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Abstract

Throughout this internship, the basics of Field Programmable Gate Array (FPGA) based
hardware design have been acquired by designing, verifying and implementing a Serial Peripheral
Interface (SPI) master. The SPI should be configurable in terms of timing constraints, data
transmission modes as well as the number of connected slave devices and the operating frequency.
It has been implemented in a Spartan-6 FPGA on the Analog Network Attached Sampling unit
(ANANAS) [1] and verified by simulation and using oscilloscope measurements.
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1 Learning the Basics: Clock Divider
1.1 Motivation
In order to get to know the concepts and tools for field-programmable gate array (FPGA) based
hardware design a simple clock divider was to be designed and simulated. Communication between
hardware components on the Analog Network Attached Sampling unit (ANANAS) [1] needs to be driven
by clocks with various frequencies specified by the manufacturer. However, it is not possible to control
every single component on the board with an individual global FPGA clock, due to limited resources
(the Spartan-6 FPGA used in the Flyspi FPGA system provides 16 global clocks in total [2]). It is
rather favoured to provide a fin ≈ 40 MHz global clock from the Open Core Protocol bus (OCP) of the
FPGA which is then scaled down by a factor of 1

n to the individually required frequencies fout of the
components:

fout = fin

n
(1)

For this task, a clock divider can be used. However, one has to be careful with this term because it refers
to the generation of a new, separate slower clock. In our case the module to be designed should only
mimic the behaviour of a traditional clock divider by exploiting the clock enable of flip-flops in higher
level modules. Further, only even multiples of the global OCP clock period should be configurable.

1.2 Specification, Verification and Implementation
The specification of the module to be designed marks the first step of every design flow. After the
basic features of the module have been formulated, a rough specification of the design by an abstract
visualization (in a high level language) was carried out. This was realized by modelling the behaviour of
the module in a block diagram and a state machine. The basic concept of the module clock divider
has been illustrated in such a way and can be seen in figure 1. The state machine process begins at the
initial state IDLE (cf. figure 1b). The most simple way to mimic the behaviour of the operating clock is
to flag the rising and falling edges of the clock signal with two separate states re and fe that are the
output. A counter, based on a register of width depending on the division factor CLKDIV, indicates the
transitions between IDLE and re or fe. The counter value cnt is increased every OCP clock cycle and is
reset when cnt==y. Whenever cnt equals one of the two specifiable values x or y, a state transition to
the rising or falling edge states re or fe occurs and a pulse is generated on the corresponding outputs (cf.
figure 1a) with a duration of one OCP clock cycle. For y=2x, this infers a downgrade of the duty cycle
by 50%. The pulses on these outputs can then be used as clock enables of flip-flops within the modules
describing the interfaces of data flow between different hardware components. Furthermore, only
even division factors should be valid in order to guarantee a synchronous communication specification.
Therefore, an exclusion of odd division factors has been implemented.

For the description of a system such as the clock divider a hardware description language (HDL) is
needed. Throughout this internship System-Verilog has been used for the description, verification and
implementation of all designs that have been and will be discussed in the following. For verification
purposes it is necessary to simulate the behaviour of the design to be implemented in hardware. This
task has been carried out with the multi-language HDL simulation environment ModelSim. This tool
provides a graphical user interface (GUI) for the observation of all in- and output signals of individual
modules in the design. It allows for verification of the temporal behaviour of the module given ideal
operating conditions, thus no timing constraints are considered. In simulation, the module proved to
correctly trigger the rising and falling edge signals. Also, the illegal assignment of odd division factors
resulting in a break of the simulation could be observed. Finally, the implementation of the verified
design, meaning the procedure placing and interconnecting logic elements on the grid of the FPGA,
has been done with the software Xilinx ISE.
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(a) Block diagram (b) State machine

Figure 1: State machine for clock divider module. Whenever the counter reaches the values x or y
(typically y = 2x), a pulse is generated on re or fe with a length of one OCP clock cycle. The pulses
represent a rising or a falling edge to be used as clock enables, respectively.

