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A major driving force behind the recent achievements
of deep learning is the backpropagation-of-errors al-
gorithm (backprop), which solves the credit assign-
ment problem for deep neural networks. Its effec-
tiveness in abstract neural networks notwithstand-
ing, it remains unclear whether backprop represents
a viable implementation of cortical plasticity. Here,
we present a new theoretical framework that uses a
least-action principle to derive a biologically plausi-
ble implementation of backprop.
In our model, neuronal dynamics are derived as
Euler-Lagrange equations of a scalar function (the
Lagrangian). The resulting dynamics can be inter-
preted as those of multi-compartment neurons with
apical and basal dendrites, coupled with a Hodgkin-
Huxley-like activation mechanism that undoes tem-
poral delays introduced by finite membrane time con-
stants. We suggest that a neuron’s apical potential
encodes a local prediction error arising from the dif-
ference between top-down feedback from higher cor-
tical areas and the bottom-up prediction represented
by activity in its home layer. This computation is en-
abled by a stereotypical cortical microcircuit, project-
ing from pyramidal neurons to interneurons back to
the pyramidal neurons’ apical compartments. When
a subset of output neurons is slightly nudged towards
a target behavior that cannot be explained away by
bottom-up predictions, an error signal is induced that
propagates back throughout the network through feed-
back connections. By defining synaptic dynamics as
gradient descent on the Lagrangian, we obtain a bi-
ologically plausible plasticity rule that acts on the
forward projections of pyramidal and interneurons
in order to reduce this error.
The presented model incorporates several features of
biological neurons that cooperate towards approxi-
mating a time-continuous version of backprop, where
plasticity acts at all times to reduce an output error
induced by mismatch between different information
streams in the network. The model is not only re-
stricted to supervised learning, but can also be applied
to unsupervised and reinforcement learning schemes,

as demonstrated in simulations.
Lagrangian dynamics
We propose a model based on an energy function
composed of layerwise prediction errors1 and a cost
function defined over a subset of neurons that act
as output neurons, e.g., neurons in the last layer of
a hierarchical network

E =
1

2

N∑
k

‖uk −Wkr̄k−1‖2︸ ︷︷ ︸
prediction error

+ βC︸︷︷︸
cost

, (1)

where uk are the membrane potentials of the kth
layer, Wk weights projecting to neurons in the kth
layer and r̄k−1 = ϕ(uk−1) the steady-state activation
function of neurons in the previous layer. β is a
scalar weighting of the costs. The cost function is
given by the Euclidean norm between observed and
target behaviour C = 1

2
‖uN − yN‖2. By applying a

change of variables u = ũ − τ ˙̃u, we can define the
Lagrangian L as L = −E(ũ, ˙̃u,W ). We assume that
neural dynamics minimizes an energy integral (or
"action"), i.e., δ

∫
Ldt = 0. The equation of motion

solving this constraint is given by the Euler Lagrange
equations with respect to ũ, i.e., ∂L

∂ũ
= d

dt
∂L
∂ ˙̃u

, leading
to

τ u̇k = −uk +Wkrk−1 + ek , (2)
rk−1 = r̄k−1 + τ ˙̄rk−1 , ek = ēk + τ ˙̄ek , (3)
ēk = r̄′k ·WT

k+1(uk+1 −Wk+1r̄k) , (4)
ēN = β(yN − uN) . (5)

Synaptic dynamics are derived as gradient descent
on the energy function, i.e., plasticity reduces pre-
diction errors:

Ẇk ∝ −∇Wk
E = (uk −Wkr̄k−1)r̄

T
k−1 . (6)

Biophysical interpretation
The resulting neuron dynamics can be interpreted as
containing somatic (uk), basal (Wkr̄k−1) and apical

1For simplicity, we restrict the description to layered net-
works, but the model generalizes to arbitrary connectivities.

1



3
0
3

C

0.0 1.0 2.0
time [s]

3
0
3
1
0
1

m
em

br
an

e 
po

t. 
[a

.u
.]

102 103 104

training time [5s]

10 2

10 1

er
ro

r r
at

e 
[1

/5
 te

st
 se

t] Lagrange
backprop

BA
1
0
1

0 2000 4000
images shown

1

0

1

m
ed

ia
n 

re
wa

rd

median
reward
IQR

D

W

-
+

W

WT

fe
e
d
b
a
c
k

p
re
d
ic
ti
o
n

e
rr
o
r

plasticity

WT

Figure 1: (A) Error coding scheme with compartmental model. (B) Learning MNIST with a layered network (784-500-10). (C)
Unsupervised learning of a time-continuous human intracortical EEG signal (56 electrodes, modelled by 56+40 fully recurrent
neurons) before and after training. During test runs, the network only sees 46 of 56 inputs and reproduces the remainder
(only 2 shown). (D) Classification of three images with reinforcement learning (reward is +1/ − 1). A winner-take-all like
connectivity among the output neurons provides the necessary nudging when learning is based on scalar reward signals.

(ek) compartments. Prediction errors ēk are encoded
in the apical dendrite and are formed by comparing
top-down feedback (WT

k+1uk+1) and bottom-up pre-
diction mediated via lateral interneurons (WT

k+1u
I
k

with uIk = Wk+1r̄k), see Fig. 1A. As discussed in [1],
the weights of the interneuron circuit must not be
identical to the forward weights but can be learned.
In this framework, neurons are both carriers of feed-
forward input as well as error signals. A crucial dif-
ference to ordinary rate models is the appearance of
"look-ahead" rates rk(t) ≈ r̄k(t + τ), undoing tem-
poral delays by low-pass filtering. We identify this
as a Hodgkin-Huxley-like activation mechanism, set-
ting r ≈ INa which can be shown to behave like
the look-ahead rate under certain conditions. This
allows the neuron to encode, at every time step, the
correct error signal with respect to its current state,
enabling plasticity to reduce the cost at all times.

Error backpropagation

Synaptic plasticity is driven by the comparison be-
tween basal and somatic potentials. By low-pass fil-
tering Eq. (2) and using Eq. (6), we recover the back-
prop formulas Ẇk ∝ ēkr̄

T
k−1 and ēk = r̄′k ·WT

k+1ēk+1.
To train the network, output neurons are slightly
nudged towards their target yN(t), reducing the cost
function. However, this leads to non-zero prediction
errors between layers, driving plasticity to reduce
these errors to zero again. For small β, it can be
shown that this interplay between nudging and re-

ducing layerwise errors can be used to train the
network. We demonstrate the learning capabilities
of the model for supervised, unsupervised and rein-
forcement learning examples (see Fig. 1B-D).
Related work
Recently, the possibility of biological plausible back-
prop obtained a huge boost with the discovery of
feedback alignment [2]. In [1, 3], it was further shown
how cortical microcircuits can be used to approxi-
mate error backpropagation. Additionally, Equilib-
rium Propagation [4] introduced a connection be-
tween energy-based models and error backpropaga-
tion. The presented model combines the previous
approaches and extends them to allow real-time
learning with backpropagated errors, where plastic-
ity does not depend on a separation of training and
free phases or dynamical time scales.
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