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The quantum vacuum fundamentally alters the properties of embedded particles. In contrast to
classical empty space, it allows for creation and annihilation of excitations. For trapped particles this
leads to a change in the energy spectrum, known as Lamb shift. Here, we engineer a synthetic vacuum
building on the unique properties of ultracold atomic gas mixtures. This system makes it possible to
combine high-precision spectroscopy with the ability of switching between empty space and quantum
vacuum. We observe the phononic Lamb shift, an intruiguing many-body effect orginally conjectured
in the context of solid state physics. Our study therefore opens up new avenues for high-precision
benchmarking of non-trivial theoretical predictions in the realm of the quantum vacuum.

For the electron in the hydrogen atom the coupling to
virtual photons leads to the mass renormalization and the
Lamb shift, which has been measured with unprecedented
precision [1–4] . Similar effects take place in semiconduc-
tors where electrons couple to phononic excitations [5, 6].
The increase of the effective mass has been observed in
these systems [7]. A quantitative measurement of the
predicted phononic Lamb shift [8, 9], which is defined for
an electron bound to a donor ion or some other attractive
center, is still missing. The main reason is that such a
system is notoriously difficult to engineer in solid state
materials, due to uncontrolled disorder effects [10]. Here,
we realize a model system for such a phononic coupling
with ultracold atoms, where we have full control over
the phononic background as well as the bound state. If
the interaction is sufficiently weak, this process can be
quantitatively described within the Fröhlich model [11–
14]. In this regime, the phononic Lamb shift is minute
and therefore it is an experimental challenge to resolve it
accurately.

We perform the experiments in a strongly imbalanced
mixture of different ultracold atomic gases. The impu-
rities, the minority species, are well localized in a tight
optical trap, in analogy to the electron bound to a donor
ion. The majority species is a Bose-Einstein condensate
(BEC), which plays the role of the quantum vacuum.
We observe the phononic Lamb shift directly by high-
resolution spectroscopy of the two lowest energy levels
of the bound impurity employing motional Ramsey spec-
troscopy [15]. Previously demonstrated methods for the
investigation of the polaronic effects are quantum phase
revival [16], multiband spectroscopy [17] and oscillations
in a shallow traps [18, 19]. For the quantitative analysis
we build on the ability to remove the BEC, i.e. switch-
ing off the quantum vacuum; a feature that does not
exist in quantum electrodynamics (QED) experiments
[20, 21] and semiconductor systems. This ability makes
the energy shifts due to the quantum vacuum directly
accessible.

Our experimental platform allows for the realization of
fermionic as well as bosonic impurities. The latter experi-
ence a significant enhancement of the Lamb shift via Bose

amplification. This approach enables a systematic study
of the phononic Lamb shift in the weak coupling regime.
All experimental results show quantitative agreement
with the predictions of the Fröhlich Hamiltonian.

In our experiment, the confinement of the fermionic im-
purity atoms (6Li) is realized by a deep one-dimensional
(1D) species-selective optical lattice. It can be approx-
imated by independent harmonic oscillators (see Fig. 1
a). The weak confinement in the other two directions
arises from a shallow optical trap generating an array of
two-dimensional (2D) gases [22]. After initial preparation
in the 1D ground state of the harmonic oscillator we
create a coherent superposition in the two lowest energy
states of the oscillator by shaking the optical lattice [15].
In the subsequent time evolution the excited motional
state will accumulate a phase with respect to the ground
state corresponding to its energy difference. The accumu-
lated phase difference can be mapped onto an observable
population by applying an additional shaking pulse. In
our system of periodically arranged harmonic oscillators,
the population can be accessed by the band mapping
technique, see Fig. 1 b, [23]. In the absence of the BEC
we observe the corresponding Ramsey fringe by changing
the phase of the second shaking pulse and extracting the
population of the excited state, see Fig. 1 c, blue curve.
We clearly observe a fringe shift (Fig. 1 c, red curve) in
the presence of the BEC (23Na), which indicates an en-
ergy shift. The sign of the phase shift ∆φ corresponds to
an increase of the energy difference, which is at odds with
a naive interpretation of an increased mass (see Fig. 1 a).