2 Implementation of a Serial Peripheral Interface Master
2.1 Motivation
A Serial Peripheral Interface (SPI) is a synchronous serial communication interface specification for
short distance communication, primarily used in embedded systems developed by Motorola [3]. Next
to I2C, it has become a de facto standard for interconnection of digital circuits using a master-slave
architecture. A rough overview over such a system is provided in figure 2. In principle, a single master
can be connected to multiple slave devices. The master is able to initialize communication with a single
slave via a so called chip- or slave-select (CS). The CS is active low so when it gets pulled down, the
selected slave is informed that the master has initialized the communication protocol. Then, two signals
are transmitted from the master to the slave: The Serial Clock (SCLK) and the data output from the
master to the slave, which is called Master Output Slave Input (MOSI). In parallel, the slave delivers
an output of his data to the master on the so called Master Input Slave Output (MISO) line. If the
slave is not selected, the MISO pin is set on high impedance. For each clock cycle of the SCLK one bit
of the master’s data is shifted onto the MOSI line to the slave and vice versa (on the MISO line). This
means that independent of a master READ or WRITE request, both devices simultaneously clock in and
transfer data on the bus from their respective buffers to the other participant.

Figure 2: SPI master-slave architecture with
an example set of three slaves connected to a
single master. There are in general four signals
necessary for a working SPI master-slave com-
munication: The serial clock (SCLK) guarantees
synchronous data transmission on the master
output slave input (MOSI) and master input
slave output (MISO) lines. In order to initial-
ize the communication, the chip-select (CS) of
a certain slave device has to be pulled down.
However, if there is only a single slave connected
to the master, CS is not needed. In general an
arbitrary number of slaves can be connected to
a single master. [3]
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There are in general four modes for the communication between master and slave. They depend on
the phase and the polarity of the SCLK with respect to the active edge relevant for MOSI and MISO.
Figure 3 and table 1 provide an overview over the properties of the four different modes.

Mode Clock Polarity (CPOL) Clock Phase (CPHA) Active Edge
0 0 0 positive
1 0 1 negative
2 1 0 negative
3 1 1 positive

Table 1: Characteristics of SPI modes

In the previous implementation of the SPI module only modes 0 and 2 have been supported since
clock inversion has been considered only. Since a slave on the ANANAS board uses mode 3, a quick
unflexible adaption of the given module was previously written in order to make the communication
work. This has been the case for a chip serving as an SPI-to-I2C-converter (a SC18IS600 chip from
NXP Semiconductors) which only supports SPI mode 3 [4]. In addition, the waiting time between
the assertion of the CS and the generation of the SCLK could not be adjusted. The SPI-to-I2C-chip
requires specific timing constraints for the initialization of a SPI based communication [4]. Therefore,
the goal of this internship was to write, verify and implement a full-duplex capable SPI master module,
configurable in terms of the number of connected slave devices, the operating frequency and the CS to
SCLK pause with support of all four possible SPI modes.

Figure 3: Timing diagram of data transmission for different SPI modes. The communication starts as
soon as the slave-/chip-select (SS) is pulled down. Data has to be held long enough on the MOSI and
MISO lines in order to be valid, meaning that depending on the selected SPI mode the bits have to be
stable either at the rising or the falling edge of the serial clock (SCK). The points of time at which
the data is stable can be shifted with respect to SCK by half a cycle which defines the clock phase
(CPHA). Further, the polarity of the clock (CPOL) can be changed between active high and active low,
leading to four different modes at which the SPI can operate. [3]

2.2 Specification
The FPGA uses the OCP for the contribution of all important global signals such as the global reset
and the global clock as well as the distribution of data and event and command indicating flags for
slow control interfaces. For a neat and simple handling of this information with the SPI however it is
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preferred to make use of interfaces connecting it to the OCP. The common axi4-stream interface has
been chosen for this task. A schematic of the data flow for a transmission between a host and a slave
device via SPI using an axi4-stream adapter can be seen in figure 4.

Figure 4: Schematic of the data flow from the host to a chip on the ANANAS board. Data from
the host is written to and read from the FPGA via USB or Ethernet connection. In both directions
respectively a First In - First Out buffer (FIFO) is used to temporarily store the incoming and outgoing
data from the FPGA. The OCP bus is then connected to the SPI, which communicates with the
SPI-to-I2C-chip, via the axi4-stream adapter.

