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The Talbot-Lau interferometer is a proven tool to perform measurements in the near-field regime. It has
been extensively used for investigating the wave nature of electrons, atoms, and complex organic molecules.
However, when designing devices with high geometrical acceptances, which would be desirable when dealing
with low-intensity sources of particles, the alignment requirements become much more stringent. Furthermore,
if the particles are charged, the influence of external fields becomes quickly non-negligible when increasing the
length of the device. This paper focuses on both the geometric and physical constraints of an ion Talbot-Lau
interferometer, with emphasis on the scaling of such constraints with the size of the device. Mathematical formulas
which set limits on the critical parameters are derived and applied to a test setup for protons.
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I. INTRODUCTION

The wave-particle duality is one of the most defining phe-
nomena related to quantum mechanics. Since the experiment
performed by Davisson and Germer [1], this constitutive
property of matter has been verified several times, for different
kind of particles, ranging from electrons [2–4] to organic
compounds [5]. A common concept among these experiments
is the design and use of a setup which allows the wave
function of the particles to self-interfere or be macroscopically
diffracted. Among the devices designed for this purpose, the
Talbot-Lau near-field interferometer has seen prominent use
in the past two decades, having been successfully applied to
electrons [6], atoms [7], fullerenes [8], and, in its Kapitza-
Dirac variant, even larger organic molecules [9].

A device of this type has been proposed to be used with
antiprotons [10], dealing at once with charged particles heavier
than the electron and a low-luminosity, highly divergent
source. The latter constraint makes an interferometer with a
large active area necessary.

However, when scaling up the device to get a higher
geometrical acceptance, a precise alignment of all its elements
becomes critical. Moreover, when increasing the length of the
device, the influence of external forces acting on the particles
increases quadratically with its size, setting strict limits on their
maximum allowed energy spread, depending on the intensity
of the force.

This paper focuses on both the geometrical and the physical
constraints of such a device, with emphasis on electric and
magnetic interactions which would affect the design of an ion
Talbot-Lau interferometer.

II. TALBOT-LAU INTERFEROMETER

In its most common variant, the Talbot-Lau interferometer
is composed of two material gratings with periodicity d and
open fraction η. The two gratings are spaced by a distance L.
A diffusive beam of particles with de Broglie wavelength λdB

impinging on the first grating generates an interference pattern,
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as shown in Fig. 1. The pattern appears as a density modulation
with periodicity d and corresponding position φ = 2πy/d

when observed on a plane placed at the same distance L from
the second grating.

The device described so far can act in the classical regime,
in the near-field wave regime, or in the far-field wave regime,
depending on its geometrical parameters. The typical length
scale which is considered to distinguish the three regimes is
called the Talbot length and is defined as

LT = d2

λdB
= d2

h

√
2mU, (1)

with m being the mass of the particle, U the kinetic energy,
and h the Planck constant. If L � LT, the device operates in
the far-field regime as a Mach-Zehnder interferometer [11]. In
this configuration, the contrast of the pattern, defined as

C = Imax − Imin

Imax + Imin
, (2)

where Imax and Imin are the maximum and the minimum
intensity, respectively, reveals no dependence on the de Broglie
wavelength of the particles (achromatic setup) [12]. If L ≈ LT,
the device operates in the near-field regime and the contrast
shows a dependence on both the energy of the particles and
the open fraction η of the gratings, as shown in Fig. 2. This is
what is referred to as the Talbot-Lau interferometer. In the
limit of L � LT, the pattern is generated by the classical
trajectories of the particles. This is again an achromatic setup,
with the contrast of this pattern depending only on the open
fraction η. A device which operates in these conditions is
commonly referred to as the moiré deflectometer [13–15]. For
specific configurations satisfying L = nLT, with n ∈ Z+, the
Talbot-Lau interference pattern is indistinguishable from the
corresponding classical pattern [16,17]. The ideal configura-
tion to reveal the wave behavior of the test particles is therefore
not at this resonance condition.

In a typical experiment, the length of the device is fixed,
while the energy of the particles is tuned. Thus one expects
that for certain energies Un the condition L = nLT is fulfilled.
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FIG. 1. Diffuse illumination (light, particles) impinging on a
Talbot-Lau interferometer generates the so-called Talbot carpet. The
first grating generates the spatial coherence, allowing the second
grating to create the pattern. A third grating can be used to read the
pattern.

