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Two-mode Bose gas: Beyond classical squeezing
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The dynamical evolution of squeezing correlations in an ultracold Bose-Einstein distributed across
two modes is investigated theoretically in the framework of the Bose-Hubbard model. It is shown
that the eigenstates of the Hamiltonian do not exploit the full region allowed by Heisenberg’s un-
certainty relation for number and phase fluctuations. The development of non-classical correlations
and relative number squeezing is studied in the transition from the Josephson to the Fock regime.
Comparing the full quantum evolution with classical statistical simulations allows to identify quan-
tum aspects of the squeezing formation. In the quantum regime, the measurement of squeezing
allows to distinguish even and odd total particle numbers.
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I. INTRODUCTION

Precision measurements at the quantum level are ulti-
mately limited by Heisenberg’s uncertainty relation. De-
creasing the fluctuations of an observable of interest be-
low the standard quantum limit given by the central limit
theorem necessarily increases the fluctuations in one or
more conjugate observables. Different ways to use such
squeezed states, e.g., to measure frequency in Ramsey-
type interferometers have been discussed in great detail
in the seminal papers [1–4]. Heisenberg-limited Mach-
Zehnder interferometry using number squeezed photon
states were studied in detail in [5–8]. The standard quan-
tum limit is reached by today’s best sensors of various
quantities such as time [9] and position [10, 11].

Two-mode Bose-Einstein condensates of non inter-
acting particles constitute coherent semiclassical macro-
scopic ensembles of particles. In the limit of zero tem-
perature the probability for each mode to contain a cer-
tain number of atoms is approximately Poissonian. The
variance (∆n)2 of the particle number difference is pro-
portional to the total particle number N , corresponding
to the standard quantum limit (∆n)/N ∼ 1/

√
N . Con-

jugate to particle number difference is the relative phase
φ between the modes which can be measured through
interference effects [49]. The Heisenberg uncertainty re-
lation ∆n∆φ ∼ 1 implies the relative standard deviation
(∆φ)/φ ∼ 1/

√
N .

The presence of interactions between the particles
strongly modifies the situation. Fluctuations of the par-
ticle number and squeezing in trapped atomic gases have
been the subject of numerous recent experimental and
theoretical studies [12–18]. Here we are interested in
squeezed states of Bose-Einstein condensed ensembles of
trapped atoms. We specifically consider squeezing in the
particle number difference between the two minima of a
double-well trap in one spatial dimension. This reduc-
tion of number fluctuations below the standard quantum
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FIG. 1: (Color online) Phase diagram for N = 100 particles
in a double-well potential, with on the average equal popula-
tions in the two wells, 〈n̂〉 = 〈n̂1 − n̂2〉/2 = 0, and the abso-

lute phase chosen such that 〈Ŝ2〉 = i〈â†
2
â1 − â†

1
â2〉 = 0, see

Eq. (A9). For any given coherence parameter α = 2〈Ŝ1〉/N
the variance (∆n)2 = Nξ3/4 of the number difference be-
tween the wells is bounded below and above by Heisenberg’s
uncertainty relation and the constraint that the total parti-
cle number N is fixed. The allowed area is defined by the
inequality (11) shaded in colors in the above diagram. In the
medium (violet) and dark (blue) shaded regimes, the squeez-
ing parameter is below the standard quantum limit, ξ3 ≤ 1,
see Eq. (5). In the dark (blue) regime, the squeezing can be
used to gain precision in metrology, see Eq. (14).

limit occurs at the expense of increased fluctuations in
the relative phase between the wells. The barrier be-
tween the wells of the system is taken much smaller than
the outer walls of the trap such that the main source of
number fluctuations in each well is given by tunneling
processes between the wells. Such two-mode quantum
systems can be described, by use of Schwinger’s repre-
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sentation, in terms of angular momentum states with the
maximum length of the spin vector related to the total
particle number. Consequently, the non-classical states
we consider exhibit a variant of spin squeezing [1, 2].

Our studies have been initiated by a recent experiment
[18] in which a setup of the kind sketched above has been
used, with a one-dimensional double-well trap created by
a superposition of standing light waves. In this experi-
ment, both particle number and phase difference have
been measured independently with high resolution to es-
tablish squeezing correlations empirically. While our dis-
cussion of the formation of squeezed states here focuses
on particle number variations in space, it can be straight-
forwardly extended to apply to alternative schemes, in-
cluding, e.g., squeezing in the relative occupation number
of internal hyperfine states of the atoms [19].

A prominent motivation of the work presented here is
to study the role of quantum statistical fluctuations in
the preparation of the spin squeezed states. By compar-
ison of exact quantum with semi-classical Monte Carlo
simulations it is shown here that the spin squeezing pro-
duced in a setup as that in the experiment [18] is equiv-
alent to reduced classical fluctuation of the occupation
number difference between the two wells. It is, further-
more shown that the production of squeezed states in the
experiment follows a quasi static path in state space.

Spin squeezing is closely related to quantum entangle-
ment [20–26]. Schemes have been proposed to use spin-
squeezed states for quantum teleportation of continuous-
variable, e.g. coherent states [27–29]. However, a full re-
construction of the teleported state is only possible in the
limit of perfect squeezing [30], close to zero temperature
where quantum fluctuations become relevant, beyond the
regime of classical squeezing. We demonstrate to which
extent the evolution of the system enters the regime of
non-classical states.

We furthermore show that, for a finite total number
of atoms the Heisenberg limit can not be reached, in the
generic case, by adiabatically changing the system’s pa-
rameters, starting from an incoherent mixture of energy
eigenstates. In particular, in the ground state of the sys-
tem, though being rather close to the Heisenberg limit,
the variances of the conjugate variables number differ-
ence and relative phase between the wells are in general
not minimized at the Heisenberg limit. The difference
between ground state and Heisenberg limited variances
becomes negligible only in the limit of large total parti-
cle number. Any excited energy eigenstate is found to
be even further from this limit. The production of states
at the Heisenberg limit therefore requires nonequilibrium
dynamical evolution.

Our paper is organized as follows: In Sect. II we discuss
fundamental squeezing limits in the Bloch-sphere picture.
The dynamics of the production of squeezing by raising
the barrier in the double-well potential is described in
Sect. III. A focus is set on comparing the full quantum
with the semiclassical evolutions. Our conclusions are
drawn in Sect. IV.

II. NUMBER-SQUEEZING IN A TWO-MODE

BOSE GAS

We consider a Bose condensate trapped in a double-
well potential with two energetically degenerate minima
separated by a barrier of variable height, allowing for
an adjustable tunneling rate between the wells. In the
experiment [18] such a potential was formed optically by
counterpropagating laser waves. We consider parameter
regimes in which the system can be described by the two-
site Bose-Hubbard Hamiltonian

Ĥ = −J(â†1â2 + â†2â1) +
U

2

2
∑

i=1

â†i â
†
i âiâi. (1)

where the operators âi and â
†
i obey the standard bosonic

commutation relations

[âi, âj ] = 0, [â†i , â
†
j ] = 0, [âi, â

†
j ] = δij . (2)

and where J is the tunneling and U is the onsite interac-
tion parameter. The energy spectrum and eigenstates of
this Hamiltonian, as far as relevant for the discussion in
this article, are summarized in Appendix A. The Hamil-
tonian can be written in terms of Schwinger angular mo-
mentum operators,