The SPI related in- and outputs of the axi4-stream adapter can roughly be subdivided into an OCP
output (corresponding to MOSI) and an OCP input (corresponding to MISO) direction as described in
the sketch of the interface in the upper half of figure 7. The flags and signals are chosen to be consistent
name-wise in both directions of data transmission, to and from the SPI module. Eight bit wide parallel
data packages are transmitted on the tdata lines to one of the N slaves tied to the SPI. The slave is
specified with the tuser lines. The width (x + 1) of tuser depends on N , where

x = min {k ∈ Z | k ≥ log2 N} . (2)

The extra bit added on top indicates the command initialized by the host (0 for READ and 1 for
WRITE). Figure 5 shows a simplified timing diagram of a SPI data transmission with the axi4-stream
adapter.

The state machine chosen for the SPI is now depicted in figure 6. It can be subdivided into six
different states:

• IDLE: Initial state for reset and whenever there is currently no data to be processed. On the
next packet flagged with tfirst from the axi4-stream adapter the following state will be the
configuration state MODECFG of the SPI mode. This is however only possible, if the output register
to the OCP bus of the SPI master is empty (ocpin_tvalid is low). If the packet is not the first,
the state machine will directly move to the data transmission state DATA.

• MODECFG: Configuration state for the SPI mode. It is the first step for each master-slave commu-
nication between the host and a newly selected slave. Here, one of the four available SPI modes
needed by the selected slave device (cf. table 1) is configured and not changed until a new slave is
selected. It is important that CPOL is configured before the CS is pulled down so that no wrong
edges are detected.

• CSASS: In this state, the CS of the desired slave is pulled down, informing the slave to listen to
the master.

• CSWAITPRE: State that can be used to set the number of clock cycles to the SCLK first edge which
may be requested due to timing constraints. Is selected once at the start of every communication
between the host and the SPI slave.
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Figure 5: Timing diagram of SPI data transmission with the axi4-stream adapter. The signals
describing the data on MOSI and MISO are labelled with _out and _in, respectively. tfirst and
tlast indicate the first and the last data packet of the transmission with a specific SPI slave and
are mirrored for consistency in both directions. In output direction, the flag tvalid_out is triggered
whenever valid data to be written is available for the transmission on MOSI. It gets pulled down again
when the transmission has been successful. This means that the flag is always active when an event
occurs on the OCP. For the OCP input direction however, tvalid_in is only triggered when valid
data to be read is available from the slave. This flag also allows slave blocking (cf. figure 6). In both
directions, tnext is activated every time a data transaction has been successfully performed on MOSI
or MISO, forcing the corresponding tvalid to go down again. It indicates that the SPI is ready to
perform the transmission of the next data packet.

• DATA: Data transmission state. Depending on the width of the data packets to be transmitted,
the state machine stays in this state for the corresponding number of clock cycles. Here, the
SCLK is given out from the master to the slave. Also, the data from the master and the slave
is clocked in on the MOSI and MISO lines, respectively. When there is currently no valid data
from the master and the recently transmitted packet was not flagged as last, the state machine
changes to the resting state IDLE. If the previous packet was indicated as the last one of the
communication, the system changes to the state CSWAIT.

• CSWAITPOST: Similar to CSWAITPRE the duration of this state is specified in order to match timing
constraints. Is selected once after the transmission of the last data packet.

• CSDEASS: Final state for each master-slave interaction. Here, the CS of the previously selected
slave is released, indicating the communication to be finished.

This control path of the SPI module is strictly separated from the data path processing the output
of the serial data, the serial clock as well as the chip select. For the discussion of the implementation of
the SPI, let us consider the block diagram for the SPI represented in figure 7. We have not only made
use of an axi4-stream interface but also of an existing interface for the necessary in- and outputs of
the SPI. It provides easy access to all important signals (sclk, mosi, cs and miso).

The parameter CSNUM specifies the number N of slave devices tied to the SPI. Since every individual
device needs a separate line for the CS, so called 1-in-n-encoding has been used to convert the selected
chip from tuser to N interconnections between the master and the slaves. The chip select cs in figure
7 of the desired slave is not active low but active high since it gets inverted by the interface spi_if.