This qualitative deviation from the effective mass in-
crease predicted for particles coupled to a quantum vac-
uum is the manifestation of the additional effect of the
Lamb shift for bound particles. This is well captured by
the Fröhlich Hamiltonian [12, 13]:

H =
∑
k

Ek â
†
kâk+

∑
q

ωq b̂
†
q b̂q+

∑
k,q 6=0

Vqâ
†
k+qâk(b̂q+ b̂†−q),

(1)
where Ek (ωq) represent the energy levels of the un-

coupled impurities (phonons). The impurity (phonon)
creation and annihilation operators are denoted â†k(b̂†q)
and âk(b̂q). The third term arises from the density-density
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Figure 1. Detection of the self-energy shift. a Interaction of impurities with phonons of the BEC causes energy shifts
of the impurity’s external states. b Shaking the optical lattice couples the external states and allows the preparation of a
superposition of the two lowest external states. Changing the evolution time ∆t results in a Ramsey fringe in the population of
the excited state, which is read out via band mapping. Typical profiles of the resulting absorption images are depicted. c An
exemplary interference fringe of 6Li after an evolution time of 1.1 ms is shown. In case of an evolution with background the
amplitude is reduced due to decoherence and the fringe is shifted, showing an increased energy difference. The shaded area
corresponds to the 1σ confidence levels of the phase estimation.

interaction between the impurities and the BEC. It de-
scribes the change in momentum of the impurity atom via
the absorption or emission of a phonon. We emphasize
that the coupling strength Vq captures the contact interac-
tion in our system, which is different from the long-range
Coulomb interaction of an electron in a semiconductor.
Nevertheless, the same phenomenology of the effective
mass and the phononic Lamb shift exists in both cases.
In order to access them, we calculate the lowest-order
self-energy [22]. The effective mass is extracted from the
self-energy of an unbound particle [22], leading to an en-
ergy shift (Fig. 1 a). It corresponds to a slow down in the
oscillations. However, the effects of the confinement go
far beyond the simple effective mass approximation. We
term the deviation phononic Lamb shift in close analogy
with the Lamb shift in the hydrogen atom (Fig. 1 a).

Generally, ground and excited state have different self-
energies. The ground state experiences a larger shift
since its extension is smaller, resulting in a higher density.
Therefore the density-density interaction causes stronger
coupling and thereby a stronger shift. Our detection
method reveals this differential energy shift ∆ω between
the ground and the excited state:

δself =
∆ω

ω0
= αIB · f(ρ2D, a, ξ). (2)

ω0 is the energy difference of the two impurity states in
empty space, αIB is the coupling strength between the
impurity and the background for a confined geometry
[22]. The confinement geometry of the impurity is taken

into account by the function f , which depends on the
2D density of the impurities ρ2D, the harmonic oscilla-
tor length a, and the healing length of the background
condensate ξ.

For a quantitative comparison care has to be taken since
the employed near-resonance lattice for lithium induces
also a weak modulation of the BEC. As shown in the
upper row of Fig. 2 it modifies the effective confinement of
the impurities due to mean field interactions between the
two species [22]. These effects are isolated by performing
the Ramsey spectroscopy at different detunings of the
lattice. By going closer to the lithium resonance (∆ =
2π · 0.3 THz) the potential depth VI is kept constant
(ω0 ≈ 2π · 27 kHz) by reducing the intensity accordingly.
Since the transition frequency for the background is far-
detuned (∆ = 2π · 63 THz), the corresponding potential
VB is reduced and the background modulation suppressed.
We observe that the frequency shifts have a finite offset
at the interpolated limit of zero background modulation.
This is exactly δself . The fit yields for the fermionic 6Li
(blue dots) the relative shift δF

self = (6.4±1.2)·10−4, where
the error bar corresponds to the 68 % confidence interval.
The shaded blue area in Fig. 2 indicates the range of
theoretically predicted values, taking into account the
uncertainties in the density distribution of the clouds [22].
Our observation confirms the theoretically predicted self-
energy shifts. So the increased energy spacing is indeed
a direct manifestation of the phononic Lamb shift in our
system.