Ĥ = −J(Ŝ+ + Ŝ−) + U(Ŝ2
3 + Ŝ

2 −N), (3)

where Ŝ± = Ŝ1 ± iŜ2, and Ŝ
2 =

∑3
i=1 Ŝ

2
i , with Ŝ1 =

(â†2â1 + â†1â2)/2, Ŝ2 = i(â†2â1 − â†1â2)/2, and Ŝ3 =

(â†1â1− â†2â2)/2. The corresponding angular-momentum-
type states of the system can be represented by quantum
phase-space (Wigner) distributions on the Bloch sphere
[47, 48]. For details about this representation we defer
to Appendices A and B.
The difference in occupation number between the

modes is measured by Ŝ3, while the relative phase
coherence is measured by the orthogonal components
Ŝ1,2. These angular-momentum-type observables are
constraint by a Heisenberg uncertainty relation, see
Eq. (8), which allows us to derive fundamental limits for
squeezing.
To quantify angular momentum squeezing one intro-

duces a squeezing parameter adapted to the problem
under consideration. A definition suitable for number
squeezing between bosonic modes relates the variance of
one Cartesian component to the total spin S = N/2, i.e.,
to the total number of mode excitations or particles,

ξi = (∆Si)
2/(S/2). (4)

For i = 3, this is equivalent to the ratio of the variance of
the number difference n1 −n2 = 2n to the total number,

ξ3 = 4(∆n)2/N. (5)

In the following section, we show the evolution of this
squeezing parameter under the slow ramp-up of the po-
tential barrier. It essentially reflects the suppression of



3

10−4

10−3

10−2

10−1

100

101

102

−1 −0.5 0 0.5 1

ξ 3

α

10−4

10−3

10−2

10−1

100

101

102

−1 −0.5 0 0.5 1

ξ 3

α

Eigenstates
Ground state

FIG. 2: (Color online) Positions of the energy eigenstates
of the Hamiltonian (1) for a system with N = 100 particles
in the phase diagram introduced in Fig. 1. Each black dot
corresponds to one such state. The dotted lines are drawn to
guide the eye between successive eigenstates of a Hamiltonian
with fixed ratio U/J . From top to bottom, the sets of states
are obtained for U/J = 0, 1, 10, and 100, respectively. The
(red) solid line connects all ground states for different U/J .
We emphasise that the energy eigenstates do not extend over
the full (shaded) region allowed by Heisenberg’s uncertainty.

the relative number fluctuations below the classical limit
(∆n)2 = N/4 as given by the central-limit theorem.
In the following we will consider only situations where

the total number N of atoms in the wells and therefore
the total spin S are fixed. Before proceeding with this we
briefly remark that in the general case of varying S the
squeezing parameters ξi measure the deviation from an
angular momentum coherent state which is represented,
in Bloch space, as a spherical Gaussian uncertainty dis-
tribution around 〈S〉 with radial width σ =

√
N/2. Such

a state can be written as a product of coherent states in
the two modes 1 and 2, |α〉|α〉, |α| =

√

N/2, and has
ξ1 = ξ2 = ξ3 = 1.
In analogy to spin-squeezed states, two-mode states

can exhibit squeezing in particular directions at the ex-
pense of increased fluctuations in directions perpendicu-
lar to this [3]. For example, an eigenstate of Ŝ3 can be
illustrated by a circle on the Bloch sphere parallel to the
1-2-plane corresponding to the variances

(∆S1)
2 = (∆S2)

2 = [S(S + 1)− S2
3 ]/2

(∆S3)
2 = 0,

(6)

respectively. The operators Ŝ1, Ŝ2 measure the phase be-
tween the Fock modes 1 and 2 which is accessible to in-
terference measurements of the particle occupation num-
bers, see Ref. [18]. Hence, the commutators (A10) char-
acterise the uncertainty relation (8) between (relative)
number and cosine of the (relative) phase. The absolute
phase is undefined as we assume a fixed total particle

number. Physically this phase is not measurable without
comparing and therefore coupling the system to another
system. Hence, the two-mode states considered in the
following, with relative particle number centered around
n = 0, correspond to a distribution on the surface of the
Bloch sphere, centered around the equator, i.e., around
a polar angle θ = π/2 or 〈Ŝ3〉 = 0. A more convenient
parameter to reflect the squeezing below the standard
quantum limit, in accordance with the uncertainty rela-
tion (8) is given by

ξkl = (∆Sk)
2/|〈Ŝl〉/2|. (7)

In the following, we will consider the special case 〈Ŝ2〉 =
〈Ŝ3〉 = 0 such that the only nontrivial combinations are
ξ21 and ξ31. The variances (∆Sk)

2 are subject to the
uncertainty relation

(∆Sk)
2(∆Sl)

2 ≥ 1

4
|ǫklm〈Ŝm〉|2. (8)

such that the parameters ξkl obey the inequality

ξ21ξ31 ≥ 1. (9)

This defines the Heisenberg limit for the fluctuations.
One may at first glance expect that the limit ξ31 → 0
is allowed at the expense of ξ21 → ∞ and vice versa.
However, as long as |〈Ŝ1〉| > 0 perfect squeezing in ei-
ther the relative number or the phase is not possible as
we have assumed fixed S and thus a fixed Bloch-sphere
radius.
In order to determine the actual squeezing limit for a

fixed total number it is, moreover, not sufficient to take
the general upper limit (∆S2)

2 ≤ S2 = N2/4 and infer,
from the uncertainty relation (8) for the variances of the

angular momenta, the lower limit (∆S3)
2 ≥ 〈Ŝ1〉2/N2,

which vanishes at 〈Ŝ1〉 = 0 and becomes as large as 1/4

at 〈Ŝ1〉 = N/2.
Since the variance of S2 depends nontrivially on the

mean value of S1 it is rather necessary to take into ac-
count the constraint given by the fixed total particle num-
ber N = 2S. Using

〈Ŝ2〉 = S(S + 1) (10)

one finds, from (9), the inequality

ξ231 − 2ξ31γ + 1 ≤ 0, (11)

with γ =
S(S + 1)− 〈Ŝ2

1〉
|〈Ŝ1〉|

. (12)

This contains, besides the average, also the fluctuations
of the “phase operator” Ŝ1. In general the above inequal-
ity returns a lower bound ξ31,min ≤ ξ31 and an upper
bound ξ31,max ≥ ξ31 for ξ31.
We show the resulting bounds on ξ3 = 4(∆n)2/N =

4(∆S3)
2/N = 2ξ31|〈Ŝ1〉|/N as functions of the coherence

α = 2〈Ŝ1〉/N in Fig. 1. The shaded areas are allowed
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by the inequality (11). In the medium (violet) and dark
(blue) shaded areas the system is below the standard
quantum limit, ξ3 ≤ 1, see Eq. (5).

For the special case that 〈Ŝ1〉 = S = N/2, i.e., α = 1,

one has 〈Ŝ2
1〉 = S2 such that the inequality (11) be-

comes an equation fixing the variance to the unique value
(∆S3)

2 = N/4 which is both a lower and an upper
bound. Note that this bound is enhanced by a factor N
as compared to the naive limit derived from the uncer-
tainty relations above. For |〈Ŝ1〉| < N/2 one finds, since

〈Ŝ2
1〉 ≤ S(S + 1), that γ ≥ 1. Moreover, 〈Ŝ2

1〉 ≥ 〈Ŝ1〉2,
and the minimum 〈Ŝ2

1 〉 = 〈Ŝ1〉2 is realized, for any 〈Ŝ1〉,
by the eigenstates of Ŝ1. Hence, one can replace 〈Ŝ2

1 〉 by
〈Ŝ1〉2 in (12), such that the inequality (11) defines the
lower and upper bounds to ξ31 for any given value of the
average 〈Ŝ1〉. For |〈Ŝ1〉| → 0, one finds a lower bound, to

quadratic approximation in 〈Ŝ1〉, of [50]

(∆S3)
2 ≥ 〈Ŝ1〉2

4S(S + 1)
, (13)

