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We experimentally investigate the mixing/demixing dynamics of Bose-Einstein condensates in the presence
of a linear coupling between two internal states. The observed amplitude reduction of the Rabi oscillations can
be understood as a result of demixing dynamics of dressed states as experimentally confirmed by reconstructing
the spatial profile of dressed state amplitudes. The observations are in quantitative agreement with numerical
integration of coupled Gross-Pitaevskii equations without free parameters, which also reveals the criticality of
the dynamics on the symmetry of the system. Our observations demonstrate new possibilities for changing
effective atomic interactions and studying critical phenomena.
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Critical phenomena appear in many areas of physics includ-
ing phase transitions [1] and nonlinear dynamical systems [2].
Their experimental study requires a high level of control in or-
der to quantitatively compare with theoretical predictions.

Multi-component Bose gases featuring miscibility-
immiscibility transitions are prototypical systems for the
investigation of critical phenomena due to unprecedented
experimental control of the relevant parameters. Early exper-
iments with Bose-Einstein condensates revealed demixing
as well as mixing dynamics of two [3] and three-component
[4] quantum fluids. In the latter, even spontaneous symme-
try breaking and the corresponding pattern formation has
been observed [5, 6]. While these experiments have been
performed with fixed interaction between the components,
atomic systems also allow for the control of the interspecies
interaction strength via a Feshbach resonance. This has
enabled experiments, that clearly demonstrate miscibility-
immiscibility transitions [7] and study the two-component
dynamics in detail [8–10]. An alternative approach for
the control of interaction properties and the corresponding
dynamics in one-dimensional systems has been demonstrated
using state-selective transversal confinement [11]. Recently it
has been shown, that the miscibility characteristics of spinor
gases can be changed using Raman coupling [12].

In the present letter, we experimentally investigate the the-
oretically predicted miscibility properties of two spin states
in a Bose-Einstein condensate in the presence of linear cou-
pling [13–15]. We report on the experimental observation of
the demixing dynamics of the relevant spin states, i.e. dressed
states. The (im)miscibility of the system manifests itself in the
amplitude of the Rabi oscillations, which is given by the spa-
tial overlap of the corresponding dressed states. Employing
both sides of an interspecies Feshbach resonance, the misci-
ble and immiscible regime of the uncoupled two-component
system is accessible allowing to contrast the mixing/demixing
dynamics to the coupled situation. As shown in the right panel
of Fig. 1 the amplitude of the Rabi oscillations drops in the
miscible regime (top) and remains close to unity for immisci-
ble parameters (bottom). These observations indicate a rever-
sal of the miscibility in the presence of a strong linear coupling
field.
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FIG. 1. (color online) Rabi oscillations between two hyperfine states
of rubidium atoms in the miscible (upper row) and immiscible (lower
row) regime of the atomic states. Counter-intuitively the spatially av-
eraged oscillation amplitude is reduced in the miscible regime while
it remains close to unity for several hundred cycles in the immisci-
ble case. The false color images contrast the corresponding density
distributions of the two components with/without linear coupling in-
dicating that the reduction in amplitude is due to a spatially inhomo-
geneous phase of the oscillations leading to a variation in the atomic
densities at the given time. The different transversal extension of
the atomic clouds results from state selective imaging leading to dif-
ferent time-of-flights of the two components. The lines represent the
corresponding amplitudes of numerically simulated Rabi oscillations
without free parameters.

