2) by employing a mw π/2-pulse coupling the two
states. We subsequently apply the rf coupling with the
two rf coils where we tune the phase ∆θ between them.
As shown in Fig. 1(c) we record the Rabi oscillations in
both manifolds and make a fit to the data to extract the
resonant Rabi frequency vs ∆θ (see Fig. S1). We fit the
resulting curve according to Eq. (S1). For orthogonal
magnetic rf field vectors one can switch between a purely
left- and right-rotating field by changing ∆θ by π. In our
case, we find a small deviation by θ0,1 = θ0,2 + 1.12π
which is consistent with the magnetic field lines being
non-orthogonal but deviating by a small angle of 6◦. Yet,
this does not obstruct our ability to fully suppress Rabi
rotations in one manifold while having close to maximum
coupling in the other one.

FIG. S1. Measured Rabi frequency as a function of the rel-
ative phase ∆θ between the two rf-coils. The size of the er-
ror bars is smaller than the plot markers. We fit the func-
tion (S1) to the experimental data and find θ0,1 = 0.40π and
θ0,2 = −0.72π. The phase mismatch between the minimal
frequency in F = 1 and the maximal one in F = 2 (and vice
versa) comes from the fact that the magnetic fields generated
by the two rf coils are not perfectly orthogonal at the position
of the atoms.

Definition of spin-1 operators

A general spin state in F = 1 (spin-1) is character-
ized by a set of 8 generators of the su(3) Lie algebra.
Here we choose the three spin operators which in second
quantization are defined as

Ŝx =
1√
2

[
â†1,0 (â1,+1 + â1,−1) + h.c.

]
Ŝy =

i√
2

[
â†1,0 (â1,+1 − â1,−1) + h.c.

]
Ŝz = â†1,+1â1,+1 − â†1,−1â1,−1

(S2)

where â†F,m (âF,m) is the creation (annihilation) oper-
ator in the state (F,m). Additionally, we include five
quadrupole operators defined as [15, 19]

Q̂zz =
2

3
(−2â†1,0â1,0 + â†1,+1â1,+1 + â†1,−1â1,−1)

Q̂xx =
1

3
(2â†1,0â1,0 − â

†
1,+1â1,+1 − â†1,−1â1,−1)

+ â†1,+1â1,−1 + â†1,−1â1,+1

Q̂xy = iâ†1,−1â1,+1 + h.c.

Q̂xz =
1√
2
â†1,0(â1,+1 − â1,−1) + h.c.

Q̂yz =
i√
2
â†1,0(â1,+1 + â1,−1) + h.c..

(S3)
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We use these operators as a basis set to express the result
of our measurements.

Unitary transformations

The full readout schemes employs unitaries and pro-
jective measurements in the Sz basis in both manifolds.
Extension of the Hilbert space is implemented by mw
coupling of the two hyperfine manifolds described by the
operators

Ĉijx =
1√
2
â†1,iâ2,j + h.c.

Ĉijy =
i√
2
â†1,iâ2,j + h.c.,

(S4)

which couple the states (1, i)↔ (2, j).

Spin-rotations are implemented via rf-pulses. In our
experiment, the z-direction is defined by the applied mag-
netic field while we define the y-direction with the first rf
rotation, setting the reference frame for all further ma-
nipulations. The rotation axis for subsequent rf-pulses is
defined by the relative phase with respect to the initial
pulse. The spin-rotations in F = 2 are described by the
two spin-2 operators

ŜF=2
x = â†2,+1(â2,+2 +

√
3

2
â2,0)

+ â†2,−1(

√
3

2
â2,0 + â2,−2) + h.c.

ŜF=2
y = iâ†2,+1(â2,+2 −

√
3

2
â2,0)

− iâ†2,−1(

√
3

2
â2,0 − â2,−2) + h.c. .

(S5)

Simultaneous readout of Sx, Sy and Sz

In order to simultaneously read out all three spin di-
rections we apply the pulse sequence as described in the
main text which is depicted in Fig. S2. The total unitary
operation describing this measurement protocol reads as
follows

Û = e−i
π
4 Ŝ

F=2
x · eiπ2 Ŝy · e−iπ2 Ĉ

0,0
x · e−iπ2 Ĉ

+1,+1
x · e−iπ2 Ĉ

−1,−1
x .

