
Visualizing the HICANN Wafer

Richard Boell

January 10, 2018

Abstract

The mapping of neuronal networks implemented in PyNN onto the HICANN wafer
scale system is done with the software Marocco[1]. Visualizing neuron placement and
Layer 1 routing is useful for debugging purposes. Previous visualization tools developed
within the group are hard to maintain and do not support dynamic interaction.

In this internship, the groundwork was laid for a web-based software that visualizes
the data stored in the marocco::results container. The web-based approach allows
in principle running the software on a large variety of devices, including tablets. Af-
ter loading the routing data, a graphical representation of the wafer is dynamically
built using the JavaScript library PixiJS[2]. Basic pan&zoom input allows navigating
through the software, mouse interaction with individual elements is supported. By
default the level of detail is determined automatically based on the zoom-level, but the
user can also control manually what elements to visualize.

Throughout the project an emphasis was put on writing maintainable code, that
could be easily extended to include more data and possibly feature dynamic visualiza-
tion in future versions.

1 Methods

1.1 Performance

The first step towards building the software was to figure out what details of the wafer the
user might want to see, while considering performance related limitations. A single HICANN
chip[3] has 512 neurons, 320 Layer 1 buses (128 vertical buses on the left and the right side
of the chip each and 64 horizontal buses between the synapse arrays), 224 synapse drivers
and 114688 synapses on the two synapse arrays. Hence, visualizing the details of all 384
HICANN chips on a wafer means drawing around 40 Million synapses and 100 000 buses.
This number of elements exceeds the number of pixels on a regular screen, so obviously there
is a need to decide which features to draw.

I decided on a zoom level dependent visualization, which means that the user can zoom
and navigate through the visualization and details are displayed depending on the zoom level,
comparable to Google Maps. Apart from being a necessary step, this holds the opportunity
to visualize different properties as will be explained later in detail.

There are a lot of different technologies and libraries to use for visualization in JavaScript.
The requirements for wafer visualization purposes are a smooth rendering of a couple 100
000 elements but also fairly easy usage and good documentation, so a possible successor can
easily dive into the project. Figure 1 gives an overview over some technologies. I tested the

1

technology max elements comments

HTML5 SVG <100K Easy access due to
xml format.

HTML5 Canvas <1M Cumbersome to im-
plement.

PixiJS library >1M Fast rendering using
WebGL in 2D. Fairly
easy to implement.

ThreeJS library <100K Good choice for 3D
applications, other-
wise unnecessary.

Table 1: Breakdown of the performance assessment of
visualization technologies. PixiJS is the most perfor-
mant option for 2D visualization.

Figure 1: The 5x10mm2 HI-
CANN microchip. Taken from
[1].

performance by implementing mouseover effects and pan&zoom control and then determin-
ing the maximum number of elements that still yields a smooth rendering (Figure 2). The
JavaScript library PixiJS[2] seems to be the best option for a two dimensional visualiza-
tion. It supports WebGL rendering and thus can easily handle 1 Million graphic elements.
Furthermore the library is well supported and documented and easy enough to use.

1.2 Data Access

The next question at hand was how the software accesses the data from the Marocco results
container written in C++, that are to be visualized. Creating a CSV-converted file before-
hand to then load with the visualization software would be difficult to maintain. Adding a
python wrapping to the C++ code would be a good option, if it was not slow and would
not add more dependencies. Apart from using Node.js requests with C++ addons, there is
a more elegant way to use the C++ code in JavaScript. Emscripten is a compiler that takes
C++ code and outputs JavaScript. Thus, Marocco can be transpiled to JavaScript and used
directly in the JavaScript Visualization software. Embind is used to make the functions and
and objects available in JavaScript by specifying names for them so they can be used just
like the C++ code. The only thing needed is an API in Marocco to access the relevant data.
This approach has the huge advantage, that as long as the API stays the same, changes in
Marocco will not effect the visualization software.

2

Figure 2: An example of a performance test using
HTML canvas. A large number of simple stripes was
drawn and pan&zoom as well as mouseover effects
tested.

Figure 3: The filestructure of
the software. All TypeScript
files are compiled into a single
main.js file.

1.3 Maintainability

An important aspect of the project was to write maintainable code. For that reason I
switched to TypeScript at some point. TypeScript is a superset of JavaScript maintained
by Microsoft. First and foremost it adds static typing so many errors can be avoided right
from the start in a large project. TypeScript Modules make it easy to define Namespaces
(formerly internal modules) and separate chunks of code. The TypeScript compiler can
compile all the .ts files into a single JavaScript file which guarantees both, a better overview
for the developer and a small number of files for use in the final software. Figure 3 outlines
the filestructure with all the TypeScript files in the src folder and the final software in the
build folder.