Before we go into the quantitative discussion of our obser-
vations, we provide more details about our experimental sys-
tem. We prepare a Bose-Einstein condensate of about 4400
87Rb atoms in the hyperfine state |1〉 = |F = 1,mF = 1〉
of the ground state manifold confined in an optical dipole
trap. Resonant two-photon combined radio-frequency and mi-
crowave radiation coherently couples the two hyperfine states
|1〉 and |2〉 = |2,−1〉with a Rabi frequency ΩR = 2π ·525 Hz
at a detuning of 2π · 200 kHz below the intermediate |2, 0〉
level. The respective intra- and interspecies s-wave scatter-
ing lengths of |1〉 and |2〉 in units of the Bohr radius are
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(a11, a22, a12) = (95.0, 100.4, 97.7) aB [8] leading to a sys-
tem close to the miscibility-immiscibiliy threshold a212 =
a11a22 [16, 17]. Utilizing a Feshbach resonance at B =
9.10 G [18, 19] we tune a12 into the miscible (B = 9.17 G,
a12 ≈ 94aB) and immiscible regime (B = 9.03 G, a12 ≈
102aB) [10]. Three-body recombination and spin relaxation
losses in |2〉 result in a 1/e-lifetime of 310 ms for both mag-
netic field settings. The quasi one-dimensional confinement
with trapping frequencies (ωx, ω⊥) = 2π · (22, 460) Hz al-
lows for spatial demixing dynamics only along the longitudi-
nal trap axis. The transverse degrees of freedom are frozen
because the spin healing length in the trap center ξs ≈ 1.2µm
is comparable to the transversal extension of the wavefunc-
tion of approximately 1.1µm. Consecutive absorption imag-
ing (delay of 780µs) with high spatial resolution (1.1µm) al-
lows for observation of the atomic density in both hyperfine
states for each experimental realization.

For a quantitative analysis of the observed amplitude char-
acteristics of the Rabi oscillations we theoretically model the
dynamics of the wavefunctions of our experimental system,
ψ1 and ψ2, by two coupled Gross-Pitaevskii equations includ-
ing the linear coupling and atom number loss [8, 15, 20].

i~
∂

∂t
ψ1 =

[
− ~2

2m
∇2 + V + g11|ψ1|2 + g12|ψ2|2

−i~
2

(
Γ11|ψ1|2 + Γ12|ψ2|2

)]
ψ1 −

~ΩR
2

ψ2

i~
∂

∂t
ψ2 =

[
− ~2

2m
∇2 + V + g22|ψ2|2 + g12|ψ1|2

−i~
2

(
Γ22|ψ2|2 + Γ12|ψ1|2

)]
ψ2 −

~ΩR
2

ψ1

(1)

where 2π~ is Planck’s constant, V the external potential, m
the atomic mass and ΩR the Rabi frequency. For the inter-
action parameters gij =

4π~2aij
m and loss coefficients Γij

of 87Rb we use the values given in [8]. Since our confine-
ment is quasi one-dimensional, we employ the nonpolynomial
Schrödinger equation (NPSE) [21] instead of the full three-
dimensional description. We numerically integrate the NPSE
without free parameters to simulate the full Rabi oscillation
dynamics. In Fig. 2 we compare the predicted amplitude with
the experiment, where we deduce this value by extracting the
maximum observed amplitude in a time window of one Rabi
period and averaging over ten such cycles. The error bars cor-
respond to 1-s.d. statistical uncertainties of the mean value.
While we find very good agreement in the immiscible regime
of the atomic states with the experimental data, these simula-
tions do not correctly capture the observed amplitude reduc-
tion in the miscible regime.

We attribute the deviation of the NPSE predictions from
the experimental data in the miscible regime to a spatial de-
pendence of the linear coupling strength ΩR(x). We exper-
imentally probe this by adding an optical standing wave po-
tential with a lattice period of 5.5µm, which splits the elon-
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FIG. 2. (color online) Quantitative comparison of numerical sim-
ulations with experimental observations in the immiscible (orange
squares) and miscible (red circles) regimes of the atomic states re-
vealing the criticality of the dynamics. The dashed lines display the
result of numerical computations of the full Rabi dynamics. The cor-
responding dressed state density profiles reveal symmetric demixing
as displayed in the upper right inset. The experimentally observed
amplitude (solid circles and squares) is only captured if the linear
gradient of the Rabi frequency (2π · 0.94Hz/10µm) is taken into
account (solid lines), indicating the criticality of the phenomenon.
The gradient has been independently characterized through a local
measurement of the Rabi frequency in a lattice as depicted in the left
inset. The associated symmetry breaking can be seen in the density
distribution of the dressed states (lower right inset).

gated condensate into eight independent lattice sites. Mea-
suring the local resonant Rabi frequency in each site we find
a gradient κ ≡ ∇ΩR(x) ≈ 2π · 0.94 Hz/10µm along the
longitudinal trap axis due to a slightly inhomogeneous radio-
frequency field (inset of Fig. 2). Using Ramsey spectroscopy
in the lattice sites, we independently checked that this spa-
tial variation in ΩR(x) does not result from a local detun-
ing, e.g. due to magnetic field gradients, which amounts for
∇Ωeff

R (x) < 2π · 0.001 Hz/10µm. When including this gradi-
ent κ in the simulations, very good agreement with our exper-
imental data is found (solid lines in Fig. 1 and Fig. 2).