This limit is by a factor of S/(S + 1) lower than the
naive bound mentioned above, a difference which only
disappears in the limit of large particle numbers. Also the
maximally allowed (∆S3)

2 is given by S(S + 1) instead
of S2.
The angular momentum representation (3) of the

Hamiltonian shows that, for a given set of parameters
U and J , each of the energy eigenstates corresponds to
a point in the |〈Ŝ1〉|-(∆S3)

2 plane. In Fig. 2 we show
these points for J = 1 Hz and four different values of
U (black dots). Those values are, from top to bottom,
U/J = 0, 1, 10, and 100. The dotted lines serve to guide
the eye between the values for subsequent states of the
same Hamiltonian. This shows that states with lower en-
ergies have larger |〈Ŝ1〉| and smaller (∆S3)

2 than states
with higher energy. We find that the ground-state val-
ues are in accordance with the limit set by the Heisen-
berg uncertainty relation (11) but correspond with this
limit only for coherences α = 0 and α = 1. Similarly,
the eigenstates with the highest energies, do not give the
highest possible number fluctuations (∆S3)

2. The only

exception are the cases 〈Ŝ1〉 = ±S, i.e., U = 0, where the
lower and upper Heisenberg limits meet at ξ3 = 1, and
the case 〈Ŝ1〉 = 0. Hence, the diagram in Fig. 2 shows
that adiabatic changes of the parameters cannot drive the
system, starting in some classical (diagonal) mixture of
energy eigenstates, into the maximally squeezed state, for
any value of the coherence α other than 0 or ±1. We em-
phasise that maximum squeezing allowed by Heisenberg’s
uncertainty relation is only possible in a non-equilibrium
procedure.
Spin-squeezed states with large total angular momen-

tum quantum number S have been suggested as means
for increasing the precision of interferometric and metrol-
ogy measurements beyond the standard quantum limit
[1–4]. One thereby uses, e.g., the squeezing of the un-

certainty ellipsoid around the mean spin vector 〈Ŝ〉. If
the ellipsoid is squeezed perpendicular to the spin direc-
tion along a direction σ this increases the measurement
sensitivity of an angle θ of rotation of 〈Ŝ〉 about an axis
ρ perpendicular to the spin and the squeezing direction,
〈Ŝ〉 · ρ = σ · ρ = 0. The resolution of the angle θ is pro-
portional to the variance (∆Sσ)

2 of the spin vector along

the squeezing direction σ, ∆θ = (∆Sσ)
2/|〈Ŝ〉|. This

needs to be compared to the angular noise in the angu-
lar momentum coherent states, 1/

√
N = 1/

√
2S. Hence,

the squeezing parameter measuring the sensitivity of the
squeezed states considered before (〈Ŝ2〉 = 〈Ŝ3〉 = 0) un-
der rotations around the 2-axis reads

ξ2R =
N(∆S3)

2

〈S1〉2 + 〈S2〉2
. (14)

The area allowed by ξR ≤ 1 is indicated in Fig. 1 by dark
shading.
In summary, the fluctuations of the spin in one di-

rection have to be reduced below shot noise ((∆S3)
2 <

S/2), and the spin polarization in the orthogonal plane,
〈S1〉2 + 〈S2〉2, has to be large enough to maintain the
sensitivity of the interferometer. The precision of such a
quantum-enhanced measurement is ξR/

√
N [23], whereas

the standard quantum limit set by shot noise is 1/
√
N .

III. DYNAMICS OF THE PRODUCTION OF

SQUEEZED STATES

Tuning the barrier height can be employed to produce
many-body states with squeezing in the relative number
difference of particles in the two wells. Such squeezing
was observed [18] in the distribution of atoms counted
after high-resolution imaging of the atom cloud in subse-
quent runs of the experiment. In each such run, a con-
densate was prepared in the potential (A1) with a low
barrier height allowing the atoms to be delocalised across
the almost flat potential floor. Then, the potential bar-
rier was slowly raised, allowing for an almost adiabatic
adjustment of the system’s state to the modified exter-
nal conditions. As anticipated, the finally strong barrier
was observed to suppress the fluctuations (∆n)2 in the
particle number difference below the estimated classical
variance (∆n)2/4 ∼ N = n1 + n2. This suppression was
interpreted [18] as due to the squeezing that manifests
itself theoretically in the approximate low-energy many-
body eigenstates. As we describe in more detail in the
following, the near-adiabatic ramp-up of the barrier al-
lows the atoms essentially to remain in the initially pop-
ulated states. The change of parameters in the Hamil-
tonian during the ramp deforms the populated states,
causing adiabatic cooling of the system and squeezing,
i.e., reduced relative number fluctuations which reflect
the localisation of the particles in either of the wells. In
a second stage when the populated levels successively be-
come pairwise quasi-degenerate, isothermal evolution is
observed during which the squeezing remains stationary.
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Besides a description of the dynamics observed in the
experiment [18], we characterize the common properties
as well as the differences between quantum and classi-
cal statistical many-body evolution of the system. To
this end we study the dynamical evolution both by di-
rect integration of the von Neumann equation as well
as by simulation in terms of a classical field equation of
motion derived from the classical Hamiltonian function
corresponding to the operator (1).

A. Quantum evolution

We consider a system whose dynamics is described by
the Hamiltonian (1). At the initial time t = t0 the gas is
assumed to be evenly distributed among the wells of the
potential, such that 〈Ŝ3〉 = 0 at all times t > t0. Its ini-
tial state is described by a canonical density matrix with
a given temperature T0, with the spectrum determined
by diagonalizing (1) for a given set of initial parame-
ters J(t0) and U(t0) in the Rabi regime as discussed in
Sect. A 2,

ρ̂(t0) =
1

Z

N
∑

i=0

e−Ei(t0)/kBT0 |Ei(t0)〉〈Ei(t0)|, (15)

with Z =
∑

i exp(−Ei(t0)/kBT0) and Boltzmann’s con-
stant kB. The time evolution of the Bose-Hubbard pa-
rameters J(t) and U(t) is determined by solving the
stationary Gross-Pitaevskii equation in the double-well
potential for a set of times during a linear ramp-up of
the barrier V0(t) = V0(t0) + v0(t − t0) with v0/h =
(2π)2570Hz. Fig. 14 shows the evolution of U and J
during the ramp up of the barrier, starting at t0 = 0,
with the time given in units of the duration of the ramp
tmax.
Decreasing in this way the tunneling parameter J and

at the same time preserving or increasing the local inter-
actions U drives the system from the Rabi through the
Josephson into the Fock regime, see Sect. A 2. We com-
pute the corresponding time evolution of the system by
solving the von Neumann equation for the density opera-
tor and study the evolution of the squeezing parameters
described in Sect. A 3, in particular of the number vari-
ance (∆n)2 = (∆S3)

2 and the coherence parameter or

relative phase α = 〈Ŝ1〉. For the purpose of comparing
with experimental data we fit the initial temperature T0
such that the initial number variance and coherence fit
the experimentally determined values.
Fig. 3 shows the evolution of a system of N = 100

atoms in the α-(∆n)2 plane as a (blue) solid line, under
a tmax = 0.16 s ramp-up of J(t)/U(t) given in Fig. 14.
The system starts in a state with (∆n(t0))

2 = 37.5 and
α(t0) = 0.994 which is obtained for an initial tempera-
ture T0 = 20 nK. The (red) short-dashed line shows the
corresponding evolution of (α(t),(∆n(t))2) under an adi-
abatic change of the parameters U and J , i.e., for v0 → 0.
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FIG. 3: (Color online) Evolution of the coherence α and the
number variance (∆n)2 for a gas of N = 100 atoms ((blue)
solid line) under a slow ramp-up of U(t)/J(t) over a time
tmax = 0.16 s as given in Fig. 14. The system starts in a state
with (∆n(t0))

2 = 37.5 and α(t0) = 0.994 which is obtained
for an initial temperature T0 = 20 nK. A range of time points
is indicated by black dots. They are spaced by 0.1 tmax and
the first completely distinct point is for t = 0.3 tmax. The
evolution under an adiabatic change of the parameters U and
J , i.e., for v0 → 0 is shown by the (red) dotted line. An
isotherm for T = 0.17 nK is shown as a dashed line. See
Fig. 1 and Sect. A 3 for the definition of the differently shaded
areas allowed by the constraint Heisenberg, squeezing, and
metrology gain limits.

