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Abstract

The process of unfolding is used in particle physics to obtain kinematic distributions which
are independent of the detector. This study explores the potential of a new unfolding
method. This method aims at unfolding an inclusive reconstructed data distribution
without performing any background subtraction and is referred to as topology unfolding.
The results of topology unfolding in the framework of a monojet analysis are compared to
the ones from a conventional unfolding method and are shown to be consistent with these
results. The new method of topology unfolding can reduce the overall uncertainties of the
unfolded distributions by 20 % to 80 % at high energies due to using the full statistical
power of the reconstructed distribution and a robustness of the topology unfolding matrix.
In addition to the validation of the new method, exclusion limits on the fundamental
Planck scale in the ADD model are derived at reconstruction and at particle level using
the event selection of a typical monojet search and the 2015 data set of proton-proton
collisions recorded at the Large Hadron Collider corresponding to an integrated luminosity
of 3.2 fb−1. The limits obtained from topology unfolding are shown to be consistent with
the limits at reconstruction level as well as with the limits obtained from the conventional
way of unfolding.

Zusammenfassung

Der Prozess der Entfaltung wird in der Teilchenphysik genutzt um Verteilungen kine-
matischer Variablen zu erhalten, die den großen Vorteil haben, nicht von dem Detektor
abzuhängen mit dem sie gemessen wurden. Diese Arbeit erforscht die Möglichkeiten einer
neuen Entfaltungsmethode. Diese Art der Entfaltung zielt darauf ab, eine inklusive rekon-
struierte Verteilung zu entfalten ohne eine Subtraktion des Untergrundes vorzunehmen
und nennt sich Topologieentfaltung. Die Ergebnisse der Topologieentfaltung im Rah-
men einer Monojet-Analyse werden mit denen einer etablierten Entfaltungsmethode
verglichen. Der Vergleich zeigt konsistente Ergebnisse zwischen beiden Methoden, wobei
die Topologieentfaltung die Gesamtunsicherheit der entfalteten Verteilungen um 20 %
bis 80 % im Bereich hoher Energien reduzieren kann. Der Grund für diese Reduktion
liegt darin, dass die neue Methode die volle Statistik der rekonstruierten Verteilung nutzt
und die Entfaltungsmatrix dieser Methode eine gewisse Robustheit zeigt. Zusätzlich
werden Ausschlussgrenzen auf die fundamentale Planck-Skala im Rahmen des ADD
Modells auf Rekonstruktions- und Teilchenebene bestimmt, wobei die Ereignisselektion
einer typischen Monojet-Suche und die Proton-Proton Kollisionsdaten genutzt werden,
die von dem Großen Hadronen-Speicherring im Jahre 2015 aufgenommen wurden und
einer integrierten Luminosität von 3.2 fb−1 entsprechen. Die Ausschlussgrenzen, die
unter Anwendung der Topologieentfaltung erhalten werden, stimmen sowohl mit den
Ausschlussgrenzen auf Rekonstruktionsebene als auch mit den Ausschlussgrenzen, welche
durch eine etablierte Entfaltungsmethode bestimmt werden, überein.



Contents

Introduction 5

1. The Standard Model of particle physics and beyond 6
1.1. The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. Physics beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . 10
1.3. Monojet signature in searches . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. The ATLAS experiment 13
2.1. Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Physics of particle detection . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. The ATLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4. Particle jets in ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Unfolding 28
3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2. Unfolding topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. Iterative unfolding using Bayes’ theorem . . . . . . . . . . . . . . . . . . . 32

4. Topology unfolding 38
4.1. The dominant Standard Model contribution . . . . . . . . . . . . . . . . . 38
4.2. Object and event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3. Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4. Results at reconstruction and particle level . . . . . . . . . . . . . . . . . 44
4.5. Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6. Validation of topology unfolding . . . . . . . . . . . . . . . . . . . . . . . 65
4.7. Comparison of uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5. Topology unfolding for a monojet search 71
5.1. Background estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2. Results at reconstruction level . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3. Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4. Limit setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6. Conclusion 93

A. Topology unfolding 94

B. Topology unfolding for a monojet search 103



Introduction

Unfolding is a powerful concept that results in a sustainable way of how experimental
physicists can present their results. This thesis represents a proof of concept study that
validates an new method of unfolding and starts to explore its possibilities. In addition,
it is a general motivation for using unfolding techniques in searches for new physics. The
thesis is structured as follows. In section 1.1 the Standard Model of particle physics is
reviewed and the monojet signature introduced, together with the ADD model. Chapter 2
discusses the ATLAS experiment at the Large Hadron Collider and explains the origin
of particle jets at collider experiments. A general motivation for unfolding is given in
chapter 3 followed by an explanation of the topology unfolding method. In chapter 4, the
validation of the topology unfolding technique is performed using Monte Carlo simulations
and the event selection of a typical monojet search. Finally, the topology unfolding is
applied to a realistic monojet search in chapter 5 using proton-proton collision data
recorded in 2015 by the Large Hadron Collider in order to set limits at reconstruction
and particle level on the fundamental Planck scale of the ADD model.