These energies are directly derived from Eq. (1):

Un = UTalbot

n2
= h2L2

2md4

1

n2
, n ∈ Z+. (3)

In order to reveal quantum interference, these specific rephas-
ing distances (energies) are not useful, but a modulation of the
contrast as a function of the energy is a clear indicator of the
wave behavior of the test particles.

In an experimental realization of the device, the periodic
pattern can be read out with the use of a position-sensitive
detector. If the periodicity of the pattern is smaller than the
resolution of the detector, the use of a third grating, identical
to the first two, is required to extract the information: When the
additional grating is tilted around the beam axis, beatings with
periodicity inversely proportional to the rotation angle appear,

FIG. 2. Contrast of the pattern as a function of the energy of
a proton beam. This plot is valid for a device composed of three
gratings, the third one being scanned [13] or tilted [15] to read out the
pattern. The shape of the contrast profile is strongly affected by the
open fraction η of the gratings. The black markers highlight U = Un

for n = 1,2,3 where the Talbot-Lau signal is indistinguishable from
the classic moiré signal [see Eq. (3)]. The plot has been calculated
following the approach by Hornberger et al. [16], based on calculating
the intensity pattern using the Wigner representation [18]. The plots
are arranged from top to bottom, according to the legend.

making the interference pattern observable on a large scale
[15], thus allowing for the use of a detector with a significantly
reduced constraint on the spacial resolution. As an alternative,
the third grating can be used to scan the original pattern, by
translating it in the direction perpendicular to the slits and
recording the transmitted particle flux for every position [9,13].
The device considered in the following discussion employs a
scanned third grating.

It is worth mentioning that the Kapitza-Dirac variant of the
Talbot-Lau interferometer, which replaces the second grating
with a standing wave [9,19], does not provide a significant
advantage when working with ions. The interaction rate scales
like m−1/2, requiring a significantly higher laser power than
for electrons (which is of the order of GW cm−2) [20,21] to
achieve similar results, and the interaction area of the phase
grating cannot be scaled to larger sizes without defocusing the
laser and thus losing significant intensity. Furthermore, the use
of a pulsed laser with a continuous source of particles implies
that the duty cycle of the laser (≈10−7) directly translates into
a flux reduction within the interferometer.

III. CONTRAST REDUCTION DUE TO
SYSTEMATIC EFFECTS

While the ideal contrast of the interference pattern is only
dependent on the energy of the particles, once the device
geometry is fixed, in any experimental realization it is strongly
dependent on the alignment of the device and on the influence
of external forces, such as gravity or electric interactions.
In this section, we discuss three families of systematic
effects which concur in degrading the quality of the signal:
misalignment of the gratings, energy spread of the particle
source, and external forces acting on the particles. In the
latter, emphasis is put on the Lorentz force interaction, which
becomes prominent when dealing with charged particles.

For the following discussion, we use specific experimental
parameters which are currently available. The production of
nanometric gratings with thin silicon nitrate membranes, like
the ones described in Ref. [22], limits the energy of the charged
particles due to the limited stopping power of the material.
Thus we consider a proton source with tunable energy in
the keV regime, of the type covered in Ref. [23]. In this
configuration, λdB ≈ 1 pm. The geometrical parameters of the
device are d = 256 nm, L = 171.7 mm, and η = 0.4, thus
yielding UTalbot = 5.64 keV. The classical rephasing is thus
expected also for U2 = 1.41 keV and U3 = 627 eV.

A. Geometrical constraints

The pattern is extremely sensitive to deviations from the
ideal geometry: Differences in the distance between the grat-
ings and the detector plane or small relative tilts of the
gratings can consistently affect the quality of the signal. In the
following, we consider two specific scenarios: longitudinal
asymmetries and rotational misalignment around the beam
axis.