2 Results

2.1 Features

Starting the software by opening main.html opens up a start screen (Figure 4) where the
user can select a network.xml file with the data from the simulation to be visualized. After
loading the file, the visualization starts with an overview of the wafer, the wafer is fully
visible and centered on the screen (Figure 5). The oval shape of the wafer comes from
dynamically calculated HICANN width and height values, to best fit the buses and synapse
arrays in the detail-view. Navigation around the wafer works basically like google maps by
panning with mouse-clicks and -drags and zooming with the mouse-wheel.

In the overview, the buses and synapse arrays are not displayed in detail. Instead each
segment (e.g. vertical left bus) is drawn as a single rectangle in a color representing the

3

number of routes running over this segment. Synapse arrays are omitted altogether, instead
the HICANN background is colored to show the number of neurons placed on that HICANN.
The number of inputs on each HICANN is graphically represented by a color-coded triangle
at the bottom of the HICANN.

Hovering over a HICANN displays its number, enumerated from left to right and top
to bottom. Clicking on a HICANN displays its number together with properties in the
top part of the info-panel on the right side. Additionally the panel has color-gradients for
the properties so the user can see how the colors of the HICANN background for instance
correspond to the number of neurons placed on it.

Right below the properties section, the settings section allows the user to display or hide
all the elements of one type (e.g. all HICANN backgrounds) at once. For the detailed bus
segments this is only possible by rendering the single bus segments as sprites beforehand,
as explained in section 2.2.1. In addition the user can select which details to show when
zooming into detail-view. The FPS/RAM stats are very useful during development, but
might be omitted in the final software. Lastly a complete list of HICANNs can be opened up
in the info-panel on the left side. Clicking on a HICANN in the list will animate the stage to
move the respective HICANN into the center of the screen. The user can also expand each
list-item to list all the elements and select which ones to display. This gives the user complete
control over what to display on each HICANN if the automatic mode is not sufficient. On
the downside, the user is responsible for displaying only the number of elements that will
not crash the software.

The automatic zoom automatically draws more details when the user zooms in. Right
at the beginning, the software determines the zoom-scale where a HICANN almost fills the
screen. Once the user zooms over this threshold the detail-view starts (Figure 6). Instead of
the colored elements representing the number of neurons or routes, a more realistic HICANN
is drawn. All the vertical and horizontal buses as well as the synapse-arrays are now visible.
The synapse-arrays are represented by a grid of 224 x 256 small rectangles.

This large number of elements leads to unpleasant visual effects originating from the
quantization to fit the pixels. Video games deal with this issue by using antialiasing. Unfor-
tunately, antialiasing cannot be used on graphics objects with the WebGL renderer. However,
PixiJS can render textures from graphics objects with specified resolution and antialiasing
enabled. This not only reduces unwanted effects (autorefimg:antialias) but also comes with
lower computational cost. Therefore, the automatic zoom effectively has two detail-stages.
The first one creating the detailed graphics objects and displaying the textures, the sec-
ond one displaying the original graphics objects for sharp edges at very high zoom levels.
When a HICANN is moved out of scope during detail-view, the neighboring HICANN will
be displayed in detail and the details of the previous HICANN removed again.

4

Figure 4: The start screen allows the user to upload a network as a xml-file via the file
browser or drag-and-drop upon starting the software.

Figure 5: Overview of the visualization. The single buses are not drawn, instead simple
color-coded rectangles represent the number of routes running over that segment. The info-
panels show information about a HICANN when selected. All HICANNs are listed in an
expandable list in the left panel. All graphical elements can be (un-) selected here.

5

Figure 6: The detail-view is automatically loaded when the user zooms past a certain thresh-
old. All Buses and the full synapse array are drawn now.

Figure 7: Detail-view with (right) and without (left) antialiasing. The large number of small
elements leads to undesirable visual effects when the elements are too small to entirely fit on
a pixel. Antialiasing rendered images of the graphics objects with smooth edges minimizes
those effects.

6

2.2 Code details

JavaScripts FileReader() object allows to process the text file uploaded via the file-browser
or drag and drop. To use the file later with Marocco, it is written into Emscriptens virtual
file system, accessible via the object FS. After processing the file, the main visualization
software is started by invoking the startVisu() function.

As mentioned before, writing maintainable code was one of the major goals of this in-
ternship. For that reason the code was separated into namespaces as the project grew larger.

