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Einstein, Podolsky & Rosen (EPR) pointed out [1] that correlations induced between quantum
objects will persist after these objects have ceased to interact. Consequently, their joint continu-
ous variables (CV), e.g., the difference of their positions and the sum of their momenta, may be
specified, regardless of their distance, with arbitrary precision. EPR correlations give rise to two
fundamental notions[2–6]: nonlocal “steering” of the quantum state of one object by measuring the
other, and inseparability (entanglement) of their quantum states. EPR entanglement is a resource of
quantum information (QI)[6–8] and CV teleportation of light[9, 10] and matter waves[11, 12]. It has
lately been demonstrated for collective CV of distant thermal-gas clouds, correlated by interaction
with a common field [13, 14]. Here we demonstrate that collective CV of two species of trapped
ultracold bosonic gases can be EPR-correlated (entangled) via inherent interactions between the
species. This paves the way to further QI applications of such systems, which are atomic analogs of
coupled superconducting Josephson Junctions (JJ)[15, 16]. A precursor of this study has been the
observation of quantum correlations (squeezing) in a single bosonic JJ [17].

EPR criteria – In studying continuous variable en-
tanglement (CVE), it is instructive to draw an analogy
with the original EPR scenario [1], wherein two particles,
1 and 2, are defined through their position and momen-
tum variables x1,2, p1,2. EPR saw as paradox the fact
that depending on whether we measure x1 or p1 of par-
ticle 1, one can predict the measurement result of x2 or
p2, respectively, with arbitrary precision, unlimited by
the Heisenberg relation ∆x2∆p2 ≤ 1/2 (choosing h̄ = 1).
This nonlocal dependence of the measurement results of
particle 2 on those of particle 1 has been dubbed “steer-

ing” by Schrödinger[18]. Equivalently, the EPR state is
deemed entangled in the continuous translational vari-
ables of the two particles. The entanglement is exhibited
by the collective operators x̂± = x̂1±x̂2 and p̂± = p̂1±p̂2.
In quantum optics these variables are associated with the
sum and difference of field quadratures of two light modes
mixed by a symmetric beam splitter [6, 19] (Fig. 1a).
In order to quantify the EPR correlations, one may

adopt two distinct criteria. The first criterion imposes
an upper bound on the product of the variances of EPR-
correlated commuting dimensionless operators, x̂+ and
p̂− or x̂− and p̂+ [7, 11]:

〈∆x̂2
±〉〈∆p̂2∓〉 ≡

1

4s
≤ 1

4
, (1)

The EPR correlation is then measured by the two-mode
squeezing factor ∞ > s > 1. The second is the insepara-
bility (entanglement) criterion for gaussian states [8, 14],
related to the sum of the variances of the correlated ob-
servables ǫ ≡ 〈∆x̂2

±〉 + 〈∆p̂2∓〉 − 1 < 0. Here the max-
imal entanglement corresponds to the most negative ǫ
obtainable. In what follows we inquire: to what extent
do these EPR criteria apply to the system at hand, i.e.,
a two-species BEC in a symmetric double-well potential?
Scheme for global-mode EPR correlations in bosonic

JJs – We first consider the correlation dynamics of the
two species (two internal states of the atom), in the pres-

ence of tunnel coupling between the wells. We shall an-
alyze the EPR correlations in the basis of two global
internal-state modes that are not spatially separated be-
tween the two wells.
Since there is no population exchange between the in-

ternal states |A〉 and |B〉, the numbers of atoms NA

and NB in these states are constants of motion. The
Hamiltonian (Supplement) can be then written in this
basis in terms of the left-right atom-number differences

in the two internal states, n̂A =
(

â†LâL − â†RâR

)

/2 and

n̂B =
(

b̂†Lb̂L − b̂†Rb̂R

)

/2, and their canonically conjugate

phase operators φ̂A,B, obeying the commutation relations
[

φ̂α, n̂α′

]

= iδαα′ (α, α′ = A,B). For simplicity we as-

sume from now on that NA = NB ≡ N (generalization
to NA 6= NB is straightforward), and consider small in-
terwell number differences such that 〈n̂A,B〉 << N . The
Hamiltonian[20] then becomes

H = (Ec)AAn̂
2
A + (Ec)BB n̂

2
B + 2(Ec)ABn̂An̂B

− JN
(

cosφ̂A + cosφ̂B

)