1. Longitudinal asymmetry

In the optimal configuration, the device can be operated
with a fully divergent source of particles and still produces
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FIG. 3. Schematic showing how the classical pattern is calcu-
lated. For every point P on the detector, the region from where
particles can reach the point is calculated by projecting the second
grating (G2) on the first one (G1), thus identifying the effective
fraction of the particle which contributes to the intensity. The
projected grating G′

2 has a magnified periodicity d ′, as in Eq. (5).
When considering a source with divergence α, the region from which a
particle can reach the detector is limited by a cone with opening angle
α equal to the divergence of the source (bright region). The tilt angle
β is considered when extending the approach to three dimensions.
The analytic treatment is explained in detail in the text.

a pattern with the expected maximal contrast. In any experi-
mental scenario, the divergence of the source puts constraints
on its geometrical characteristics: An asymmetry �L between
the distance from the first to the second grating L12 and the
distance from the second to the third grating L23 strongly
affects the contrast of the pattern. The effects of this asymmetry
can be calculated analytically in the simple case of a moiré
deflectometer, whose signal is equivalent to the Talbot-Lau
interferometer whenever the length of the device matches a
multiple of LT.

The process is schematized in Fig. 3. Consider a point
P on the detector plane. We calculate the intensity of the
signal which illuminates this point by considering the allowed
geometrical trajectories. All the particles which reach P have
to pass through both gratings, indicated as G1 and G2,
respectively, therefore limiting their original position to a
specific region of space. In the case of G2, this region can
be interpreted as its shadow image G2′, obtained using P

as a focal point. Suppose we have a source with divergence
α, L12 = L, L23 = L + �L, grating periodicity d, and open
fraction η. The grating function G as a function of the position
y is defined as

G(y; d,η) =
{

1 for mod(y,d) < ηd

0 otherwise. (4)

As a result, the projected image G2′ can be described as
a grating with the same open fraction η and a magnified
periodicity d ′, given by

d ′ = d
L12 + L23

L23
= d

2L + �L

L + �L
. (5)

To calculate the intensity at P , the grating G2 can therefore be
replaced by its projection G2′ on the plane of the first grating
[24]. As shown in Fig. 3, while moving the projection point by
a distance y on the screen, G2′ moves in the opposite direction
by a position y ′ given by

y ′ = L

L + �L
y. (6)

In the following, G1 = G(y; d,η), G2′ = G(y ′; d ′,η). If we
consider a completely divergent particle source, the intensity
Idet at any position y on the detector plane is given by

Idet(y) ∝
∫ +∞

−∞
G(ξ ; d,η)G(ξ + y ′; d ′,η)dξ. (7)

In this scenario, �L 
= 0 causes the contrast of the fringes
generated by the first two gratings to vanish completely, as
the rephasing is only seen at integer multiples of L12. As
mentioned in Sec. II, a third grating placed on the detector
plane can be used to read out the pattern. In this case, the
intensity I after the additional grating G3 = G(y; d,η) is given
by

I (yg) ∝
∫ +∞

−∞
Idet(ξ )G(ξ − yg; d,η)dξ, (8)

where yg is the position of the third grating. If we put
constraints on the divergence of the beam, the area from where
particles can hit the detector is limited to a region of space
ξ ∈ [y − ylim,y + ylim], where ylim = (2L + �L) tan(α) is the
geometrical limit imposed by the divergence angle α and y

is the coordinate of the detector point at which the pattern
is calculated (see Fig. 3). With these assumptions, Eq. (7)
becomes

Iα
det(y) ∝

∫ y+ylim

y−ylim

G(ξ ; d,η)G(ξ + y ′; d ′,η)dξ. (9)

The intensity Iα(yg) after the third grating is then calculated
as in Eq. (8):

Iα(yg) ∝
∫ +∞

−∞
Iα

det(ξ )G(ξ − yg; d,η)dξ. (10)

The contrast of the pattern as a function of �L shows a main
peak at �L = 0, together with smaller secondary peaks of
decreasing intensity. An example of this behavior is shown in
Fig. 4. For a completely divergent source (α → π/2), Eq. (10)
converges to Eq. (8), thus yielding the same result. For a given
angle 0 � α < π/2, the position of the first minimum can be
calculated via geometric considerations [25]:

�Lmin = d

2
tan

(π

2
− α

)
. (11)