Employing bosonic impurities results in a larger Lamb
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Figure 2. Observation of the self-energy. The residual
modulation of the density of the background BEC leads to an
additional energy shift of the impurity energy level. This can
be identified by altering the ratio VB/VI through a change of
the detuning of the optical lattice while keeping the potential
depth for the impurity constant. A clear linear dependence
on VB/VI is observed. Interpolating the measurement data
to VB = 0 allows for extraction of the self-energy shift. The
positive offset is a direct signature of the phononic Lamb shift,
since it contradicts the negative energy shift expected from
the increased effective mass. The shaded areas show the theo-
retically predicted shift in the Fröhlich scenario, taking into
account the uncertainties of the experimental parameters. We
find perfect agreement without free parameters for fermionic
impurites (blue). In case of a non-condensed bosonic impurity
cloud (green squares), no shift is observable in agreement with
the theoretical expection. For a condensed bosonic impurity
cloud (red diamonds), we observe a significant change of the
self-energy. The theoretical expectation, not taking into ac-
count thermal excitations (T = 0), is depicted as the red
shaded area.

shift due to bosonic enhancement. We employ this fea-
ture to boost the Lamb shift in experiments with bosonic
impurities (7Li) that are condensed (≈ 60% condensate
fraction). The results (red diamonds) are displayed in
Fig. 2. We observe that the effect of the background
modulation is inverted and smaller than for fermionic im-
purities, as the interspecies scattering length changes sign
and is reduced by a factor of three. Thus, the energy shift
for a single boson is predicted to be ten times smaller than
for fermionic 6Li. Nevertheless, the observed energy shift
is amplified by a few thousands of bosons in the ground
state leading to δB

self = (4.1± 0.1) · 10−3, exceeding the-
oretical prediction. A quantitative comparison between
theory and experiment is difficult in this specific case.
First, the overlap between the two species is highly sensi-
tive to details in the trap geometries, limiting its control.
Second, finite temperature effects represent a challenge to
the theoretical description. For comparison we also per-
formed the same experiments with a non-condensed cloud
of bosons (green squares), leading to smaller number of
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Figure 3. Population dependence of the self-energy.
The self-energy shift depends on the relative state population
η as ground and excited state experience different energy
shifts. This can be observed in a Ramsey sequence with an
unequal superposition during free time evolution, keeping
the other relevant parameters constant. Different η can be
obtained by shaking the optical lattice for different times
(inset). Experiments with bosonic impurities are shown by red
diamonds. From these data we extract a critical η = 0.81±0.07
in good agreement with theoretical predictions. For fermionic
impurities (blue circles) we do not observe any dependence
on η as expected from our calculations.

atoms per quantum state, and a weakened coupling as we
operated at a smaller background density. As expected
from the theoretical predictions, we do not observe any
shift in this regime.

For a quantitative comparison between theory and
experiment for bosonic impurities, we measure the self-
energy shift as a function of different populations of
ground and excited state. Since the self-energy shift is
proportional to the occupation number for bosons there
exists a specific relative population η, where the energy
shifts are equal for both levels. For our experimental set-
up, this implies a vanishing phase shift for η = 0.87. By
varying the length of the first Ramsey pulse, the relative
occupation of the excited state during time evolution is
changed. The inset in Fig. 3 shows a Rabi cycle, which we
use for the calibration of η. Fig. 3 depicts the dependence
of δself on the excited fraction and confirms the prediction.
While the experiments with fermions (blue) do not reveal
any significant change, the data with bosonic impurities
(red) show a clear linear dependence with a crossing point
at the expected value. We emphasize that this crossing
point depends only weakly on the overlap between the
impurities and the BEC. As such it puts the theoretical
predictions to a precise test. In contrast, the experiments
with fermions (blue) do not reveal any significant change
in agreement with our theoretical treatment.

Our results are in the realm of implementation of analog
quantum simulators on the basis of ultracold gas mixtures
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[24] . We open up an avenue for benchmarking a new
class of many-body theories, comprising not only differ-
ent mutually interacting particles, but also interactions
of their collective excitations. Furthermore, it captures
the most important non-relativistic features of the QED.
In this way we realize a new experimental platform for
quantitative exploration of such fascinating phenomena
as Casimir effect in non-trivial geometries as well as in
dynamical situations [25–27]. In a many-particle limit
the background mediated interaction between the impu-
rities can lead to a generation and detection of non-local
entanglement [28].
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D. S. Lühmann, C. Becker, and K. Sengstock, Phys. Rev.
Lett. 107, 135303 (2011).