2.2.1 PixiBackend

The pixiBackend namespace includes all the code, that directly uses PixiJS such as drawing
graphic elements and navigating through the visualization. It exposes a few simple functions
to use in the rest of the software. The PixiJS environment is initialized by creating a
HTML5 canvas and setting up the container (PIXI.Container()) structure to later hold
all the different graphic elements (i.e. bus segments, HICANN backgrounds, ...). Drawing
simple shapes is straightforward in PixiJS. First, a PIXI.Graphics() instance is created, the
drawing path and colors specified, and then it is stored in one of the containers. PixiJS even
has built-in functionality to add interactive mouse-effects to those graphics objects. However,
creating a new graphics object for each element comes with great computational cost, storing
multiple elements (e.g. a whole synapse-array) as one graphics object is much more efficient.
The drawRectangles function takes arrays of x, y, width and height values and draws all
those rectangles as one graphics object. The downside is, that mouse interactivity can not
be added to the single elements in the graphics object. But storing the element positions
in an external array and looping over it for mouse-over and mouse-click effects is still much
more performant than creating single graphics objects.

function drawRectangles(container , xValues , yValues ,

widthValues , heightValues , color) {

// create PIXI Graphics instance

const rectangles = new PIXI.Graphics ();

// loop through passed arrays and draw rectangles

for (let i=0; i<xValues.length; i++) {

rectangles.beginFill(color);

rectangles.drawRect(xValues[i], yValues[i], widthValues[i],

heightValues[i]);

rectangles.endFill ();

};

// add graphics object to container

container.addChild(rectangles);

}

7

Replacing graphics elements with sprites yields even better performance and minimizes
unwanted effects through antialiasing. This in done in PixiJS by generating a texture from
the graphics object with specified resolution and storing the texture in a PIXI.Sprite().

Panning and zooming is implemented by manipulating the scale and position proper-
ties of the stage.transform object, where stage is the top-level container that contains all
sub containers. Changing the stages position effectively moves the whole visualization.

2.2.2 Wafer

The wafer namespace stores the HICANN positions and all the data to be visualized.
loadOverviewData() is currently used to load the data from the network.xml file selected
at the beginning. The idea is, that multiple functions load chunks of data only when needed,
once enough data is implemented. loadOverviewData() first builds Marocco from the xml
file, then marocco.properties(hicann) are stored in the wafer.hicannProperties object
for all HICANNs. northernhicann() et cetera determine the indices of the neighboring
HICANNs if existent.

function loadOverviewData(networkFilePath) {

// build marocco from uploaded network.xml file

let marocco = new Module.Marocco(networkFilePath);

...

// read properties from marocco

for (let i=0; i<384; i++) {

// create new enum , hicann and properties instances

let enumRanged = new Module.HICANNOnWafer_EnumRanged_type(i

)

let hicann = new Module.HICANNOnWafer(enumRanged);

let properties = marocco.properties(hicann);

// hicann position

this.hicanns[i] = {};

this.hicanns[i].x = hicann.x().value();

this.hicanns[i].y = hicann.y().value();

// hicann properties

this.hicannProperties[i] = {};

this.hicannProperties[i]. has_inputs = properties.has_inputs

();

this.hicannProperties[i]. num_buses_horizontal = properties.

num_buses_horizontal ();

...

}

}

8

2.2.3 Detailview

The detailView namespace is probably the most complex part of the code, as it contains
all the logic that takes care of dynamically creating and removing elements in response to
panning and zooming. First of all there are methods like hicannClosestToCenter() to
determine the part of the wafer, that is in the users scope. To start the detail-view, when
the user zooms in far enough, detailView.start() is called. For the HICANN in scope, the
detailed buses and synapse arrays are created but graphics objects are hidden, making use
of PixiJS’ object.visible property. Additionally all the positions of the synapses on the
synapse arrays are stored to enable mouse interactivity with those objects. The HICANN
number in the visualization is hidden and instead the properties are displayed in the info-
panel on the right side of the screen. When the user passes the second zoom-level threshold,
the sprites are hidden, and the real graphics objects rendered visible.

function start(newHicann) {

// remove all Hicann numbers

// show properties of current Hicann in sidebar

...

// remove overView Elements for that HICANN

this.removeOverview(newHicann)

...

// draw left buses and hide the graphics objects

this.drawBusesLeft(hicannPosition);

// display sprites for left bus

pixiBackend.container.hicannBusesLeft.children[newHicann].

visible = true;

...

}

As explained before, the software detects automatically, when the user moves the cur-
rently displayed HICANN out of scope during detail-view and loads the detail-view of the
neighboring HICANN (if existent). To prevent unwanted switches and give the user some
space to move around without experiencing annoying changes of the detailed HICANN, the
switching does not occur when the center of the display is exactly between two HICANNs
but half a HICANN width later (controlled with the detailView.edge property). When
zooming out past the detail-view threshold, the detailed graphics objects and sprites are
removed, the synapse position arrays emptied and the overview restored again.