The areas allowed by the constraint Heisenberg, squeez-
ing, and metrology gain limits, respectively, are shaded
differently as discussed in Sect. A 3 and Fig. 1.

Comparing the nonadiabatic with the adiabatic evolu-
tion, as well as with the isothermal line drawn in Fig. 3
as a dashed line we find that the system crosses over from
an adiabatic to an isothermal evolution. The transition
occurs as soon as the initially occupied levels cross over
from the linear to the quadratic part of the spectrum
shown for different parameters U/J in Fig. 15.

Let us discuss this crossover in more detail. We con-
sider the evolution of the density matrix in the energy
eigenbasis. Fig. 4 shows the diagonal elements of the
density matrix, 〈Ei|ρ̂(t)|Ei〉 in the basis of the energy
eigenstates (A7) of the Hamiltonian (1), corresponding
to the lowest energies Ei, i = 1, . . . , 50. Note that the
density matrix at times t > 0 is no longer diagonal as
correlations have been formed. Nevertheless, the ampli-
tudes of the off-diagonal elements are strongly reduced
compared to the diagonal elements and the latter serve
as a measure of the distributions of particles across the
energy eigenstates. Fig. 4 shows these distributions for 5
different times during the ramp-up of U(t)/J(t) given in
Fig. 14, on a semi-logarithmic scale. The linear distribu-
tion at t = 0 corresponds to a canonical density matrix
with temperature T0 = 20 nK, for the linear spectrum in
the Rabi regime, see Fig. 15.
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FIG. 4: Diagonal elements of the density matrix, 〈Ei|ρ̂(t)|Ei〉
in the basis of the energy eigenstates (A7) of the Hamiltonian
(1), for 5 different times during the ramp-up of U(t)/J(t)
shown in Fig. 14. Note the semi-logarithmic scale. The initial
temperature is T0 = 20 nK. The inset shows the diagonal
elements of the density matrix for t = tmax as a function of
the energy on a logarithmic scale, demonstrating the thermal
character of the state.

Up until around t = 0.5 tmax, the density matrix
barely changes its character indicating an adiabatic evo-
lution. However, as long as the occupied levels are lin-
early spaced in energy strong adiabatic cooling takes
place, as can be inferred from the change in energy scales
from the (red) “Rabi” to the (blue) “Josephson” spec-
trum in Fig. 15.
Therafter the system quickly leaves its adiabatic be-

havior to develop a staircase-like shape of the energy
distribution. Around t ≃ 0.5 tmax the occupied levels
enter the quadratic regime. In this regime, the energy
spectrum develops two-fold quasi degeneracies, starting
in the higher levels, corresponding to symmetric and an-
tisymmetric states, see Sect. A 2. However, the redistri-
bution between the states in the gradually changing spec-
trum becomes possible because the levels at the boundary
between the linear and quadratic parts of the spectrum
approach each other closely. There is no redistribution
within the quasidegenerate pairs in the quadratic part
of the spectrum as symmetry forbids transitions between
states even and odd in the relative particle number n.
For times t ≃ 0.8 tmax, the energies of all but the

largest occupied states belong to the quadratic regime.
Note that at t = tmax the occupation of the second low-
est energy state, i = 1, is lower than the occupations of
the ground state i = 0 and second excited state i = 2.
The reason for this is that the initial state ρ̂(t0) is dom-
inated by the symmetric ground state with cn,0 = c−n,0

and therefore the final state is predominantly symmetric,
with a suppressed contribution from |E1〉.
We have studied the redistribution of an initial single-

energy eigenstate during the ramp and found that the
final state is generically far from representing a thermal
distribution. As our results show, however, a thermal
mixture of these initial eigenstates redistributes occupa-
tion numbers to yield a thermal state again at the end-
point of the ramp. The inset in Fig. 4 shows the di-
agonal elements of the density matrix for the final time
t = tmax in our simulations, as a function of the energy
on a semilogarithmic scale, demonstrating the thermal
character of the state in the levels with even index, i.e.,
the symmetric states, cf. Fig. 16, while the occupation
of the odd-i levels remains suppressed. This suppression
stabilizes the system against symmetry breaking to a self-
trapped state with a non-zero mean value n. If the odd-i
states would be equally strongly occupied, they could
combine with the even states to yield self-trapping.

In summary, the system changes considerably during
the entire ramp. During the initial evolution strong adia-
batic cooling takes place. At the crossover to the isother-
mal evolution redistribution sets in and a “freeze out” of
the fluctuations, fixing the system’s temperature. Dur-
ing the following evolution period, the squeezing stays
put while the mean coherence keeps decreasing.

B. Semiclassical evolution

We will now turn to the semiclassical statistical
description of the production of squeezed states dis-
cussed above. This is achieved by sampling the phase-
space probability distribution corresponding to the ini-
tial quantum density matrix and evolving each realisa-
tion by use of the classical equation of motion. Correla-
tion functions at a later time are then obtained as mo-
ments over the thus propagated probability distribution.
The semiclassical description of the dynamics of the two-
mode Bose-Hubbard system has recently been studied in
Refs. [31].

The classical dynamic equation [32] is derived from
the classical Hamiltonian function which is obtained from
the Hamiltonian in Eq. (3) by substituting the operators

Ŝ1 = Ŝ+ + Ŝ− and Ŝ3 by the classical variables,

Ŝ3 → n, (16)

Ŝ1 →
√

S2
1 + S2

2 cosφ =
N

2

√

1− 4n2

N2
cosφ, (17)

as

H = Un2 − JN

√

1− 4n2

N2
cosφ. (18)

One condition for the classical description to be valid is
that the particle number in each well is much larger than
one, i.e., n ≪ N . The canonical variables are (half) the
number difference n and the relative phase φ between the
two wells. From the above Hamiltonian the Josephson
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equations are obtained as

dn

dt
= −NJ

√

1− 4n2

N2
sinφ, (19)

dφ

dt
= 2Un− 4n

N
J

(

1− 4n2

N2

)−1/2

cosφ. (20)

Expectation values at time t > t0 are obtained as mo-
ments of the respective probability distribution

〈O〉 = N−1

∫

dn dφP (n, φ; t)O, (21)

N =

∫

dn dφP (n, φ; t). (22)

The probability distribution P is determined by the clas-
sical path integral

P (n, φ; t) =

∫ t

t0

DnDφP (n, φ; t0)

× δ[dφ/dt− 2Un− 4n

N
J

(

1− 4n2

N2

)−1/2

cosφ],

× δ[dn/dt+NJ

√

1− 4n2

N2
sinφ]