In order to provide an intuitive explanation for our obser-
vations, we introduce dressed states |+〉 = 1√

2
(|1〉+ |2〉) and

|−〉 = 1√
2
(|1〉−|2〉). These states are eigenstates of the linear

coupling Hamiltonian with eigenenergies ±~
2ΩR. In this pic-

ture, resonant Rabi oscillations between atomic states are the
result of an interference between equally populated dressed
states. The amplitude of the Rabi oscillations is thus given by
the spatial overlap of the dressed states [14].

The spatial dynamics of the dressed states results from their
effective interaction as can be seen by rewriting the equations
of motion (Eq. 1) in this basis. With that, the linear coupling
terms vanish and the atomic scattering lengths a11, a22, a12
are replaced by effective dressed state scattering lengths
a++ = a−− = 1

4 (a11 +a22 +2a12) and a+− = 1
2 (a11 +a22)

[13, 14]. Thus, the slow dynamics of the Rabi oscillation am-
plitude (see Fig.1) can be understood as mixing/demixing dy-
namics of the dressed states. The condition for their stability
against demixing reads a2+− < a++a−− , which in the bare
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state basis corresponds to a12 > 1
2 (a11 + a22). Thus, for

equal intraspecies scattering lengths a11 = a22, which is a
good approximation for 87Rb, the miscibility conditions for
bare and dressed states are mutually exclusive - dressed states
are immiscible where bare states are miscible and vice versa.

Numerical simulations provide access to the bare state
wavefunctions allowing for direct calculation of the spatial
dressed state profiles. In the immiscible regime of the dressed
states, ignoring the gradient in the coupling strength leads to
spatially symmetric component separation (top right inset of
Fig. 2). However, the gradient in the linear coupling strength
breaks the symmetry leading to biased antisymmetric demix-
ing (bottom right inset of Fig. 2). This can be understood as
a result of an additional linear potential with opposite slopes
for the two dressed states, V± = V ± ~

2κx, resulting in an
equal but opposite shift of their effective potential minima by
±11 nm. The qualitative change in the demixing dynamics of
the dressed states in response to a small perturbation of the
unbiased symmetric configuration demonstrates the criticality
of this phenomenon. In contrast, in the miscible regime of the
dressed states, the effect of the gradient in coupling strength is
small as demonstrated by the persistent spatial overlap of the
dressed states during the time evolution.

In order to reconstruct the density profiles of the dressed
states from the experimental data we analyze the Rabi os-
cillations at t=190 ms spatially resolved. Sinusoidally fitting
the local Rabi oscillations yields their local amplitude A(x)
and phase φ(x). The relative phase of the dressed states is
directly given by the fitted phase φ(x) of the Rabi oscilla-
tions. Their amplitude profiles can be inferred using A(x) =
| sin(2α(x))|, with α being the local mixing angle of a su-
perposition of dressed states cosα|+〉+ sinα exp(iΩRt)|−〉.
Due to the π/2 periodicity of A in α it is not possible to un-
ambiguously assign the calculated amplitudes to the dressed
states. However, using the fact that a phase jump of π corre-
sponds to a node in the amplitude of one of the dressed states
and assuming approximately equal populations of the two
components, the probability amplitude profiles of the dressed
states can be reconstructed.