In the limit of a small divergence angle (α � 1), this formula
is consistent with the one outlined in Ref. [26,27]. As the
equation shows, �Lmin is independent of L: Once the diffusion
angle and the periodicity of the gratings are fixed, the other
geometrical parameters do not play any role in determining
how the contrast decays. A consequence of this systematic
effect is that, depending on the divergence of the source, there
is a maximum acceptable displacement after which the contrast
drops sharply, which can be defined as the position of the first
minimum expressed by Eq. (11). Notice that for α ≈ π/2,
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FIG. 4. Contrast of the classical moiré pattern as a function of
�L = L23 − L12. When the distance �L 
= 0, the contrast of the
periodic pattern decays as a function of �L and the divergence
angle α. For �L = d/2 tan(π/2 − α), the contrast is equal to zero.
The position of the zeros is completely determined by those two
parameters and is not affected by the magnitude of L12.

�Lmin tends to zero (i.e., the contrast profile tends to a δ

centered in �L = 0), while for α = 0 (i.e., no divergence),
�Lmin goes to infinity, which means that the contrast is not
fading away with distance.

As previously pointed out, this mathematical formulation
is valid in the classical scenario, but can be verified also in
the wave regime by means of numerical simulations. The
simulations performed show that for a range of lengths around
L = LT, the position of the first contrast minimum is consistent
with the classical scenario. An example of this behavior
is shown in Fig. 5. The classical result can therefore still
be considered as the maximum displacement allowed while
working in this region.

FIG. 5. As in the classical case, the functional dependence of
the contrast on the diffusion angle in the Talbot-Lau regime shows
periodic minima, the first of which is described by Eq. (11) (black
vertical line). Notice that the peak contrast changes with the length.
Around L = n + 1

2 LT, the periodicity of the pattern doubles, moving
the first minimum at half its classical position (gray vertical line).
The profile shown is calculated for a divergence angle α = 3 mrad.

2. Rotational misalignment

In the ideal case, the two gratings which generate the
pattern have the same rotation angle with respect to the beam
axis. When this condition is not fulfilled, the contrast of the
pattern depends on the divergence of the source. In order to
estimate this effect, we extend the same approach discussed
in Sec. III A 1 to two dimensions, allowing for one or both
gratings to be tilted around the beam axis.

As an intuitive explanation, consider two gratings: the first
one placed in the xy plane with slits parallel to the y axis and
the second rotated by an angle β around the z axis (shown in
Fig. 3). Consider also a divergence angle α in the yz plane,
while no diffusion is present in the x̂ direction. If we take
a set of planes parallel to the yz plane and we use it to
slice through the pattern for different values of x, we get a
collection of one-dimensional representations equivalent to the
one discussed in Sec. III A 1, with the difference that in every
plane the pattern of the second grating will show an offset
φy = x tan(β) and a modified periodicity dβ = d/ cos(β).
When a divergence in the x̂ direction is considered, all the
slices which are between a cone with angular opening α and
the point on the screen at which the pattern is calculated have
to be summed up. The combination of these two factors is
what smears out the contrast of the generated pattern on the
detection plane. By introducing the two-dimensional grating
function G2D(x,y; β,d,η), defined as

G2D(x,y; β,d,η)

=
{

1 for mod(y − x tan(β),d/ cos(β)) < ηd/ cos(β)
0 otherwise,

(12)

Eq. (9) can be extended as

I 2D
det (x,y) ∝

∫ y+rlim

y−rlim

∫ x+
√

r2
lim−(ξ−y)2

x−
√

r2
lim−(ξ−y)2

G2D(u,ξ ; 0,d,η)

×G2D(u + x ′,ξ + y ′; β,d ′,η)du dξ. (13)

This formula considers a conical projection from the point
P = (x,y) and therefore a circular overlapping area of radius
rlim = (2L + �L) tan(α) on the plane of the first grating. Here
d ′ is expressed by Eq. (5), while x ′ and y ′ are both defined
by using Eq. (6) on x and y, respectively. Notice that, as an
effect of the angular difference, the resulting fringe pattern is
tilted by an angle βpattern = 2β. To retrieve the profile after a
third grating, Eq. (10) is also expanded in two dimensions in
a similar fashion.