[18] S. Nascimbène, N. Navon, K. J. Jiang, L. Tarruell, M. Te-
ichmann, J. McKeever, F. Chevy, and C. Salomon, Phys.
Rev. Lett. 103, 170402 (2009).

[19] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio,

F. Minardi, A. Kantian, and T. Giamarchi, Phys. Rev.
A 85, 023623 (2012).

[20] M. Brune, P. Nussenzveig, F. Schmidt-Kaler, F. Bernar-
dot, A. Maali, J. Raimond, and S. Haroche, Phys. Rev.
Lett. 72, 3339 (1994).
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Supplementary Material

EXPERIMENTAL DESIGN

In our experiment, a BEC of about 106 sodium atoms
and few 103 to several 104 lithium atoms are both trapped
by the same two beam optical dipole trap (ODT) at 1064
nm. In all the experiments the gases are spin-polarized in
the absolute hyperfine ground state. The mean trapping
frequency for 23Na is ω̄ = 2π · 150 Hz. The temperature
of the sample is ≈ 350 nK. We can choose to work with
fermionic 6Li as well as bosonic 7Li at mean trapping
frequencies of ω̄ = 2π ·340 Hz for 6Li and ω̄ = 2π ·310 Hz
for 7Li. An additional optical standing wave close to
optical transition for lithium (λres,Li ≈ 671 nm) imposes
a very strong confinement in one direction for lithium
only. The standing wave allows the implementation of mo-
tional Ramsey spectroscopy of external impurity energy
levels with a high precision [S1]. Due to the depth of the
potential the minima can be treated as independent har-
monic oscillators, resulting in multiple realizations of the
experiment in a single experimental cycle. The geometry
corresponds to 2D gases. For fermions the transverse ex-
tension is 10 times larger than the longitudinal one. The
background induced effect is isolated by alternately mea-
suring the motional energy difference with and without
BEC background and is detected as a phase alteration of
the Ramsey readout fringes (∆φ). The frequency change
is given by ∆ω = ∆φ/∆t, where ∆t is the total evolution
time, including the time of the state coupling (pulses).
We emphasize that the impurity-impurity interaction is
negligible, as fermions at low temperatures do not scatter
and the intra-species scattering length for the bosons is
7 a0 [S2], with a0 being the Bohr radius.

Species-selective optical lattice

The species-selective optical lattice is close to D-line
transitions for lithium (670 to 672 nm while the depth for
Li is kept constant). It consists of two intersecting laser
beams, leading to a periodicity of dlat = 1.65 µm and
a typical depth of 24.5 lattice recoil (Erec) for 6Li and
33 Erec for 7Li, corresponding to a frequency of 27.2 kHz.

Coupling of motional states

All presented measurements are performed using a
Ramsey pulse scheme in the two lowest external states
of the species-selective optical lattice. For coherent cou-
pling of these states the lattice position is periodically
modulated. The resulting Rabi frequency is 1.4 kHz. The
finite excitation efficiency is caused by residual atoms in

the excited state at the beginning of the experiment and
by a weak coupling of the second excited state which is
suppressed by the anharmonicity of the potential. By
coupling the states for a certain time, an equal superpo-
sition of ground and excited state is created (π/2 pulse).
A second π/2 pulse is used for the readout. The second
pulse is shifted in time to record the phase of the os-
cillation. In order to measure the background induced
effect on the frequency, the sodium BEC is removed by a
resonant light pulse before the Ramsey sequence starts.
This light pulse does not cause any observable heating of
the Li sample.

Motional state detection

The population detection of the external states is done
by a band mapping technique [S3]. While adiabatically
reducing the lattice depth in 2 ms with a time constant
τ = 0.8 ms the longitudinal confinement is turned off,
allowing the atoms to expand along the lattice direction.
After 10 ms of evolution an absorption image is taken.
With this technique a high optical density can be obtained
even for low atom numbers, corresponding to ≈ 200 times
more background than impurity atoms.