(23)

with the functional measures Dn =
∏t

τ=t0
dn(τ), Dφ =

∏t
τ=t0

dφ(τ). The delta functionals evaluate the vari-
ables n and φ at each point in time according to the
solution of the equations of motion, with initial values
distributed according to P (n, φ; t0).
For the semiclassical initial state ρ̂(t0), Eq. (15), used

in the quantum simulations in the previous section, the
probability distribution P (n, φ; t0) at initial time was
determined from the Wigner function corresponding to
ρ̂(t0). See Appendix B for details.
Fig. 5 shows the semiclassical evolution of a system

of N = 100 atoms in the previously introduced α-(∆n)2

plane as a (purple) dotted line, under the ramp-up of
J(t)/U(t) given in Fig. 14. The initial classical distribu-
tion was calculated from the density matrix (15) for an
initial temperature T0 = 20 nK using the Wigner func-
tion (B7). This distribution is then evolved in time using
Eqs. (23). The (blue) solid line shows the correspond-
ing quantum evolution as discussed in Sect. III A and
Fig. 3 for the same parameters U(t) and J(t), the same
initial temperature and the same evolution time tmax.
Obviously the semiclassical and the quantum evolutions
are nearly identical. This indicates that dynamics of the
production of squeezing is essentially a classical process.
Nonetheless, the precise shape of the initial probability
distribution as derived from the Wigner function corre-
sponding to the state (15) plays a role as is shown in
more detail in Fig. 6 for the same initial temperature as
in Fig. 5. We plot the difference between the ξ3 obtained
from the semiclassical and the quantum evolutions, nor-
malized to the quantum result, for three different ini-
tial phase-space distributions: An ellipsoidal Gaussian

10−2

10−1

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ 3

α

10−2

10−1

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ 3

α

Quantum evolution

Classical simulation

Adiabatic quantum evolution

FIG. 5: (Color online) Semiclassical evolution ((purple)
dotted line) of the coherence α and the number variance
(∆n)2 = Nξ3/4 for a gas of N = 100 atoms under a slow
ramp-up (tmax = 0.16 s) of U(t)/J(t) as given in Fig. 14. The
(blue) solid line shows the corresponding quantum evolution,
as discussed in Sect. IIIA and Fig. 3 for the same evolution
time tmax and the same time dependent parameters U and J .
The initial temperature is 20 nK as in Fig. 3. The definition
of the shadings was introduced in Fig. 1.

distribution with main-axes widths given by the num-
ber and phase distributions derived from the state (15)
(blue dashed line), a product of the distributions of ini-
tial relative number and coherence derived from Eq. (15)
(red dotted line), and a distribution as given by the full
Wigner function for the state (15) (purple solid line).
The frequency of the oscillations is approximately given
by the plasma frequency in the classical potential and
decreases with increasing U/J . We find that the solution
derived from the Wigner function shows smaller oscilla-
tory deviations from the exact result than that derived
from the Gaussian distribution. The classical simula-
tions starting from the distribution product give an even
smaller deviation. While the distribution product gives
the least deviations during the evolution, the initial-time
value of ξ3 derived from the Wigner function is closest to
the exact result. Its remaining deviation is due to the dis-
crete sampling of the Wigner function. We remark that
the oscillations take place only during the initial adia-
batic decrease of ξ3, see Fig. 3, such that they remain
mostly invisible in the comparisons shown in Fig. 5.

The stronger oscillations of the variance of the Gaus-
sian distribution reflect that the initial Wigner function
which is almost entirely positive, and therefore classical-
like, contains information about non-Gaussian correla-
tions in the initial state. In particular, at lower temper-
atures also quantum effects are expected to play a more
important role which show up in the negativity of the
Wigner function.

In Fig. 7, we illustrate the evolution of the probability
distribution P (n, φ; t), Eq. (23), for N = 100 particles,
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FIG. 6: (Color online) Difference between the ξ3 obtained
from the semiclassical and the quantum evolutions, normal-
ized to the quantum result, for three different initial phase-
space distributions: (Purple) solid line: Wigner function for
the state (15). (Red) dotted line: Product of distributions of
initial relative number and coherence derived from Eq. (15).
(Blue) dashed line: Ellipsoidal Gaussian state with widths
given by these relative number and coherence distributions.
See the main text for a discussion.
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FIG. 7: (Color online) Evolution of the phase-space prob-
ability distribution P (n, φ; t), Eq. (23), between t = 0 (left
panel) and t = 0.68 tmax (right panel) as obtained by classi-
cal simulations according to Eq. (23). White color indicates
P (n, φ; t) ≈ 0 while colors indicate a positive probability. The
initial distribution is derived from a quantum gas of N = 100
atoms at a temperature of T0 = 20nK. The tilt of the fi-
nal phase-space distributions reflects classical correlations be-
tween the generalized position and momentum which reduce
the squeezing in n and are due to the non-adiabatic settling
to a thermal state, see Fig. 5.

for the evolution shown in Fig. 5. The left picture shows
the initial distribution corresponding to the Wigner func-
tion (B7) at t = 0 while the right panel shows P after
t = 0.68 tmax of evolution. The white areas indicate
P (n, φ; t) ≈ 0 while colors according to the colormap in-
dicate an increasing probability. A wide distribution in
either direction reflects large fluctuations of the respec-
tive observable. Given an initial distribution this would

remain unchanged if the parameter U and J remained
constant. Changing, however, these couplings as in the
ramp defined by Fig. 14, i.e., decreasing the φ-dependent
potential term in the Hamiltonian (18), the distribution
P varies as the finite distribution over “momenta” n leads
to an expansion of the distribution in the widened cosine
potential, see Eq. (18). Tuning J to zero allows infi-
nite expansion in the “position” direction φ within the
n-φ phase space. Due to the initial finite distribution in
n, however, classical correlations between n and φ de-
velop, tilting the large-time probability distribution with
respect to the vertical axis as seen in the right panel of
Fig. 7 and keeping the expansion finite. In summary, the
evolution of the system in the experiment [18] can be un-
derstood to a good approximation as classical squeezing
of the phase-space distribution.

C. Quantum statistical squeezing

In the evolution of a weakly interacting quantum gas,
quantum fluctuations to leading order enter through
zero-point fluctuations in the initial state, i.e., they char-
acterize the scattering into empty and out of nearly
empty modes and play little role in the scattering in and
out of strongly occupied modes. In the language of the
path integral this means that the full quantum evolution
is, to a good approximation, given by a classical Liou-
villean propagation of the initial-time Wigner function
which accounts for quantum fluctuations in the initial
state, see, e.g., [33, 34]. Strong interactions have the po-
tential to alter this semi-classical evolution considerably.
However, as is illustrated by our above results, quantum
fluctuations also in this case have only little effect if all
available modes are strongly occupied during the evolu-
tion.
To see distinct effects of quantum fluctuations arising

during the evolution requires a larger number of degrees
of freedom part of which should stay weakly occupied.
Alternatively, one needs to measure observables with a
resolution at the few-particle level. In the two-well po-
tential the effect of quantum fluctuations may be seen
by introducing a tilt such that on the average only a few
particles occupy one of the wells.
In the following we stay with equal populations in the

two modes but consider the variance of the relative parti-
cle number at very low temperatures, where fluctuations
on the order of a few atoms become relevant. At the low
temperatures to be considered the initial state is domi-
nated by the ground state of the Hamiltonian. Driving
the system into the Fock regime allows to move to the
lower left corner in the graph shown in Fig. 1. For an
even total number of atoms the relative number fluctua-
tions between the modes in this regime are strongly re-
duced while the undefined phase allows interferences on
the surface of the Bloch sphere.
Fig. 8 compares the evolution of the exact quantum

((blue) solid line) and semiclassical ((purple) solid line)
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FIG. 8: (Color online) Evolution of the coherence α and
the squeezing parameter ξ3 related to the number variance
through (∆n)2 = Nξ3/4 for a gas of N = 100 atoms un-
der a very slow ramp-up of U(t)/J(t) as given in Eq. (24).
The quantum evolution is represented by the (blue) solid
line while the classical statistical evolution is the (purple)
dotted line. The system starts in the ground state of the
Bose-Hubbard Hamiltonian for NU/J(t0) ≃ 0.16. This corre-
sponds to (∆n(t0))