The conversion from eight bit wide data packets received by the SPI from the axi4-stream adapter
to serial data clocked in on the MOSI line is realized using a shift register. For every cycle of the SCLK,
the current Most Significant Bit (MSB) is shifted out on the MOSI line while the content left in the
register moves up by one position. In parallel, serial data from the MISO line is clocked into another
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Figure 6: SPI state machine. The prenames ocpout and ocpin denote the direction of the signals
with respect to MOSI and MISO (corresponding to the sketch of the axi4-stream in the upper half
of figure 7). In general, each state (with the exception of IDLE) is provided with a maximum counter
value that is mostly the only condition for a state transition. Only for the transition from IDLE and
DATA there have been defined more input dependent transition conditions.

shift register, leading to an eight bit wide packet of parallel data after a full transmission step which
can then be fed to the axi4-stream adapter again.

In order to provide an operating frequency that can be easily adjusted to the needs of the SPI slaves,
the previously discussed clock divider has been implemented. The whole SPI protocol is driven by
the 40 MHz OCP clock. The frequency of the state machine and SCLK is then varied by using the
clock enable pin of the flip-flops by triggering on the outputs re and fe of clock divider. It is given
by equation (1), where n corresponds to the parameter CLKDIV. Further, the user is able to declare
the number of downscaled clock cycles that the module should rest in the various states defined in the
state machine in figure 6 with the parameters containing the prefix CNT_. An implemented counter is
able to control the state machine process. This especially important for the definition of the waiting
periods in CSWAIT used to buffer the timing constraints resulting from the hardware.

The different SPI modes shown in table 1 are generated by manipulating the downscaled SCLK
given out by the master. In order to vary the CPOL (defined by the parameter cpol), the SCLK can
be inverted. The phase shift to the other clock edge for cpha=1'b1 can be achieved by an additional
procedural assignment of the SCLK, leading to a phase shift of half a clock cycle of the downscaled
clock.

2.3 Verification on Hardware
In order to test the basic functionalities of the SPI module, an USB connection has been established
between the ANANAS board and a Raspberry Pi used to perform the test transmissions of user defined
data packets to the SPI. The MOSI line as well as the SCLK and the CS provided from the master
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Figure 7: Schematic of the axi4-stream interface for the SPI (above) and block diagram of the SPI
module (below). In- and outputs of the axi4-stream adapter are only displayed relating to the SPI.
Their arrangement is chosen such that the flags describing the MOSI and the MISO lines are grouped
together. Regarding the block diagram of the SPI, the parameters for the clock polarity and phase
(cpol and cpha) are defined to be packed arrays. The length of each state within the state machine as
well as the number of connected slaves and the clock dividing factor can be defined with integers.

have been recorded using an oscilloscope (LeCroy WaveRunner 44Xi). At this stage, there is no slave
device connected. Therefore, we simply short MOSI and MISO for a loop-back configuration.

In figure 8, we can see the signals received by the oscilloscope for SPI mode 0 and different dividing
factors CLKDIV. The SPI test consisted of two USB data packets containing eight bit wide data (ab for
the first and cd for the second packet, corresponding to 10101011 and 11001101 in binary notation).
Tests are carried out with CSNUM=4 where each slave is driven with a different of the four available SPI
modes. Only the CS driven by SPI mode 0 has been recorded by the oscilloscope due to the limited
available pins of the FPGA. Other than that, the following parameters are set:

• CNT_MODECFG=2

• CNT_CSASS=2

• CNT_CSWAITPRE=2 (for CLKDIV=2) and CNT_CSWAITPRE=8 (for CLKDIV=6)

• CNT_DATA=8

• CNT_CSWAITPOST=4 (for CLKDIV=2) and CNT_CSWAITPOST=16 (for CLKDIV=6)

• CNT_CSDEASS=2

The yellow signal displays the SCLK, the red one corresponds to the MOSI line and the blue signal
is the dummy CS corresponding to SPI mode 0. The active clock edges have been indicated with a
grey dashed line. The first important thing one can notice from the plots in figure 8 is that the data
on the MOSI line is held stable at the positive edge of SCLK for the duration of data transmission
as desired for SPI mode 0. This means that the timing of SCLK and stable data on the MOSI line
can be guaranteed. Additionally, the dummy CS for SPI mode 0 is active, thus it is pulled down
correctly. Considering the duration of the different states of the state machine displayed in figure 6, a
measurement of the approximate time needed for the completion of three steps has been included: The
data transmission, the interval between pulling down the CS and the first SCLK edge as well as the
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one between the last transmitted bit and the release of the CS. By using equation (1) with a frequency
of the OCP clock of fOCP ≈ 40 MHz and the corresponding division factors, the following triggering
frequencies are to be expected:

• fCLKDIV=2
SPI = 20 MHz

• fCLKDIV=6
SPI ≈ 6.7 MHz

The expected time τ needed for N cycles of the downscaled clock with a frequency of fSPI can be
calculated with

τ = N

fSPI
. (3)
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(a) Oscilloscope output for ClKDIV=2.
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(b) Oscilloscope output for CLKDIV=6.