+
2J

N

(

n̂2
Acosφ̂A + n̂2

Bcosφ̂B

)

.(2)

Here the nonlinearity coefficients (“charging” energies)
(Ec)AA, (Ec)BB and (Ec)AB are determined respectively
by the intra- and inter-species s-wave scattering lengths.
The tunneling energy J is the same for the atoms in the
internal states |A〉 and |B〉.
Equation (2) displays the full dynamics used in our nu-

merics (Fig. 1), that of two quantum nonlinear pendula
coupled via 2(Ec)AB n̂An̂B. This coupling is the key to
EPR correlations of modes A and B.
We may, for didactic purposes, simplify (2) by expand-

ing the cosine terms. In the lowest-order approxima-

tion cosφ̂A,B ≃ 1 − φ̂2
A,B/2, the system is described by

two coupled harmonic oscillators. This suggests that the
system under study can indeed satisfy the entanglement
or two-mode squeezing criteria, if the relevant collective
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variables in our system are mapped onto those of two
field modes mixed by a symmetric beam splitter

n̂± =
1√
2
(n̂A ± n̂B) ↔ x̂±,

φ̂± =
1√
2

(

φ̂A ± φ̂B

)

↔ p̂±. (3)

Using the collective variables defined in (3), we can
rewrite Eq. (2) in the harmonic approximation, assuming
(Ec)AA ≃ (Ec)BB = Ec, as:

Ĥ =

(

Ec + (Ec)AB +
2J

N

)

n̂2
+ +

JN

2
φ̂2
+

+

(

Ec − (Ec)AB +
2J

N

)

n̂2
− +

JN

2
φ̂2
−. (4)

Hence, the transformed Hamiltonian describes two un-

coupled harmonic modes in the collective basis. The “+”-
mode corresponds to Josephson oscillations of the total
atomic population (regardless of the internal state) be-
tween the two wells, such that the inter-species ratio in
each well is constant (in-phase oscillations of the A,B
species). The “-”-mode corresponds to oscillations of the
inter-species ratio between the two wells, such that the
total population imbalance does not change (out-of-phase
oscillations of the 1, 2 species). These two modes have
different fundamental frequencies, ω± (see Supplement).
We may then wonder: do the EPR correlation cri-

teria hold in the uncoupled (± modes) basis? Indeed,
they do: for (Ec)AB > 0 Eqs. (1),(3),(4) allow the ±
modes to satisfy the EPR criteria, yielding s = [(2J/N +
Ec + (Ec)AB)]/[(2J/N +Ec − (Ec)AB)]. We then obtain
s >> 1 for Ec ≃ (Ec)AB >> 2J/N and the ground states
of both modes, approaching the ideal EPR limit s → ∞
of full CV entanglement. Thus, the fact that there is cou-
pling between the original (A and B) modes suffices to
create EPR correlations between the collective ± modes,
although there is no coupling in the latter basis.
Beyond the lowest-order approximation that has led to

(4), there is parametric coupling of the collective modes
that may induce nontrivial dynamics of CV wavepackets:
the slow, −, mode can be “frozen” at a low-temperature
state, while the fast, +, mode may be kept at its ground
state, conforming to the Born-Oppenheimer coupling
regime (see Supplement). The occupations of thermally
excited + mode states must be low compared to its
ground state, in order to satisfy the EPR criteria (see
Supplement).
For exact calculation of the dynamics we must resort

to the angular momentum operators that describe the
full system (Supplement). The entanglement criterion is
then[14]

1

|〈L̂x〉|2
(

〈∆L̂2
y±〉〈∆L̂2

z∓〉
)

≡ 1

4s
<

1

4
. (5)

This entanglement criterion differs from those used for
the number-phase operators only for significant nonlin-
ear phase diffusion, which reduces |〈L̂x〉| compared to 1

and thus diminishes the ideal limit of s. Since such phase
diffusion occurs due to the interatomic (nonlinear) inter-
action, which is also responsible for the entanglement,
one needs to find the optimal charging energies in (2)
and state-preparation that would yield the largest EPR
correlations (see Methods).