2 = 24 and α(t0) = 0.993. The total evolu-
tion time is tmax = 10.18 s. The evolution under an adiabatic
change of the parameters U and J , i.e., for 1/τ → 0 is shown
by the (red) short-dashed line. See Fig. 1 and Sect. A 3 for the
definition of the areas allowed by the constraint Heisenberg
and metrology gain limits, distinguished by different shading.

evolutions of a system starting in the ground state of
the Hamiltonian with the ratio of chemical potential over
tunneling rate being NU(t0)/J(t0) ≃ 0.16, for N = 100
atoms. This corresponds to (∆n(t0))

2 = 24 and α(t0) =
0.993. We chose U =const. and an exponential ramp of

J(t)/UN = J(t0)/UN exp{−t/τ} (24)

with J(t0)/UN = 6 and τ = 0.55 s over the period of t <∼
70 s. For a fully adiabatic change of the parameters U and
J , i.e., for 1/τ → 0, the evolution would follow the (red)
short-dashed line which corresponds to the dependence
of (∆n)2 on α in the ground state shown as a (red) solid
line in Fig. 2.
Fig. 8 exhibits significant differences as compared to

the semi-classical evolution shown in Fig. 5 which can be
expressed both in terms of (∆n)2 and α. With respect to
atom number fluctuations, the classical curve approaches
the value (∆n)2 ≃ 0.2 and cannot follow the quantum
one below this limit. Following the adiabatic evolution
for increasing initial temperatures T , we find that the
quantum regime (∆n)2 <∼ 0.2 can only be reached for
T <∼ 20 nK≃ 10UN . With respect to the coherence
parameter α, the classical curve simply approaches zero
indicating a distribution on the Bloch sphere symmet-
ric under S1 ↔ −S1. In this limit, the classical phase
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FIG. 9: (Color online) Evolution of the Wigner function
for an inverse ramp speed τ = 0.55 s, corresponding to the
quantum evolution shown in Figs. 8 and 10. Colors encode the
value of W (n, φ)× 103, see Eq. (B7), with n = (|α|2 − |β|2)/2
and φ = 2arg(α). W is negative in the blue areas. The initial
distribution shown in the upper left panel is derived from the
ground state of the Hamiltonian with J(t0)/NU = 6 for N =
100 atoms. The upper right panel shows the Wigner function
for the number-squeezed state reached at t/tmax = 0.5, with
ξ3(0.5 tmax) ≃ 3 · 10−2, α(0.5 tmax) ≃ 0.86. In the lower
panels we show the Wigner function at t/tmax = 0.75 (left)
and t/tmax = 0.9 (right), i.e. for maximally negative ξ3 ≃
2 · 10−5 at α ≃ −0.02, and maximally negative α ≃ −0.1 at
ξ3 ≃ 2 · 10−4, respectively (cf. Fig. 8). The contour lines help
to show the position of the maxima in |φ| = 0 and |φ| = π,
respectively.

space distribution wraps around the equator of the Bloch
sphere and reflects a completely undetermined relative
phase between the wells.
In contrast, the quantum evolution yields a coherence

which oscillates around zero, corresponding to an asym-
metric distribution of phases. This distribution is ex-
hibited by the Wigner function which we show, for the
time when α is most negative, in Fig. 9. Due to interfer-
ences the Wigner function starts to oscillate as soon as
the phase distribution fully wraps around the equator.
This leads to oscillations both in (∆n)2 and α during
the near-adiabatic time evolution shown in Fig. 8. The
oscillations in (∆n)2 are damped and equilibrate at a
value close to the point where α reached zero for the
first time. In the lower panels of Fig. 9 the Wigner func-
tion is shown for the evolution times t/tmax = 0.75 (left)
and t/tmax = 0.9 (right), i.e. for maximally negative
ξ3 ≃ 2 · 10−5 at α ≃ −0.02, and maximally negative
α ≃ −0.1 at ξ3 ≃ 2 · 10−4, respectively (cf. Fig. 8).
This shows that negative α arises from a maximum of
the Wigner function at n = 0, |φ| = π. Moreover, in
this pure quantum regime of the evolution, W becomes
negative, for all φ, periodically in n, for |n| > 5. The first
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FIG. 10: (Color online) Evolution of the squeezing parameter
ξ3 related to the number variance through (∆n)2 = Nξ3/4
for a gas of N = 100 atoms under a very slow ramp-up of
U(t)/J(t) as given in Eq. (24). The quantum evolution is
represented by the (blue) solid line while the classical statis-
tical evolution is the (purple) short-dashed line. The initial
state and all other parameters are chosen as in Fig. 8. The
evolution under an adiabatic change of the parameters U and
J is shown by the (red) long-dashed line.

minima at |n| ≃ 6 are at the center of the grey zones.
As was shown in Ref. [35] the relative number vari-

ance (∆n)2 in the ground state as a function of the ratio
NU/4J of chemical potential over tunneling coupling,
has the approximate value [51]

ξ3 = 4(∆n)2/N = (1 +NU/4J)−1/2, (25)

in the Josephson regime where the variance is distinctly
smaller than the classical limit, ξ3 ≪ 1, but sufficiently
larger than 1, i.e., whereN−1 ≪ U/J ≪ N , see Sect. A 2.
Fig. 10 shows the dependence of ξ3 = 4(∆n)2/N on

t, on a semi-logarithmic scale, as above for the expo-
nential ramp (24) with τ = 0.55 s. The (red) dashed
line corresponds to adiabatic evolution (τ → ∞) while
the (blue) solid and (purple) short-dashed lines represent
the near-adiabatic quantum and semiclassical evolutions
for τ = 0.55 s, respectively. The adiabatic curve shows
three regimes in each of which log ξ3 varies linearly with
time which correspond to the Rabi, Josephson, and Fock
regimes. The full quantum evolution as shown in Fig. 10
exhibits an oscillatory behavior of ξ3, during which the
squeezing parameter undershoots the adiabatic ground-
state curve and eventually settles to a finite value smaller
than that in the classical limit. Although ξ3 falls below
the value it can reach in an adiabatic ramp, this does
not contradict the Heisenberg limit as is clearly seen in
Fig. 8.
As a contrast we show, in Fig. 11, that squeezing below

the classical limit is not possible for systems with an odd
total number N of particles. In this case, the semiclas-
sical evolution perfectly describes the dynamics of the

10−5

10−4

10−3

10−2

10−1

100

0 0.2 0.4 0.6 0.8 1

ξ 3

Normalised time t/tmax

Quantum evolution
Classical simulation

Adiabatic limit

FIG. 11: (Color online) Evolution of the squeezing parameter
ξ3 related to the number variance through (∆n)2 = Nξ3/4
for a gas of N = 101 atoms under a very slow ramp-up of
U(t)/J(t) as given in Eq. (24). The quantum evolution is
represented by the (blue) solid line while the classical statis-
tical evolution is the (purple) short-dashed line. All other
parameters are chosen as in Fig. 10. The adiabatic evolution
is again shown by the (red) long-dashed line.

formation of squeezing correlations. To see the difference
to the case of an even number of particles one trivially
has to measure the particle number to better than half a
particle.

Taking into account the time evolution (24), our data
confirms the approximate expression (25) in the Joseph-
son regime. In the Fock regime the dependence of ξ3 on
J is approximately given by [35]

ξ3 = 4(∆n)2/N = 4NJ2/U2, (26)

and the transition between the Josephson and Fock
regimes occurs where J/U ≃ 2−4/3N−1.