Figure 8: SPI test for mode 0. The output of two data packets ab and cd on the MOSI line as well as
the CS of the dummy slave have been recorded with the oscilloscope. Grey dashed lines indicate the
points of time where data from the MOSI line should be clocked in by the slave. Horizontal arrows
have been used to mark the duration of three significant intervals within the state machine cycle.
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With a counter value of eight for the state DATA as well as roughly four counter cycles between
pulling/releasing the CS and the beginning/ending of the data transmission (corresponding to an
expected duration of τdata = 0.4 µs and τpre,post = 0.2 µs, respectively after equation (3)), the observed
time intervals are satisfactory for the CLKDIV=2 case (cf. figure 8a). Good results could be received
for a CLKDIV=6 and ten/sixteen counter cycles between pulling down/releasing the CS and the data
transmission (expected time needed with equation (3): τpre = 1.5 µs and τpost = 2.4 µs) additionally
(cf. figure 8b). Note that the number of cycles within the state CSASS have been counted towards the
pre-data waiting period together with the cycles of CSWAITPRE.

The signals received for the SPI modes 1, 2 and 3 can be seen in figure 9. For each row containing
four plots of the oscilloscope output respectively, the same SPI mode has been used meaning that
every row also corresponds to one of the remaining three different dummy chip selects. The SPI state
machine has been triggered with a division factor CLKDIV of 2 for all plots within the left two columns
and with one of 6 for all plots within the right two columns. Comparing the oscilloscope outputs for
the SPI modes 1, 2 and 3 in figure 9 with the expected timing diagram in figure 3 one recognizes that
the observed timing is also correct in terms of SCLK edge and CPOL. The CS of these slaves could not
be recorded due to the limited amount of available FPGA pins.
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Figure 9: SPI test for modes 1, 2 and 3. For the plots on the left side, a clock dividing factor of 2 has
been used whereas we have applied a factor of 6 to receive the output displayed by the ones on the
right side.
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2.4 Implementation: Timing Corrections with OCP-IO
When performing a simple READ transaction with the SPI connected to the SPI-to-I2C-chip on the
ANANAS board, timing constraints prohibit valid data to be read from the buffer of the chip as soon
as the READ request from the host is passed to the slave. Figure 10 demonstrates this issue.

Figure 10: Timing diagram of a single READ transaction between the host and some slave device of
the SPI-to-I2C-chip. A time line has been included in order to roughly sketch the sequence in which the
commands from the host are transmitted and the data from the slave is returned. First, the host writes
the command to request a READ from the slave device via the OCP. The SPI begins the communication
with the SPI-to-I2C-chip. Because the data from the I2C slave device is not directly returned and
stored in the buffer of the SPI-to-I2C-chip, an immediately issued READ request of the OCP would not
lead to a readout of valid data. Therefore, one needs the OCP to block the commands of the host until
it is verified that valid data is to be read from the buffer of the SPI-to-I2C-chip. The INT of the chip
can be used as a trigger for this verification.

The SPI-to-I2C-chip however possesses an active low Interrupt (INT) output. The INT is always
pulled down when a data transmission between the SPI and the I2C succeeded/failed or in case of
a time-out. It is deactivated as soon as the internal status register of the SPI-to-I2C-chip is read or
as a result of a master reset. This means that under the assumption of an error free communication
between the host and the SPI-to-I2C-chip and its slave device respectively (every packet sent by the
host would get accepted), valid data in the chip’s buffer could be guaranteed as soon as the INT gets
pulled down. The communication between the host and the slave device now has to be blocked after
the last packet to be written has been sent until the INT goes down. The easiest way to achieve this,
is to completely stop transactions on the OCP bus for this duration. In order to do so, one can use
a feature of the OCP instances within other modules which is the Variable Response Slave (VS) and
a module called ocp_io. The reason for this is that a VS is able to perform slave blocking, thus can
prevent the OCP from performing further transactions. Additionally, the ocp_io is a register access for
the OCP bus originally used to connect Analog-Front-End (AFE) and Physical Layer (PHY) resets on
the ANANAS board. By instantiating a VS connection of the module to the OCP, one is in principle
able to trigger a blocking behaviour by simply sending a dummy packet to ocp_io. Furthermore, it
can also be connected to the INT of the SPI-to-I2C-chip (via one of the pins of the FPGA) that can
now be used as a trigger for disabling the VS blocking.