(S6)

Expressing the final projective measurement in the
F = 1 and F = 2 manifolds in terms of the original

Transfer to Mapping of Mapping of

mw mwmw rf rf

Time

FIG. S2. Pulse sequence for the simultaneous readout of all
three spin directions. The upper panel depicts the coupling
in the two hyperfine manifolds and the boxes contain the ro-
tation operator together with the rotation angle.

spin-1 states yields the following POVMs:

Ê0 = â′†1,−1â
′
1,−1 = −1

4
Ŝx +

1

8
Q̂xx +

1

6
N̂tot

Ê1 = â′†1,0â
′
1,0 = −1

4
Q̂xx +

1

6
N̂tot

Ê2 = â′†1,+1â
′
1,+1 =

1

4
Ŝx +

1

8
Q̂xx +

1

6
N̂tot

Ê3 = â′†2,+2â
′
2,+2 =

1

16

√
3

2
Ŝy +

1

8
√

2
Ŝz +

√
3

32
Q̂yz

− 1

32
Q̂xx +

1

128
Q̂zz +

5

64
N̂tot

Ê4 = â′†2,+1â
′
2,+1 =

1

8

√
3

2
Ŝy −

1

16
Q̂xx −

3

32
Q̂zz

+
5

48
N̂tot

Ê5 = â′†2,0â
′
2,0 = −

√
3

16
Q̂yz +

3

16
Q̂xx +

11

64
Q̂zz

+
13

96
N̂tot

Ê6 = â′†2,−1â
′
2,−1 = −1

8

√
3

2
Ŝy −

1

16
Q̂xx −

3

32
Q̂zz

+
5

48
N̂tot

Ê7 = â′†2,−2â
′
2,−2 = − 1

16

√
3

2
Ŝy −

1

8
√

2
Ŝz +

√
3

32
Q̂yz

− 1

32
Q̂xx +

1

128
Q̂zz +

5

64
N̂tot,

(S7)

where â′†F,mF
â′F,mF

= U†â†F,mF
âF,mF

U and N̂tot =∑1
i=−1 â

†
1,iâ1,i the total number which is the normaliza-

tion of the state. The measurement maps these observ-
ables onto the atom numbers, i.e. â′†F,mF

â′F,mF
→ nF,mF .

From this one can extract the observables of in-
terest by a linear combination of the different Êi.
For example the value of Sx can be extracted via
Ŝx = 2(Ê2 − Ê0)→ 2(n1,+1 − n1,−1). Note that in the
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Spin Echo and rotation 
back to original basis 

Phase imprintTransfer to 

mw mw mw mwmwrf rf rf rf

Mapping of Mapping of

Time

FIG. S3. Pulse sequence for the simultaneous readout of Sx and Qyz. The notation is the same as in Fig. S2.

main text we normalize always to the atom number de-
tected in each manifold instead of the total atom number
where N1 ≈ N2 ≈ 1

2Ntot. Therefore the linear combina-
tion of the POVMs to extract the observables of interest
differ by a factor of 2 from the ones in the main text.

Simultaneous readout of Ŝx and Q̂yz

In order to read out Ŝx and Q̂yz in a single experimen-
tal realization we apply the following pulse sequence as
depicted in Fig. S3. First we apply a resonant rf pulse,
corresponding to a π/2-spin rotation around Ŝy, to map

the observable Ŝx onto the population difference of the
magnetic substates mF = ±1 in F = 1. To ”store” the
information about the populations during the rest of the
readout sequence we use three mw π/2-pulses to transfer
half of the population in (1, 0/± 1) to (2, 0/± 2), respec-
tively. The states in F = 2 are chosen such that the final
Stern-Gerlach maps the states with mF 6= 0 onto differ-
ent spatial positions than the one in F = 1 and thereby
allows imaging with a single absorption picture.

These mw pulses require in total 350µs. At this time
scale magnetic fluctuations become relevant to which this
readout is sensitive. Therefore, to compensate these fluc-
tuations we use a spin echo technique. For that we apply
an rf π-pulse and afterwards wait another 350µs. Note
that we calibrated our two rf coils such that the rf-pulses
are only resonant with the F = 1 manifold such that we
do not change the populations in F = 2.

We then apply another rf π/2-rotation around the y-
axis to rotate the state onto its original basis. To change
the readout from Ŝx to Q̂yz a phase of π/2 has to be
imprinted on the state mF = 0. For that we use two res-
onant π-pulses coupling the states (1, 0)↔ (2, 0). Chang-
ing the relative phase of the two pulses by π/2 leads then
to the desired phase imprint. We finally apply another
rf π/2-rotation around the y-axis to map the observable
Q̂yz onto the population difference in F = 1. It is crucial
that this last rf pulse is in phase with the first rf pulse as

it would otherwise change the measured observable.

Preparation of spin waves

To prepare the spin waves shown in Fig. 2 as well as
for the calibration measurements (next section) we use
the following sequences. After evaporation and loading
of the BEC into the elongated dipole trap with trapping
frequencies (ωy, ω⊥) = 2π · (2.3, 170) Hz all atoms are in
the state (1,−1). Using the rf coils we induce a π/2 spin-
rotation around the y-axis. This prepares a homogeneous
spin state along the cloud with Sx(y)/n1(y) = 1. By ap-
plying a constant current to one of the rf coils we generate

a magnetic field gradient with
∂Bz
∂y
≈ 0.2µG/µm along

the longitudinal direction of the cloud. We employ this
gradient for 100 ms to produce a spin wave with the spin
vector rotating in the Sx−Sy -plane of the spin sphere.
Afterwards we apply another rf spin rotation to tilt the
spin wave by ≈ π/4.