Considering the non-adiabatic quantum evolution for
J(t)/UN = (J(t0)/UN) exp{−t/τ} we find that ξ3(t)
follows the ground-state dependence as long as the ramp
rate is smaller than the Josephson frequency (A5), 1/τ ≪
ωp. As soon as the decreasing frequency ωp falls below
1/τ the squeezing parameter ξ3 is frozen out at the ap-
proximate value [35]

ξ3 =
√

1 + (πNUτ/2)2 − πNUτ/2. (27)

Fig. 12 shows this limit as a function of the inverse ramp
rate τ . The solid line gives the analytical formula (27)
while the (blue) crosses and (purple) circles correspond
to the asymptotic values for ξ3 determined from a set of
our quantum and semiclassical evolutions, respectively.
Clearly, the semiclassical evolution cannot enter the Fock
regime.
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FIG. 12: (Color online) Final value of ξ3(tmax) obtained after
an evolution time tmax = 18.4τ vs ramp speed τ . The solid
line corresponds to the analytical result in Eq. (27) valid in the
Rabi and Josephson regimes. The (blue) crosses and (purple)
circles are the corresponding final values obtained from a full
quantum evolution and semiclassical evolution of the initial
state, respectively. In the Fock regime which can be reached
for ramp rates 1/τ < 2π s−1 the squeezing becomes stronger
than the classical limit ξ3 ≃ 6 · 10−3.

IV. CONCLUSION

We have studied in detail the production of squeezed
states in an ultracold Bose gas in a double-well trap. The
trapping parameters are chosen as in the experiment [18]
such that at the temperatures considered, the system can
be described by a two-site Bose-Hubbard Hamiltonian.
Following the experimental procedure, the gas is initially
confined by a double-well trap with very weak interwell
barrier such that free tunneling is possible between the
sites. We studied the time evolution of the system un-
der a slow but non-adiabatic ramp-up of the barrier, in
particular with respect to the change in the variance of
the particle number difference between the sites and the
coherence which is related to the expectation value of
the relative phase. In this way a many-body state with
squeezing in the particle number difference, i.e., reduced
variance of this observable at the expense of the variance
of the relative phase, is prepared. Our results confirm
that the squeezing attainable with a finite barrier ramp-
up speed is limited to a value depending on the initial
temperature and the ramp speed. This dependence is
determined by the spectrum of the model Hamiltonian
in which the low-energy states become quasi-degenerate
below a certain ratio of the tunneling rate over the on-site
energy. Once the tunneling is sufficiently suppressed such
that the two lowest states are separated by a frequency
on the order of the inverse ramp rate, the squeezing sat-
urates.

We have formulated the model and dynamic equations
in terms of Bloch angular momentum operators and their

correlation functions to obtain a pictorial description of
the underlying dynamics and exhibit the connection to
spin squeezing. Beyond a qualitative understanding of
the experimental data of Ref. [18] our focus was set on
the distinction between quantum and classical statisti-
cal fluctuations. For this, classical statistical simulations
were conducted and compared to the full quantum evolu-
tion and description in terms of the Wigner function. Our
results show that within the parameter regime realized in
the experiment, the production of squeezing is an entirely
classical process. Squeezing below the classical limit is
possible, however, due to the low degree of degeneracy
in the system, only at significantly lower temperatures
than in experiment. The detection of such squeezing and
quantum correlations requires the measurement of parti-
cle number at the single-particle level. Crucial differences
arise for systems with an even total particle number as
compared to such with an odd number. The results are
readily applicable to other realisations which can be de-
scribed by the model employed. We have shown that in
the regime where quantum fluctuations become relevant,
maximum squeezing is in general not achievable starting
from mixtures of energy eigenstates and invoking adia-
batic parameter changes. We emphasize that our results
may be particularly interesting for mesoscopic dynamics
experiments.
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Appendix A: Bose-Einstein condensate in a

double-well potential

We consider a Bose condensate trapped in a double-
well potential with two energetically degenerate minima
separated by a barrier of variable height, allowing for
an adjustable tunneling rate between the wells. In the
experiment [18] such a potential was formed optically
by counterpropagating laser waves creating the superpo-
sition of standing waves with two different frequencies.
Near the trapping minima the potential can be approxi-
mately described as

Vext(x) = V0 cos(kx) +
1

2
mω2x2 (A1)
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FIG. 13: Trapping potential Vext realised in the experiment
[18] for two different barrier heights before and after an adi-
abatically conducted ramp-up.

Fig. 13 shows the potential form for two different barrier
heights realized in the experiment [18].
In the following we introduce the many-body Hamil-

tonian and review its properties in the parameter regime
chosen in the experiment [18]. We choose the description
in terms of a two-mode model which is applicable at the
low temperatures encountered in the experiment. For
this model, the Hamiltonian can be diagonalised exactly
and the number as well as the conjugate phase distribu-
tion be studied accordingly.

1. Hamiltonian

As in [18], we consider a system of identical bosons,
of mass m, trapped in the one-dimensional potential
Vext(x), Eq. (A1). It is described by the Hamiltonian
[52]

Ĥ =

∫

dx

{

Ψ̂†(x)

(

− ∂2x
2m

+ Vext(x)

)

Ψ̂(x)

+
g

2
Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x)

}

.

(A2)

Here the binary interactions between the particles are
modeled by an effective contact potential Vint(x) = gδ(x),
with the coupling constant being proportional to the s-
wave scattering length a, g = 4πa/m.
Within the single-particle sector, the ground and first

excited states of the Hamiltonian (A2), in the absence
of a barrier (V0 = 0), are the corresponding harmonic
oscillator eigenstates. Raising the barrier adiabatically
these states are transformed into the lowest two energy
eigenstates ψ0(x), ψ1(x) in the double well, both with
amplitudes peaked within the two wells. As for the
harmonic oscillator states, the ground (excited) state
is (anti-)symmetric under the reflection r → −r (see
Fig. 13).
In the experiment [18], the frequency of the harmonic

trap was chosen ω ≃ (2π)5Hz while the amplitude of the

10−2
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FIG. 14: Time evolution of the parameters U(t) and J(t) of
the Bose-Hubbard Hamiltonian as realized in the experiment
[18]. This evolution drives the system from the Rabi to the
Fock regime.

barrier was varied in the range between V0 ≃ (2π)430Hz
and V0 ≃ (2π)3 kHz. Fig. 13 shows the potential in these
limits.
For the maximum temperatures reached in [18], we can

restrict ourselves to a description in terms of a two-site
Bose-Hubbard Hamiltonian

Ĥ = −J(â†1â2 + â†2â1) +
U

2

2
∑

i=1

â†i â
†
i âiâi. (A3)

where the operators âi and â
†
i obey the standard bosonic

commutation relations (2) and where J is the tunnel-
ing and U is the onsite interaction parameter. Solv-
ing the three-dimensional Gross-Pitaevskii equation for
the trapping potential realized in [18] one finds the pa-
rameters U and J as functions of the barrier height be-
tween the wells. They are shown, for the potential dur-
ing the near-adiabatic ramp, in Fig. 14. For potentials
between the limiting cases depicted in Fig. 13 the mini-
mum width of the lowest band of states is obtained in the
limit of large U/J . As will become clear in the follow-
ing subsection, the width in this limit is approximately
UN2/4 ≃ (2π)1.2 kHz, for a total number of particles
N = 100. To estimate the validity of the single-band
model this needs to be compared to the typical tempera-
tures in the experiment which are on the order of 102 nK,
i.e., 10−7Hz.