A block diagram of the ocp_io can be seen in figure 11. The input in is connected to the INT
of the SPI-to-I2C-chip. The output out is available for the AFE-PHY connection but is so far of
no interest for our needs. There has an additional enable been included for the blocking behaviour
(blk_enable). It becomes active when the lower twelve bits of the ocp_io address are set to 12'h111,
otherwise the OCP will not be put into a blocking state. Given a dummy packet written to the ocp_io
which enables blocking, the OCP bus will only be released whenever the INT on in becomes active or
when the time-out given by the maximum OCP clock cycles of the parameter CNT_BLOCK is reached.
This is achieved by generating an accept. Here, 700000 clock cycles have been chosen as a default value
considering a 40 MHz OCP clock and a 0.1 MHz SPI-to-I2C-chip with a maximum transmit buffer of
96 bytes (taken from the datasheet of the SC18IS600 [4]). This equals a counter width of 20 and is an
acceptable usage of the available FPGA resources.
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Figure 11: Block diagram of the
ocp_io module. Input and output
widths are controlled with the param-
eters IW and OW, respectively. The pa-
rameter OINIT sets the default value
for the output in case of a reset.
A time-out counter has been imple-
mented to release the OCP bus after
CNT_BLOCK cycles of the OCP clock.
blocking can be enabled with the
lower twelve bits of the ocp_io address
and is activated whenever a VSEvent
occurs on the OCP. When blocking is
finished, a VSCmdAccept is generated.

The correct blocking behaviour could be verified on hardware by sending data via an Ethernet
connection to the SPI-to-I2C-chip. This allows for maximum capacity utilisation of the receiving FIFO
of the FPGA thus reinforcing timing dependent errors when reading data received. Without blocking
enabled, a request to read the board-ID of the ANANAS could not be processed correctly because the
buffer of the SPI-to-I2C-chip was read out too early. With blocking enabled, this issue could be fixed
leading to a correct readout of the ID.

3 Conclusion and Outlook
Throughout this internship, the basics of FPGA based hardware design could be acquired by designing
and verifying a SPI master module. The SPI was specified to allow for user defined CS to SCLK times,
support of all four available modes concerning the active SCLK edge and flexible triggering frequencies
for the adaption to individual requirements of various slave devices. The module could be verified
with the analysis of the control and data signals using an oscilloscope. For the implementation on
hardware, OCP blocking was introduced by making use of VS blocking within ocp_io, a module used
for the connection of AFE and PHY resets on the ANANAS. With the use of an Ethernet connection,
a high-speed test showed the correct treatment of the packets sent by the host.

The SPI master can now be used for the initial setup of the ANANAS board after a reset has been
performed. Here, various power-on sequences and a read-out of the board- and the wafer-ID have to be
performed via an I2C connection. Currently, this is done with several milliseconds of waiting time after
each data transmission between the host and different slave devices on the board in order to guarantee
for valid data in the buffer of the SPI-to-I2C-chip. Also, the frequency of the data transmission itself
must be scaled down dramatically to fit the CS to SCLK specifications of the chip. With the VS
blocking and the variable pre- and post-data waiting times of the SPI master, these issues can now be
fixed easily.

Considering other issues to be fixed, all slave devices are provided with the same SCLK at the
moment. The module can be improved further by allowing for adjustable SCLK frequencies for multiple
slaves. Also, currently there is no configurable waiting time between two consecutive data packets. The
data transmission state is always selected as soon as valid data is available from the host in case the
output register of the SPI master to the OCP is empty. An additional user defined waiting time for
this transition would allow for more flexibility of the module.
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