For calibration we prepare two different spin waves in
the elongated dipole trap. In a first measurement we
prepare the spin wave in the Sx−Sy-plane as described
before omitting the last tilting pulse. In a second mea-
surement we prepare a spin wave in plane parallel to the
Sx−Sy-plane with a finite value of Sz/Ntot = 0.9. This
is done by using a shorter rf pulse at the beginning of the
spin-wave preparation.

Calibration of Sx, Sy and Sz readout

For the simultaneous readout of all three spin direc-
tions we measure Sx in F = 1 and Sy in F = 2 (as
depicted in Fig. S2). The observable that is extracted
from F = 2 depends on the relative phases between the
final two rf pulses and the mw pulses coupling the two
manifolds. By changing the relative phases of the three
mw pulses one adjusts the phases between the states
of the F = 2 manifold. For example a relative phase
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(b)(a)

(c)

FIG. S4. Calibration of the rf and mw phases. (a) For the calibration we prepare two spin waves with constant Sz/n2 = 0
(upper panel) and Sz/n2 = 0.9 (lower panel) where examples are shown for φrf = 0.1π and φrf = 0, respectively. We fit the
signal extracted from a single absorption image in F = 1 (blue symbols) and F = 2 (green symbols) with a sine to extract
their relative spatial phases and amplitudes AF . (b) Amplitudes as a function of φmw. From the spin wave with Sz/n2 = 0 we
extract φ0

mw from the point where the amplitude ratio is 1. (c) Repeating the measurement for fixed φmw and different φrf we

extract the value φ
π/2
rf at which the two signals have a relative spatial phase shift of π/2. We plot the result as a function φmw.

Applying a linear fit to both results (gray solid lines) yields the value of φ0
mw = 0.06π at the crossing point with a stronger

constraint on this parameter than the previous method.

φmw = π/2 of the coupling (1, 0) ↔ (2, 0) compared to
the other two mw pulses imprints a relative phase of π/2
on the state (2, 0) and therefore changes the final readout
in F = 2 from Ŝy to Q̂xz. Furthermore, a change in the
relative phase between the two rf-pulses φrf changes the
spin directions that are read out (e.g. Sy → Sx).

For calibration of these phases we prepare the two spin
waves described above and systematically scan the phases
φmw and φrf. In each measurement, we record the popu-
lation differences

Sx(y) =〈Ŝx(y)〉δy = n1,+1(y)− n1,−1(y)

Sy(y) =
4√
6

(n2,+1(y)− n2,−1(y))

Sz(y) =
√

2 [2n2,+2(y)− n2,+1(y)

+ n2,−1(y)− 2n2,−2(y)],

(S8)

where the spin direction detected by SF=2 in F = 2 is
defined by the reference Sx in F = 1.

We first employ the spin wave in the Sx−Sy-plane.
As expected Sz/n2 is constant and ≈ 0 (see upper panel
Fig. S4(a)). Sx/n1 as well as SF=2/n2 are oscillating as a
function of position y. We thus fit a sine to both signals
to extract their amplitudes and relative spatial phases.
Changing the phase of the rf-pulse shifts the position of
the SF=2(y) wave with respect to the Sx(y) wave. To
read out two orthogonal spin directions we extract from

this measurement the phase φ
π/2
rf at which the two waves

have a spatial phase shift of π/2 corresponding to Sy =
SF=2.

A change in the phase of the mw pulse does not change

the value of φ
π/2
rf but leads to a reduced amplitude of

the wave recorded in F = 2 (red points in Fig. S4(b))
as this changes the readout from a spin operator in the
Sx−Sy-plane to a quadrupole operator in the Qxz−Qyz-
plane. For the prepared spin wave the mean value of
these quadrupole operators is 0. Therefore, we can ex-
tract the phase value φ0mw = 0.06π of the mw pulse at
which the amplitude of the wave in F = 2 is 1.