The result of the reconstruction for the immiscible regime
of dressed states (B = 9.17 G) is shown in the left panel of
Fig. 3. The edge of the atomic cloud oscillates out of phase
with the center as can be seen in Fig. 3(a) resulting from phase
separation of dressed states (Fig. 3(c)). On the contrary, in
the miscible regime of dressed states (B = 9.03 G) neither
amplitude nor phase of the Rabi oscillations vary in space
(right panel of Fig. 3). There, the spatial overlap of the in-
ferred dressed state profiles is only slightly decreased by the
gradient in coupling strength demonstrating the miscibility of
the dressed states and confirming that the gradient in the linear
coupling strength is only a small perturbation. The difference
of ≈ 4µm in the maxima of the dressed state densities is in-
creased compared to the shift of the effective potentials due
to the remaining repulsive interactions between the miscible
dressed states. Due to the lower atom density at the edge of
the atomic cloud the fit results show increased noise. Using
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FIG. 3. (color online) Reconstruction of dressed state profiles at
B = 9.17G (left panel) and B = 9.03G (right). (a) Spatially re-
solved Rabi oscillations rendered in false color around t ≈ 190ms.
In the dressed state immiscible regime (left panel) the oscillations
in the center of the cloud are out of phase with respect to its edges,
while no spatial dependence is found at miscible case (right panel).
(b) A sinusoidal fit to the local Rabi oscillations allows for the deter-
mination of their amplitude and phase (solid red and orange lines).
(c) From these measurements we infer the density profiles of the two
dressed states (solid blue and green lines). The results of the numer-
ical calculations are shown as dashed lines in (b) and (c).

the procedure outlined above, we reconstruct the temporally
resolved demixing dynamics shown in Fig. 4(a).

In order to analyze the stability of single dressed states,
we investigate their time evolution. Our system allows their
preparation by applying a π/2 coupling pulse creating an
equal superposition of atomic states, followed by a non-
adiabatic phase shift of the linear coupling field by +π

2 (−π2 )
corresponding to the generation of |+〉 (|−〉) dressed states.
Note, that in the context of weakly coupled two-mode sys-
tems this corresponds to zero-amplitude plasma (pi) oscilla-
tions [22]. During the following time evolution we observe
that the overlap of the atomic states remains close to unity.
Since no Rabi oscillations are observed, an independent mea-
surement of the phase is necessary. This is achieved by em-
ploying an additional π/2 coupling pulse just before read-
out revealing a homogeneous and temporally constant relative
phase between the atomic states. Combining these observa-
tions we confirm the stability of single dressed states (Fig. 4(b,
c)). The same observations are made when performing the ex-
periment at B = 9.03 G where atomic states demix in the
absence of driving. Thus, we experimentally confirm that lin-
ear coupling stabilizes an immiscible superposition of atomic
states as predicted in [15].

To conclude, we have experimentally investigated the mis-
cibility properties of dressed states by determining their den-
sity profiles both in the miscible and immiscible regime. The
experimental observations are in very good agreement with
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FIG. 4. (color online) Time evolution of a superposition of dressed
states and of single dressed states in the immiscible regime. (a) The
difference of the dressed state densities reconstructed from the Rabi
oscillations using the method outlined in Fig. 3 reveals the demixing
dynamics of an initially overlapping superposition of dressed states
due to their effective interactions. (b, c) The time evolutions of ini-
tially prepared |+〉 and |−〉 states are shown confirming that they are
stationary under the action of the linear coupling Hamiltonian.

numerical simulations without free parameters. Compari-
son with theoretical predictions reveals the criticality of the
demixing dynamics on the symmetry of the system. In addi-
tion, we have experimentally confirmed that linear coupling
stabilizes immiscible two-component gases. In this system
one can realize equal interspecies interactions in the strong
driving limit, allowing for the experimental exploration of an-
alytically solvable problems, for example in the context of 1D
two-component Bose gases [23]. Preliminary analysis indi-
cates that the intermediate regime of weak linear coupling,
where neither the bare nor the dressed states form an appro-
priate basis, presents a wealth of unexplored nonlinear states
with a delicate bifurcation structure. In the context of phase
transitions, the demonstrated demixing control has a direct ap-
plication for tests of the Kibble-Zurek mechanism leading to
topological defect formation as proposed in [24]. The sug-
gested experiment requires a miscible-immiscible transition
with a gapped energy spectrum which is not available with
standard Feshbach tuning.
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