The intensity profile can be evaluated numerically. The
calculations show that even when the asymmetry factor is
taken out (�L = 0), the contrast of the recorded pattern
decreases as the angle between the two gratings increases.
This phenomenon is independent of the presence of a third
grating, since the pattern becomes uniform for a geometrical
overlap of the trajectories due to the relative rotation of the
first two gratings. By geometric considerations, we derive the
following formula for the angular difference βcrit which causes
the contrast to drop to zero:

tan βcrit = k
d

2L
tan

(π

2
− α

)
, (14)
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FIG. 6. Depending on the divergence angle α, an angular differ-
ence β between the second and the first grating causes the signal to
vanish. The position of the contrast minimum is linearly dependent
on d and inversely proportional to L. The function which describes
this position is similar to the one found for the one-dimensional case
[compare Eqs. (11) and (14)].

where k is a constant factor, to be determined via numerical
calculations. Profiles for a different divergence angle α are
shown in Fig. 6. Notice that the formula shows the same
functional dependence as in the one-dimensional case [see
Eq. (11) as a comparison].

In the representative geometrical configuration, for a
divergence α = 1 mrad, the visibility minimum appears for
β = (0.46 ± 0.01) mrad. Repeating the simulations for differ-
ent geometrical configurations yields k = 0.61 ± 0.01 as the
value for the constant.

It is worth mentioning that, when using a third grating to
scan the pattern, the retrieved flux modulation is affected by a
rotation of the third grating, due to the moiré effect. Therefore,
the rotation angle β3 of the third grating with respect to the
pattern has to fulfill the condition

sin

(
β3

2

)
� d

2
√

A
, (15)

where A is the area over which the flux is integrated.

B. Energy spread of the particle beam

Experimental ion sources are not perfectly monochromatic:
The particle beam produced always has a nonzero energy
spread. As shown in Fig. 2, particles with different energies
generate patterns with different contrast: Having an energy
distribution means that different patterns get summed up,
leading to modifications to the recorded signal. A precise
knowledge of the energy distribution is therefore required in
order to calculate the expected contrast profile. If the averaging
effect is such that the contrast of the pattern becomes lower
than or equal to the classical value, the quantum nature of
the particle cannot be convincingly proven. Figure 7 shows
contrast plots for various energy spreads �U/U . In the
example, the energy distribution is modeled as a normalized
Gaussian distribution centered on each energy. The energy
spread is thus defined as the full width half maximum (FWHM)
of each distribution. As can be seen in Fig. 7, the effect is not

U / U
Talbot
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FIG. 7. Contrast of the pattern as a function of the energy of the
particle beam for different values of the energy spread. The open
fraction considered in this plot is η = 0.4. Each curve is obtained by
considering a normal distribution centered on each energy value, with
a FHWM equal to the energy spread �U . For every point on the plot,
the ratio �U/U is fixed to the value shown in the legend. Notice that
for an energy spread up to 10%, there is only a negligible difference
from the monochromatic case.

dramatic, since even for an energy spread of 30% the contrast
modulation is still clearly visible and above the classical
expected value for a consistent part of the energy spectrum.
Once external forces are taken into consideration, the effect of
a nonmonochromatic beam is more accentuated.

C. External forces

If the particles are affected by an external force �F during
their crossing of the interferometer, the pattern recorded at
the detector position is subject to a phase shift which depends
on both the magnitude of the force and the time-of-flight τ

between the gratings. Assuming a constant acceleration ay

along the grating periodicity (see the coordinate system in
Fig. 1), the phase shift for a monochromatic beam is given
by [13]

�φ = 2π

d
ayτ

2, (16)

with

τ = L

vz

= L

√
m

2U
. (17)

Notice that, since the phase shift �φ is energy dependent,
a force acting on the particles lowers the contrast of the
pattern in the presence of an energy spread �U . A critical
force �Fcrit can therefore be defined as the force leading to a
phase shift of π between the fastest and the slowest particles
in the distribution. For a given Gaussian energy distribution
(mean energy U and FWHM �U ) we estimate the critical
force assuming Ufast = U + �U/2 and Uslow = U − �U/2.
By considering a uniform constant force, the critical force
intensity Fcrit is derived from Eq. (16) as

π
!= φslow − φfast = πFcrit

L2

d

(
�U

UfastUslow

)
, (18)
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which leads to

Fcrit = d

L2

1

4

4U 2 − (�U )2

�U
, (19)

which, in the limit of small energy spread, i.e., (�U )2 � U 2,
can be further simplified to

Fcrit ≈ d

L2

U 2

�U
. (20)

Notice that if a generic energy distribution is considered, an
integration is instead required to get a precise quantitative
result. In the following, two specific examples are considered:
a constant Lorentz force and the self-repulsive Coulomb
interaction inside a charged particle beam.