The optimal sudden sequence for state preparation
consists of (Fig. 1a): (a) filling the original trap by a
BEC in internal state |A〉; (b) sudden ramping up of
the inter-well potential barrier, thus creating a two-well
symmetric superposition; (c) transforming state |A〉 into
a symmetric superposition of |A〉 and |B〉 by a fast π/2
pulse. This sequence yields an initial coherent state in the

two original modes A,B, whose EPR entanglement then
builds up with time according to their coupled-pendula
dynamics (Eq. (2)). By contrast, slower ramping up of
the barrier causes them to be exposed to both nonlinear
phase diffusion and environment-induced dephasing (see
below) much longer, thus spoiling the entanglement crite-
rion (5) (Fig. 1(b),(c)). We find an optimal value for the
charging energy which results in the largest amount of
EPR correlations, closest to the ideal inseparability (ob-
tainable in the absence of nonlinear phase diffusion and
for the ground-state of the coupled two-mode system).

We note that it is not advantageous in this scheme to
create a single-mode squeezed state in each well as an ini-
tial condition. Intuitively, this is due to the fact that such
squeezing does not translate into correlations between the
wells, and thus does not induce reduced variances of the
two-mode coordinates. In more detail, an initial coher-
ent state provides minimal non-correlated variances in

the combined variables 〈∆L̂y±〉〈∆L̂z±〉/
∣

∣

∣
〈L̂x〉

∣

∣

∣

2

= 1/4.

In comparison, an initial single-mode squeezed state in
each well, which is squeezed along the same quadrature,
would not improve on this variance product. Finally, ini-
tial single-mode squeezed states of different quadratures
would result in a larger variance product, thus limiting
the two-mode squeezing reachable through the dynamics
described above (see Suppl).

Scheme for local-mode correlations and “steering” in

bosonic JJs – We now present an approach based on
correlations of two squeezed local (left- and right- well)
modes (Fig. 2(a). The system is initialized in the left well
(L) of a double-well potential, in a single internal state
(1). Then, the barrier is suddenly dropped in order to
create a coherent superposition of the vibrational ground-
state |g〉 and first excited state |e〉 of the new potential.
Next, a π/2 pulse creates a coherent superposition of the
internal states A,B of the atoms.

We assume that there is no exchange term, since to
lowest order the cross-coupling terms cancel, and there-
fore the number of particles in each external state is con-
served. This conservation allows us to rewrite the Hamil-
tonian in terms of the internal-state number difference
operator in each vibrational state, n̂g = (n̂g)A − (n̂g)B
and n̂e = (n̂e)A− (n̂e)B . The Hamiltonian then becomes
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FIG. 1: (a) State preparation scheme: the condensate is split
both in real-space and in the internal-state basis, to create
two-coupled modes. Then entanglement dynamics take place
as a function of time, and the measurement is done in the
collective beam-splitter basis. (b)-(c) Dynamics of the entan-
glement defined by EPR criteria for both sudden and slow
intermode coupling barrier ramping-up, found through ex-
act simulation of Eq. (1) in the Supplement. In each fig-
ure we plot the case of a coupled system (Ec12 = Ec, solid
blue), an uncoupled system (Ec12 = 0, solid green), slow
ramp-up (solid black) and the classical limit (solid red). The
tradeoff between entanglement and nonlinear phase diffusion
is better for the sudden coupling. (d) Maximal amount of
entanglement (blue dash-dotted line) reached through the
dynamics, measured by the inseparability criterion in Eq.
(5). We plot the maximal inseparability as a function of
the charging energy, assuming that all coefficients are equal
(Ec)AA = (Ec)BB = (Ec)AB ≡ Ec[21, 22]. It can be seen
that for small charging energy Ec the entanglement grows,
but stronger interactions cause significant nonlinear phase
diffusion, and therefore reduce the EPR correlations. From
the competition between charging-induced entanglement and
charging-induced nonlinear phase diffusion, we find the charg-
ing energy which gives maximal entanglement (see Methods).
Red-dashed line indicates the separability limit, green-solid
line indicates maximal inseparability for the ideal case (see
text).