2. Energy spectrum

In the following we limit ourselves to the canonical en-
semble, with a fixed total number of particles N . A con-
venient basis to express the energy eigenstates of (A3) in

are the Fock number eigenstates of n̂ = (â†1â1 − â†2â2)/2,

n̂|N/2 + n,N/2− n〉 = n|N/2 + n,N/2− n〉, (A4)

with −N/2 ≤ n ≤ N/2. The dimension of the Hilbert
space is N+1. In practice, this allows us to study the en-
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ergy spectrum by diagonalizing numerically the Hamilto-
nian. For the following illustrations we choose a particle
number of N = 100.
Properties of the Hamiltonian (3) and the fragmenta-

tion of a Bose-condensate in a double-well potential have
been discussed in detail before [36–40], and we review
here only the aspects relevant to our discussion. For a
general review see Ref. [41]. See also Refs. [42, 43] for
proposals for the manipulation of number and phase cor-
relations in condensates trapped in a double well. As far
as the form of the spectrum is concerned, three different
regimes can be distinguished by means of the ratio U/J
[44]. In the Rabi regime, U/J ≪ N−1, the system con-
sists of N nearly independent particles. This corresponds
to the non-interacting limit. In the Josephson regime,
N−1 ≪ U/J ≪ N , atom number fluctuations are small
and coherence is high. This is called the classical regime
as eigenstates are described by predominantly positive
Wigner functions with widths near the standard quan-
tum limit. The Fock regime, N ≪ U/J , is dominated by
the interaction energy U , thus the atom number in each
well is well defined. Reduced number fluctuations and
other non-classical effects appear in the Fock regime.
In the Rabi regime, the spectrum consists of a series

of equally spaced states with a level spacing of ωp where
the plasma frequency ωp is given by

ωp =
√

2J (NU + 2J) (A5)

Increasing U/J beyond 1/N introduces an approximately
quadratic part to the spectrum for energies E >∼ 2NJ ,
for which

Ei ≃ NJ +
U

4
i2. (A6)

In the Fock regime only quasi-degenerate pairs of states
remain, forming an approximately quadratic spectrum.
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FIG. 16: Distribution of the relative particle number n =
(n1 − n2)/2 in three different eigenstates of the Hamiltonian
in the Josephson regime, U/J = 1, for N = 100 particles. For
the states with odd i, the coefficients are odd under n → −n,
and vice-versa for the even-i states.

It was shown in Ref. [45] that the splitting between these
quasi-degenerate states vanishes with 1/N !.
Fig. 16 shows the occupation number distribution |cn|2

of three different energy eigenstates |Ei〉 in the Fock basis
|n〉 = |N/2 + n,N/2− n〉 defined in Eq. (A4),

|Ei〉 =
N/2
∑

n=−N/2

cn,i|n〉. (A7)

We find that the coefficients of the ground state are well
approximated by a Gaussian centered around n = 0, re-
flecting its semiclassical nature.
The first exited state has a wider distribution around

the same mean value. Since it must be an antisymmetric
state, one has c1,0 = 0. The higher excited states show
an increasingly wider distribution around i = 0 with an
increasing number of “nodes” in cn,i.
In the Fock regime, U/J > N , all states are quasi

twofold degenerate. In this regime, there is no longer
any contribution near n = 0. A gap opens up in the
distribution |cn,i|2 which increases towards larger i. In
the limit U/J → ∞ the highest excited state,

|EN+1〉 =
1√
2
(|N, 0〉+ |0, N〉) . (A8)

is cat like. Note, however, that excitation of the double-
well system up to |EN+1〉, e.g., at higher temperatures,
easily exceeds the validity of the single-band approxima-
tion.

3. Angular-momentum representation

In many-body quantum physics, number and phase
are a particular type of conjugate variables which ful-
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fill a Heisenberg-type uncertainty relation. We discuss,
in this subsection, the representation of the Hamiltonian
in terms of number and phase operators and review dif-
ferent measures of squeezing. The uncertainty relation
allows us to derive fundamental limits for the respective
squeezing parameters.
The relation between number and phase can be most

conveniently visualised on the Bloch sphere, i.e. in terms
of the Schwinger representation [46] of the SU(2) sym-
metry group,

Ŝk =
1

2

2
∑

i,j=1

â†iσ
k
ij âj , k = 1, 2, 3, (A9)

where σk is the Pauli k-matrix. As a consequence of
the commutation relations (2), the operators Ŝi form the
fundamental representation of the angular momentum al-
gebra, with

[Ŝk, Ŝl] = iεklmŜm, (A10)

εklm being the total antisymmetric tensor of rank 3.
These commutation relations give rise to a set of un-
certainties relations that determine lower bounds for the
fluctuations of the observables,

(∆Sk)
2(∆Sl)

2 ≥ 1

4
|ǫklm〈Ŝm〉|2. (8’)

with (∆Sk)
2 = 〈(Ŝk − 〈Ŝk〉)2〉. In this representation

the two-mode states with fixed total particle number N
can be written as angular momentum states |S, S3〉 with
S = N/2, S3 = n. The Hamiltonian (A3) in this repre-
sentation is given in Eq. (3).

Appendix B: Wigner function of two-mode states

The Wigner function of a two-mode system can be cal-
culated from its definition

W (α, β) =
1

π4

∫

d2λd2µCS(λ, µ)e
αλ⋆−α⋆λeβµ

⋆−β⋆µ,

(B1)
where CS is the symmetrically ordered characteristic
function, which one obtains as follows [47]. See also
Ref. [48] for a detailed discussion of two-mode Wigner
functions on the Bloch sphere. First, the Q-function

Q(α, β) =
1

π2
〈α, β|ρ̂|α, β〉 (B2)

is determined as the expectation value of the density ma-
trix ρ̂ with respect to the two-mode coherent state

|α, β〉 = e−(|α|2+|β|2)/2
∞
∑

i,j=0

αiβj

√
i!j!

|i〉l|j〉r. (B3)

The antinormally ordered characteristic function is then
obtained by Fourier transforming the Q-function,

CA(λ, µ) =

∫

d2α d2β Q(α, β) eλα
⋆−λ⋆αeµβ

⋆−µ⋆β . (B4)

The symmetrically ordered characteristic function is fi-
nally calculated using the Baker-Campbell-Hausdorff re-
lation, leading to

CS(λ, µ) = CA(λ, µ) e
(|λ|2+|µ|2)/2, (B5)

and from this the Wigner function by use of Eq. (B1).

Applying this procedure and using the representation
of the density matrix in the Fock basis (A4), |n〉 = |N/2+
n,N/2− n〉,

ρnm = 〈n|ρ̂|m〉, (B6)

we arrive at

W (α, β) =
41−N

π2

N
∑

n,m=0

ρnm
√

n!m!(N − n)!(N −m)!

× Ωnm(α)ΩN−n N−m(β)e−2(|α|2+|β2|),

(B7)

with

Ωnm(α) =

n
∑

k=0

(

n

k

) m
∑

l=0

(

m

l

)

(−1)kik+l

× Hk+l(2 Imα)Hn+m−(k+l)(2Reα).

(B8)

where Hn(x) is the nth Hermite polynomial. Eqs. (B7)
and (B8) show that W is real if ρ is hermitian.

As we only consider closed systems, the dependence
of W on the absolute phase of the two modes is irrele-
vant. We therefore need to evaluate W only for different
relative phases φ, choosing, e.g.,

α = |α|eiφ/2, β = |β|e−iφ/2. (B9)

Taking furthermore into account that the total number
of particles N = |α|2 + |β|2 is fixed reduces the number
of free arguments ofW to two, the quantities n = (|α|2−
|β|2)/2 and φ = 2arg(α).
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O. Français, and L. Rousseau, Phys. Rev. Lett. 97,
133601 (2006).

[11] K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Ad-
hikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein,
and N. Mavalvala, Nature Phys. 4, 472 (2008).

[12] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda,
and M. A. Kasevich, Science 291, 2368 (2001).

[13] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch,
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