1. Lorentz force

Charged particles are susceptible to electric and magnetic
fields which make the observation of interference more
challenging. We therefore assume a Lorentz force for constant
uniform fields �E and �B. Since the interferometer is only
sensitive to force acting perpendicular to the grating slits, we
are interested in the transverse component of the Lorentz force,
which can be written as

�F Lorentz
y = q[Ey + (vzBx − vxBz)]ŷ, (21)

where q is the charge of the particle.
In the limit of vzBx � vxBz, which is a reasonable

assumption when working with collimated particle beams and
assuming the two components of the magnetic fields to have
the same order of magnitude, Eq. (21) can be written as

�F Lorentz
y = q(Ey + vzBx)ŷ. (22)

A definition for the critical electric field Ecrit and magnetic
field Bcrit is derived by setting ‖ �B‖ and ‖ �E‖ to zero,
respectively [15]:

Ecrit = d

L2

U 2

q�U
for ‖ �B‖ = 0, (23)

Bcrit = d

L2

√
m

2

U 3/2

q�U
for ‖ �E‖ = 0. (24)

In the geometric configuration considered, these fields assume
the form

Ẽcrit = 8.7 × 10−6 U

δ
, (25)

B̃crit = 6.3 × 10−10

√
U

δ
, (26)

where δ = �U/U , Ẽcrit is in units of V m−1, U is in eV,
and B̃crit is in tesla. Notice that, while the critical electric
field scales linearly with the energy, the magnetic field scales
just with the square root. Therefore, by increasing the energy,
the influence of the electric field is reduced faster than
that of the magnetic field. If we consider U = 2 keV and
δ = 1%, Eqs. (25) and (26) yield Ecrit = 1.74 V m−1 and
Bcrit = 28.2 mG, respectively. As a comparison, consider that
the fields measured in Ref. [15] in a similar experimental
setup are of the order of 1 V m−1 and 10 mG, respectively,
already lower than the critical values considered, although no

FIG. 8. Effects of external forces, combined with the energy
spread of the source, lower the contrast of the pattern. Here we
consider �U/U = 1%. Each line represents the expected contrast
for a given electric field in units of the critical field EcritnLT , defined
as in Eq. (27). No magnetic field is considered.

special care has been taken to minimize the fields. Hence, it
is reasonable to assume that lower fields are achievable via a
suitable electric and magnetic shielding.

Another specific situation which is relevant in this context
appears when the distance between the gratings is fixed to an
integer multiple of the Talbot length. There the contrast of
the pattern is the same as in the classical scenario: This can
be a desirable feature to get a reference signal in a known
configuration and compare it to the theoretical expectations.
Fixing L = nLT is equivalent to changing the length of the
device for every energy U used, which is the opposite approach
of what was considered above (tuning the energy of the
particles in a fixed-length device). With these specifications,
Eqs. (23) and (24) can be written as

Ecrit nLT = h2

2md3q

1

δ

1

n2
, (27)

Bcrit nLT = h2

2
√

2md3q

1

δ
√

U

1

n2
. (28)

The expressions underline an interesting fact: If the distance
between the gratings is fixed to a multiple of the Talbot length,
the critical electric field depends on the relative energy spread
δ but not directly on the energy. The same does not hold for
the critical magnetic field, which instead becomes smaller as
the energy increases. An application of Eq. (27) is shown in
Fig. 8, where different values of the electric field are applied to
a contrast profile with δ = 1%, calculated as the ones shown
in Fig. 7.

2. Inner beam interactions

When two or more charged particles are moving inside the
device, an additional field is generated by their interaction.
The particles mutually repel each other, effectively increasing
the size of the beam as well as the distance between the
center and the edges of the charge distribution. In order
to give an upper limit estimation on this effect, consider a
beam of particles with mass m and charge q. The beam
is homogeneous and cylindrical, with initial radius r0, axial
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velocity vz, and uniform charge density ρ. The beam is
assumed to be nonrelativistic (γ ≈ 1), which is a justified
approximation in the energy range considered. This has the
additional effect of making the contribution of the magnetic
fields generated by the moving charge distribution negligible
[28]. With these assumptions, the radial electric field ER(r) is
given by

ER(r) =

⎧⎪⎨
⎪⎩

ρr

2ε0
for r � r0

ρr2
0

2ε0r
otherwise.