(see Supplement):

Ĥ = ((Ec)AA + (Ec)BB − 2(Ec)AB)
(

n̂2
g + n̂2

e

)

. (6)

Thus, the system evolves separately in the two vibrational
modes, each undergoing dynamical single-mode squeez-
ing in the internal-state basis[23, 24]. Such internal-state
squeezing in each mode was demonstrated recently [17].
Following an evolution during which each vibrational

mode separately experiences internal-state squeezing, we
raise the barrier quickly to create two separate symmet-
ric wells, denoted L (left) and R (right). This sudden
projection creates a BS-like transformation:

|L〉 =
1√
2
(|g〉+ |e〉) ,

|R〉 =
1√
2
(|g〉 − |e〉) . (7)

Therefore, we now have two-mode squeezing, or EPR-
like entanglement, between the left and right wells. The
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FIG. 2: (a) Schematic sequence for the creation of “non-local”
two-mode entanglement in analogy with the BS approach. (b)
Single-mode squeezing dynamics as a function of time, for
N = 100. Decoherence effects: the variance of n+ (c) and
of φ

−
(d) as a function of time, in the presence of proper

dephasing. We subtract the variance of the Hermitian dy-
namics (without dephasing) in order to single-out the effect
of dephasing on the dynamics of the variances. The coherence
time is here estimated to be ∼ 100 ms at 20 nK.

mode in each well is defined by the number and phase dif-
ferences of the internal states. Local measurements may
be done in the internal-state basis in each well separately,
exhibiting non-classical correlations between the |L〉 and
|R〉 spatially separated modes, in the spirit of “steering”.
The scheme presented above is analogous to the quan-

tum optics approach[6], in which two independent single-
mode squeezed states are injected into the input ports of
a beam splitter (BS), thereby creating entangled modes
at the output ports of the BS. However, the intrinsic

nonlinearity of each BEC mode causes their unwarranted
mixing even before the BS-like transformation, causing fi-
delity loss (see Methods).
In this sequence we wait for the maximal single-mode

squeezing to develop separately, before raising the barrier
to project the |g〉 and |e〉 states onto the |L〉 and |R〉
basis. Therefore, we can immediately use the maximal
squeezing factor s calculated for each single-mode[6], to
extract the two-mode squeezing parameter. Then the
collective two-mode squeezing is given by

〈∆n̂2
+〉 = 〈∆(n̂L + n̂R)

2〉 =

〈

∆
(

n
(0)
+

)2
〉

s
,

〈∆φ̂2
−〉 = 〈∆

(

φ̂L − φ̂R

)2

〉 =

〈

∆
(

φ
(0)
−

)2
〉

s
, (8)

namely, the two-mode squeezing parameter is equal to
that of single-mode squeezing. This squeezing parame-
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ter now characterizes the knowledge obtained about vari-
ables in one well having measured their counterparts in
the other well.
Decoherence effects – We now turn to the effect of

environment-induced decoherence on the robustness of
EPR entanglement in this system. We assume proper
dephasing created by independently fluctuating (stochas-
tic) energy shifts of atoms in each internal state and well
1(2)l(R), caused by the thermal atomic or electromag-
netic environment. Due to the spectroscopic similarity of
the two BEC species, we reduce the number of indepen-
dent stochastic processes by setting ǫ1L/ǫ2L = ǫ1R/ǫ2R =
(1− ξ) / (1 + ξ), and assuming a ”symmetrized environ-

ment”, i.e. ξ << 1. Due to the small value of ξ, the vari-

ance of φ̂− almost does not change (in either the global or
local scheme), while the variance of n̂+ increases linearly,
and is responsible for the growing loss of entanglement.
Hence, we may manipulate the system as we see fit within
the coherence time.

Discussion – We have addressed EPR effects in an
ultracold-atom analog of two coupled Josephson junctions
(JJs): a two-species Bose-Einstein condensate (BEC),
each species corresponding to a different sublevel of the
atomic internal ground state [25], trapped in a tunnel-
coupled double-well potential (Fig. 1a). We have shown
that such bosonic coupled JJs can induce EPR entan-
glement of appropriate combinations of collective contin-
uous (phase and atom-number) variables. This entan-
glement has been shown to be resilient to environmen-
tal noise (decoherence). It exhibits intriguing dynam-
ics under conditions analogous to the molecular Born-
Oppenheimer regime for coupled slow and fast variables
[26]. Alternatively, it can dynamically realize beam-
splitter mixing of two squeezed modes.

We acknowledge the support of GIF, DIP and EC (MI-
DAS STREP, FET Open), and the Humboldt Founda-
tion (G.K.).
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