As a consistency check, we repeat the calibration with
a spin wave with a finite value of Sz. We use the same
readout as before and consistently find a constant value
Sz/n2 ≈ 0.9 and an oscillatory behavior for Sx and SF=2

(see lower panel Fig. S4(a)). From the latter we extract
the phase and amplitude. As before a change of the phase
φrf of the rf pulse shifts the relative phase of the two sig-

nals from which we extract φ
π/2
rf . For this wave, however,

the mean value of Qxz(y) and Qyz(y) are non-vanishing
but obey the relation Qxz ≈ Sx and Qyz ≈ Sy. This
means that a change in the phase φmw of the mw pulse
does not change the amplitude of the signal in F = 2

but its spatial phase. Thus, the value of φ
π/2
rf now de-

pends on φmw as shown in Fig. S4(b). From the two
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FIG. S5. Results of the imaging calibration. The left and right panels show the atom number fluctuations vs the total atom
number measured in F = 1 and F = 2, respectively. The dashed lines are linear fits to the data while the black lines are the
theoretical expectation for a coherent state without technical fluctuations.

measurements we then extract the value of φ0mw at which

the values of φ
π/2
rf from both spin waves coincide. This

marks the phase settings to be used in order to measure
the two desired spin observables in the two manifolds.

Both methods yield a value of φ0mw ≈ 0.06π. The sec-

ond method has the advantage that the phase of φ
π/2
rf

depends linearly on φmw, while the amplitude close to
the maximum is quadratic as a function of φmw. There-
fore the latter allows a more precise calibration of the
phase φ0mw.

Limitations of the readout scheme

Here we provide details of how the detected fluctua-
tions are related to the fluctuations of the original state.
In order to see this we consider an ideal π/2 mw-pulse
transferring on average half of the atoms to the F = 2
manifold. We want to determine the fluctuations of Sx
measured in the F = 1 manifold after the splitting.
Working in the Heisenberg picture, we have

Ŝ′x =
1√
2

(
â′†1,0(â′1,1 + â′1,−1) + h.c.

)
. (S9)

To relate back to Ŝx of the original state before the mw-
pulse (which we assume to be described by Ĉiiy ), we need

to replace â′1,i = (â1,i+â2,i)/
√

2, where a2,i are the empty
F = 2 modes. It can be seen that the mean spin in one of
the output ports of this beam splitter is half of the spin
of the input state. In the case of the prepared squeezed
state the mean spin vanishes in all directions. For the

variance we thus obtain

∆2S′x = 〈(Ŝ′x)2〉

=
1

4

〈
1

2

[
(â†1,0+â†2,0)(â1,1+â2,1+â1,−1+â2,−1)+h.c.

]2〉
=

1

4

〈
Ŝ2
x +

1

2

(
2N̂1,0 + (â†1,1 + â†1,−1)(â1,1 + â1,−1)

)〉
≈ 1

4

(
∆2Sx +Ntot

)
.

(S10)

The third line is obtained by exploiting that the F = 2
modes are unoccupied. The ”≈” in the last line means
that we employ the approximation that the side mode
populations are much smaller than N1,0. An analogous

calculation can be done for the measurement of Q̂yz after

the splitting pulse or for any combination F̂ (φ) of the
two. We thus recover Eq. (4) of the main text.

Image processing and calibration

Details about our imaging system and the calibration
procedure are reported in [20]. To reduce imaging noise
we employ a fringe removal algorithm as detailed in [21].

To check the calibration of our imaging we prepare a
coherent spin state with approximately equal mean atom
numbers in the states (1,±1) and (2,±2). Starting from
the state (1,−1) we use two mw pulses coupling the states
(1,−1)↔ (2, 0) and (2, 0)↔ (1, 0). For the second pulse
we use a fixed π-pulse while we vary the length of the first
pulse. Together with a magnetic field gradient (Stern-
Gerlach pulse) which expels residual atoms in the mag-
netic substates mF 6= 0 we adjust the total atom number
Ntot in the state (1, 0). Subsequently, an rf π/2-pulse
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is used to prepare an equal superposition of the states
(1,±1). These populations are then again split with two
mw π/2-pulses coupling the states (1,±1) ↔ (2,±2).
This preparation leads to an equal probability of 1/4 to
find an atom in one of the four states.

Analogous to the squeezing measurement we divide the
atomic signal into two halves and extract the atom num-

ber difference N
−,L/R
F = n

L/R
F,+F − n

L/R
F,−F in each half and

for each manifold F = 1, 2. To mitigate the technical
noise contribution we subtract the value of the right half
from the one of the left to obtainN−F = N−,LF −N−,RF . For

each setting of the atom number we compute the variance
∆2N−F and plot it vs. the measured mean atom number
〈NF 〉 in the respective manifold as shown in Fig. S5. For
a coherent state one expects to find multinomial fluctu-
ations of the populations implying ∆2N−F = 〈NF 〉.

From a fit to the data we extract a slope of 1.02± 0.05
for F = 1 and a slope of 0.96 ± 0.08 for F = 2 which
is consistent with coherent state fluctuations. For the
offset we find 1, 710 ± 80 for F = 1 and 2, 090 ± 170
for F = 2. These values include the photon shot noise
contribution of 1, 150 for F = 1 and 1, 490 for F = 2
which we compute via Gaussian error propagation from
the number of detected photons.
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