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Inspired by the recent success of deep learning [1], several models emerged
trying to explain how the brain might realize plasticity rules reaching similar
performances as deep learning [2, 3, 4, 5]. However, all of these models consider
only supervised and unsupervised learning, where an external teacher is needed
to produce an error signal that guides plasticity.

In this work, we introduce a model of reinforcement learning with the prin-
ciple of Neuronal Least Action (R-NLA). We extend previous works on time-
continuous error backpropagation in cortical microcircuits [4, 6] to achieve a
biologically plausible model implementing deep reinforcement learning.

In R-NLA the neurosynaptic dynamics is derived from the energy function
using the variational principle. In the resulting dynamics the phase-advanced
firing of the neurons effectively undoes the network delay introduced by finite
membrane time-constants. Errors are introduced to the network by nudging,
and they are propagated to deeper layers via cortical microcircuits. Instead of
having an explicit teacher, the output neurons, which represent the actions, form
a soft winner-take-all network (Fig A). This winner-take-all structure evokes a
nudging on the soma of the output neurons, which is subsequently backpropa-
gated through the network. A reward prediction error δ = R − 〈R〉 modulates
the plasticity multiplicatively as a formally deduced global reward-specific neu-
romodulator [7]. By construction, the learning rule approximates the policy
gradient of the mean expected reward.

We show, on a toy problem, that R-NLA can learn classification tasks in
the reinforcement learning framework with similar performance as an equiva-
lent deep reinforcement learning model (Fig B). Further, we show that it is
robust against time delayed rewards, even if the reward-delay is not constant
but randomly distributed (Fig C).

R-NLA constitutes a time-continuous implementation of biologically plau-
sible deep reinforcement learning, robust to delayed reward. The self-teaching
soft winner-take-all mechanism removes the necessity of an explicit teacher and
the proposed learning rule solves the problem of synaptic consolidation. The
model can be extended to an actor-critic model, where a second (deep) critic
network learns the state-value function.
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Figure 1: A-I Network schematics. A-II Soft winner-take-all network in the
output layer. A-III Microcircuit for error backpropagation. B Comparison to
classical reinforcement learning methods. C Robustness with respect to reward
delays.
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