DATA ANALYSIS

Data taking strategy

Each Ramsey fringe is sampled at 10 points. One scan
consists of at least three runs. For each run the scans
with and without background are separately fitted with
a sine function and the final value for the phase shift is
calculated as a weighted mean of the repetitions. Shots
with extreme atom numbers, deviating lattice intensity or
at wrong wavelength are discarded. If several scans can
be combined, their result is calculated as the weighted
mean of the individual values.

Background modulation

In the Thomas-Fermi approximation the modulation
of the BEC density is: nmod = (µB − VB)/gBB with
gBB = 4πh̄2aBB/mB with aBB = 54.54 a0 [S4]. This adds
to the trap potential for the impurities: VImod = gIBnmod

with gIB = 2πh̄2aIB/mr, where aIB = −75 a0 for fermions
and aIB = 21 a0 for bosons [S5]. The resulting impurity
trapping potential is up to the constant offset: VIeff =
VI − gIBVB/gBB. In harmonic approximation ω ∝

√
V ,
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therefore ωeff = ω0

√
1− gIB/gBB · VB/VI. The relative

shift due to the lattice is then:

δlatt =
ωeff − ω0

ω0
= −1

2

gIB

gBB

VB

VI
. (S1)

As gIB is three times larger for fermionic lithium than
for the bosonic isotope, this effect is more pronounced
in the fermionic case. Furthermore gIB has opposite sign
for fermionic compared to bosonic lithium, inverting the
effect when changing the isotope. This behaviour can be
seen in Fig. 2. The difference of the slope for the two
bosonic scenarios arises due to a change of the effective
background density n̄. Specifically, for the systematic
studies shown in Fig. 3 we keep the optical potential
fixed and subtract the additional frequency shift due to
background modulation.

Calculation of density distribution

The density distributions are obtained numerically by
taking into account the finite temperature as well as the
external potentials such as the species-selective optical
lattice and the harmonic trapping due to the ODT. For
lithium it is necessary to include the additional potential
due to the interaction with sodium. In order to capture
properly the lithium occupation number in the individual
sites we slice the ODT density according to the period-
icity of the lattice. These occupation numbers enter the
detailed calculation of the density distribution in the total
confinement potential, where a 2D description is applied.

Experimental signal

The band mapping technique yields the spatially av-
eraged phase shift ∆φ. However, different parts of the
lithium cloud are embedded in varying sodium densi-
ties, which leads to locally varying phase shifts φ(r) =
ω0 ·δself(r) ·∆t. These local phase shifts can be calculated
within the local density approximation from Eq. (2) in
the main text.

In the bosonic case, the observed total phase shift can
then be calculated as a lithium density weighted mean:

∆φB = asin

(∫
d3r nLi,BEC(r) sin(φ(r))∫

d3r nLi(r)

)
(S2)

For bosonic impurities only the condensed part is assumed
to experience an energy shift. However, the total signal
is given as a weighted sum over shifted and unshifted
phase patterns. The weak interaction between the BEC
and the bosonic impurites leads to long coherence times
(τ > 50 ms), which are much longer than the Ramsey
sequence, such that decoherence can be neglected in this
case.

For fermionic impurities on the other hand, the interac-
tion with the BEC is sufficiently strong that decoherence
effects in the center of the cloud affect the observed signal.
They can be taken into account via a position dependent
relaxation rate Γ(r), which was studied in detail in [S1].
The total signal of the fermions is then given by:

∆φF = asin

(∫
d3r nLi(r)e−Γ(r)t sin(φ(r))∫

d3r nLi(r)e−Γ(r)t

)
(S3)

THEORETICAL TREATMENT

We consider two different geometries. In order to obtain
the effective mass m∗I we work with an unconfined (free)
impurity coupled to a structureless BEC as described by
Eq. (1) in the main text. Computation of m∗I can be very
conveniently performed following the lines of [S6], but
with different matrix elements

Vq = λ[(ξq)2/((ξq)2 + 2)]1/4 , (S4)

where λ = gIB
√
nBEC, see e. g. [S7–S10]. For weak in-

teractions one obtains m∗I /mI = 1 + να + . . . , where
ν ≈ 0.364 and 0.336 for 6Li and 7Li setups, respectively,
and where α = a2

IB/(ξaBB) is the dimensionless interac-
tion strength.