(29)

The field has a maximum for r = r0, after which it decreases
monotonically. Using this construction, the expanded radius
rbeam at any axial position z can be calculated by numerically
inverting [28]

z = r0√
2K

F

(
rbeam

r0

)
= r0√

2K

∫ rbeam/r0

1

dy√
ln(y)

, (30)

where the constant K is given by

K = qρr2
0

2πε0mv2
z

. (31)

It is interesting to note that for rbeam/r0 � 1,

F

(
rbeam

r0

)
� 2

√
rbeam − r0

r0
, (32)

which is equivalent to considering a constant field ER(r0)
applied to the particles for the duration of the flight. When
rbeam/r0 � 1, the error introduced by considering this first-
order expansion is smaller than 1%. Since we are interested
in a beam divergence of the order of the periodicity d of the
grating, until d/r0 � 1, we can therefore consider a constant
radial acceleration �a = qER(r0)/mr̂ . This has the additional
benefit of allowing us to obtain a maximum acceptable value
for the particle flux. With this hypothesis, using Eqs. (16) and
(29), a particle on the cylinder’s surface subjected to ER(r0)
experiences a total phase shift

φ = 2πy

d
= 2π

d
aτ 2 = 2π

d

qρr0

2mε0

L2

v2
z

. (33)

By expressing ρ as a function of the particle flux �in, we obtain

φ = 2π

d
�inr0

q2

2mε0

L2

v3
z

= 2π

d
�inr0

q2√m

4
√

2ε0

L2U−3/2. (34)

In the case that the position shift y exceeds half the periodicity
d (�φ = π ), the contrast of the pattern will be consistently
reduced. Considering this as the limiting condition, we
estimate a critical flux �in

crit as

�in
crit = 2

√
2ε0

q2
√

mr0

d

L2
U 3/2. (35)

In the geometric configuration analyzed and choosing
protons as the test species, with U = 2 keV, it follows
that �in

crit = 1.2 × 1015 m−2 s−1. By considering, for example,
r0 = 1 mm, we get �in

critπr2
0 = 3.8 × 109 Hz. These intensities

are well in the range of sources of the type described in
Ref. [23], but still far higher than the requirements of a typical
experiment (which normally requires 102–103 detected parti-
cles on the detector surface to reveal the pattern). Therefore,
in the experimental conditions considered, this effect can be
consistently neglected.

IV. CONCLUSION

In this paper, several systematic effects which degrade the
signal of a scalable Talbot-Lau interferometer for charged
particles have been analyzed. These effects can be categorized
into three distinct families: effects related to the misalignment
of the gratings, the energy spread of the source, effects due to
the external fields.

A displacement of the detector plane in relation to the dis-
tance between the first two gratings causes a consistent reduc-
tion of the contrast. The displacement limit which makes the
contrast drop to zero is calculated and is found to be indepen-
dent of the distance between the gratings. Moreover, this dis-
placement is found to be the same both in the particle and in the
wave regime. A rotational misalignment between the gratings
of the interferometer leads to a reduced contrast as well. Nu-
merical simulations have been used to set limits on this effect in
the classical picture. Since both these effects are proportional
to the divergence of the beam, they become more restrictive
when considering large-area interferometers for low-intensity,
noncollimated sources, such as in antimatter experiments.

The energy spread of the source plays a role into averaging
the visibility, thus reducing the effective difference in contrast
for different energies. However, an energy spread as high
as 30% still allows for measuring the wave behavior of the
particles.

The presence of external electric or magnetic fields
combined with the aforementioned energy spread causes a
sharp reduction in contrast, depending on the geometrical
characteristics of the device. The limiting force which causes
the pattern to vanish is calculated and both the electric and
magnetic field intensities are separately obtained. The effects
of the inner beam interactions are evaluated and an expression
for the maximum flux allowed before said interactions cause
a significant drop in contrast is obtained.
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