9

function recoverOverview(hicannIndex) {

// set overview elements to visible

pixiBackend.container.hicannNumberText.visible = true;

pixiBackend.container.hicannBackgrounds.children[hicannIndex

]. visible = true;

...

}

function removeDetailView(hicannIndex) {

// remove graphics objects for detailed elements

pixiBackend.removeChild(pixiBackend.container.

detailBusesVerticalLeft , 0);

// check if detailed bus segment was manually selected

if (this.displayedBuses.left.indexOf(hicannIndex) === -1) {

pixiBackend.container.hicannBusesLeft.children[hicannIndex

]. visible = false;

};

...

// reset synapse array position arrays

this.synapseArrayOne.x = [];

...

}

This automatic zoom mode was the first mode implemented in the software and the
ability to select manually the exact elements to be displayed followed later. So when adding
this functionality, unexpected behavior when selecting some elements manually and using
the automatic zoom occurred. First attempts to fix this issue led to a complex and error-
prone code. Therefore, following the internship, two completely separate display modes
will be implemented. The auto mode that automatically selects the details to be displayed
according to pan and zoom action, without the ability to take any influence on that. And
secondly the manual mode that disables the automatic functionality and leaves it completely
up to the user to select the elements and detail-level to be displayed. However, in this mode
it is the users alone responsibility to limit the number of detailed elements, otherwise the
software will crash.

10

2.2.4 Global space

Apart from the namespaces described above, there are a number of global functions and
objects. All the configuration tasks that need to be performed before the actual start of the
visualization software are implemented in global space at this point. Also the dynamic setup
of the HICANN tree (left panel in the GUI) is done inside a global function: All the items in
the list are HTML <\li> ”list item” tags in an unordered list (). Inside those
list-items, a hidden checkbox is controlled by a label that is styled with the little triangle as
background to indicate whether the list is opened or not. Another label (or button in some
cases) shows the name of the list item. If the list-items themselves should contain multiple
sub elements, they are unordered lists again containing their child elements as list items.
This setup function for the whole tree is unfortunately very lengthy and confusing, but so
far I did not find a way to simplify it significantly.

The overview (i.e. the functions to draw the elements in the overview) is implemented
in global space as well and so are all the event handlers for mouse, keyboard and checkbox
interactivity.

3 Next steps

As a first step towards optimizing the code, TypeScript modules can be used to further sepa-
rate codes and create independent, well maintainable units. The mentioned implementation
of two different modes to either automatically view details or select everything manually will
create a better and more intuitive user interaction and makes it easier to extend the code.

Probably the next goal for this visualization is to implement detailed routes, a crucial
feature for debugging. The user should be able to click on bus segments in the detail-view
and get all the routes running over that segment displayed. Alternatively a list of all routes
should be provided with the ability to click on them and display them on the wafer. It
could be potentially useful to also list all routes that run over a route segment as well as all
the routes that start or end at on HICANN in the already existing elements list in the left
info-panel.

Once a solid foundation is implemented, it will be fairly easy to add further features.
When creating a population in PyNN, an unambiguous id is assigned to it. A nice feature
would be to highlight those HICANNs hosting the population and visualizing the connection
between them. Apart from including further static data, a dynamic visualization of spikes,
weights and membrane potentials would be great for demonstration purposes. One could
reproduce the dynamics during a simulation in slow motion.

A rather extensive addition would be to visualize the biological model as well and draw a
connection between them. A complete restructuring of the user interface would be necessary,
though. A three dimensional representation of the biological model using a different JS
library should be considered, provided that computational power is sufficient.

11

References

[1] Sebastian Jeltsch. “A Scalable Workflow for a Configurable Neuromorphic Platform”.
PhD thesis. Universität Heidelberg, 2014.

[2] Mat Groves and the PixiJS team. PixiJS - The HTML5 Creation Engine. 2017. url:
http://pixijs.download/release/docs/index.html.

[3] J. Schemmel et al. “A wafer-scale neuromorphic hardware system for large-scale neural
modeling”. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems. 2010, pp. 1947–1950. doi: 10.1109/ISCAS.2010.5536970.

12

http://pixijs.download/release/docs/index.html
https://doi.org/10.1109/ISCAS.2010.5536970

	Methods
	Performance
	Data Access
	Maintainability

	Results
	Features
	Code details
	PixiBackend
	Wafer
	Detailview
	Global space

	Next steps