In the second geometry we consider the impurities as
being confined in a parabolic potential (energy parameter
h̄ω0 and length parameter a =

√
h̄/mIω0) in x-direction,

and being free in all other spatial dimensions. Their
eigenstates then have energies En,k = h̄ω0(n + 1/2) +
h̄2k2/2mI−µ, where k is a 2D wave vector and n denotes
the respective subband of the confinement potential. The
unperturbed fermion/boson Hamiltonian is then

HI =
∑
n

∫
d2k

(2π)2
En,k â

†
n,kân,k , (S5)

where â†n,k stands for the impurity creation operator. As
aIB 6= 0 the impurities are scattered on the harmonic
modes of the BEC – the phonons. The corresponding
interaction terms have been derived in the weak depletion
limit in [S7]. Adapting it to the present setup leads to
the following interaction term:

Hint =

∫
d2k

(2π)2

∫
d3q

(2π)3

∑
n1,n2

VqA(n1, n2, qx)

×â†n1,k+q′ ân2,k
(b̂q + b̂†−q) . (S6)

Here b̂q is the annihilation operator for the phonon, q′ =
(qy, qz) denotes the transverse component. A is the matrix
element for the transition between the harmonic oscillator
energy levels:

A(n1, n2, qx) =

∫
dxϕ∗n1

(x)ϕn2
(x) e−iqxx , (S7)
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ϕn(x) are the wave functions of the n-th eigenstate. Fi-
nally, the Hamiltonian of the phonons is

Hph =

∫
d3q

(2π)3
ωq b̂

†
qb̂q , (S8)

where ωq = cq[1 + (ξq)2/2]1/2 with the sound velocity c.
Matrix elements for the impurity-phonon scattering are

given by Eq. (S4).
In the present case the relative weakness of aIB justifies

a perturbative treatment of the problem. Our goal is the
energy level renormalization for the impurities in the con-
finement potential. Its computation is best accomplished
via lowest order irreducible self-energy correction.

The energy level structure is given by the retarded
self-energy, which is computed via analytical continuation
of its Matsubara counterpart, see e. g. [S6],

Σ(n,k; iΩ) =
iλ2

β

∫
d3q

(2π)3

∑
iεj

√
(ξq)2

(ξq)2 + 2

∞∑
m=0

A∗(n,m, qx)A(m,n, qx)

×G[m,k− q′, iΩ− (m− n)ω0 − iεj ]D0(iεj ,q) , (S9)

where Ω is a fermionic/bosonic (impurity) and εj = 2πj/β bosonic (phonons) Matsubara frequencies. β = 1/T is the
inverse temperature. The necessary Green’s functions are:

D0(iεj ,q) =
2ωq

(iεj)2 − ω2
q

(S10)

G[m,k− q′, iΩ− (m− n)ω0 − iεj ] =
1

iΩ− (m− n)ω0 − iεj − Em,k−q′
, (S11)

where the impurity Green’s function G has the same
shape for both bosonic and fermionic case.

Performing the calculation in the assumption that only
the two lowest lying energy levels are populated we can
extract the energy difference between them. The result
for the bosonic impurities is:

δself =
∆ω

ω0
= αIB · f(ρ2D, a, ξ) , (S12)

f(ρ2D, a, ξ) = ρ2Dξ
2

× [ge(a/ξ)η − gg(a/ξ)(1− η)] , (S13)

gg(a/ξ) =
8π2

√
2
e(a/ξ)2 [1− erf(a/ξ)] , (S14)

ge(a/ξ) = 4π
a

ξ

√
2π

×
[
1−
√
π
a

ξ
e(a/ξ)2(1− erf(a/ξ))

]
.(S15)

The coupling strength αIB is given by:

αIB =
λ2mB

8π2h̄3ω0ξ
, (S16)

where h̄ is the reduced Planck constant.
Self-energy evaluation for the case of fermionic impu-

rities is slightly different. Here the numerical prefactors
weakly depend on the effective temperature and the ratio
a/ξ. Assuming T = 0 and a symmetric superposition we
obtain for the energy shift the value:

f(a, ξ) = −0.11 +
0.94

a/ξ
. (S17)

As the shaded inset in Fig. 2 left panel shows, the expres-
sion above is in very good agreement with our measure-
ments.
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