1. The Standard Model of particle physics
and beyond

1.1. The Standard Model
The Standard Model (SM) of particle physics is a renormalizable gauge theory which
describes the electromagnetic, the weak and the strong interactions of elementary particles
through the exchange of spin one gauge bosons. Gravity is not included. The underlying
local gauge symmetry is SU(3)C×SU(2)L×U(1)Y , which gets reduced to SU(3)C×U(1)Q
through the mechanism of spontaneous electroweak symmetry breaking. The algebra
of the group corresponding to the symmetry SU(3)C × SU(2)L × U(1)Y is generated
by the Gell-Mann matrices, the Pauli matrices and the hypercharge operator Y . The
SM of particle physics was constantly under development starting from the middle
of the last century. The development was driven by principles of symmetries, more
importantly principles of approximate symmetries, new ideas that emerge while facing
major difficulties in the fundamental understanding of the nature of particle physics and
the always present ambition to match the constantly growing experimental knowledge of
particle physics. Some of these important new ideas are

• the idea that (local) gauge symmetries should dictate the form of a theory’s
interactions, which was put forward by Yang and Mills in the 1950s by constructing
a non-abelian gauge theory based on SU(2) hoping to find a theory of the strong
interactions,

• the quark model proposed by Gell-Mann and Zweig in the 1960s, which brought
order into the growing menu of hadrons known at that time,

• the idea of a symmetry of the Lagrangian which is not a symmetry of the vacuum
(spontaneous symmetry breaking) later on used to produce mass terms for gauge
bosons and fermions. [1]

This section reviews briefly the current form of the SM. The particle content of the SM is
summarized in figure 1.1. It consists of twelve spin one gauge bosons being the mediators
of the three fundamental interactions, twelve fermions with spin one half which can be
divided into six leptons and six quarks and the Higgs boson with spin zero. In addition,
an antiparticle exists to each fermion having the same properties but opposite charge
compared to its fermion partner.

Electroweak Interaction The electromagnetic and the weak interactions were unified
into the so-called electroweak theory based on SU(2)L × U(1)Y by Glashow [3] in 1961.
This unification is often seen as the first step towards the SM of particle physics in its
current form. The Lagrangian of the electroweak interaction can be divided into a part
describing the dynamics and self interaction of the gauge bosons and a part describing
the interaction of the fermions with the gauge bosons. The Lagrangian of the gauge
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Figure 1.1.: The particle content of the SM: twelve spin one gauge bosons (eight gluons,
Z, W± and the photon), six leptons and six quarks together with their
antiparticles (not shown here) and the Higgs boson [2].

sector is

Lgauge = −1

4
W a

µνW
aµν − 1

4
BµνB

µν , (1.1)

where Bµν = ∂µBν−∂νBµ is the field strength tensor of the U(1)Y hypercharge interaction
with Bµ being the gauge boson of the electromagnetic interaction and W a

µν = ∂µW
a
ν −

∂νW
a
µ + igεabcW b

νW
c
µ the field strength tensor of the SU(2)L weak interaction with εabc

being the Levi-Civita tensor and a, b, c running from 1 to 3 refering to the three gauge
bosons of the weak interaction W a

µ . The constant g is the coupling constant of the weak
interaction. The interaction and the kinematic terms for the leptons are given by

Lleptons =
∑
i

il̄L,iγ
µ(∂µ + igW a

µσ
a/2 + ig′YlL,i

Bµ)lL,i (1.2)

+ iēR,iγ
µ(∂µ + ig′YlR,i

Bµ)eR,i, (1.3)

where i runs over the three lepton flavors, LL,i = (νL,i, eL,i)
T is the left-handed lepton

doublet under SU(2)L, eR,i the right-handed singlet under SU(2)L of flavor i and g′ the
coupling constant of the electromagnetic interaction. Here, it was introduced by hand
that the gauge bosons W a

µ of SU(2) couple only to left-handed particles in order to match
experimental observations. The electroweak Lagrangian for the quarks is constructed in
a similar way

Lquarks =
∑

iQ̄L,iγ
µ(∂µ + igW a

µσ
a/2 + ig′YQL,i

)QL,i (1.4)

+ iūR,iγ
µ(∂µ + ig′YuR,iBµ)uR,i (1.5)

+ id̄R,iγ
µ(∂µ + ig′YdR,i

Bµ)dR,i, (1.6)

where i runs over the three quark families, QL,i = (uL,i, dL,i)
T is the left-handed quark

doublet under SU(2)L and uR,i and dR,i the right-handed quark singlets under SU(2)L.
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The electroweak unification identifies the physical states of the photon Aµ and the Zµ

boson as a mixture of the gauge boson Bµ of U(1)Y and the gauge boson W 3
µ of SU(2)L

as follows(
Aµ

Zµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Bµ

W 3
µ

)
, (1.7)

where θw is the mixing angle. According to this, the part of the electroweak Lagrangian
for the quarks and leptons can be written in the following form, which reflects better the
underlying interactions

Lleptons =
∑
i

iν̄L,iγ
µ∂µνL,i + iēiγ

µ∂µei + eēiγ
µAµei (1.8)

− e

2 sin 2θw
νiγ

µ(1− γ5)Zµνi +
e

2 sin 2θw
ēiγ

µ(1− 4 sin2 θw − γ5)eiZµ (1.9)

− e

2
√
2 sin θw

νiγ
µ(1− γ5)W+

µ ei −
e

2
√
2 sin θw

ēiγ
µ(1− γ5)W−

µ νi (1.10)

with ei = eL,i+eR,i and W±
µ = 1/

√
2(W 1

µ ∓ iW 2
µ) being the physical W bosons. Since the

Zµ boson is a mixture of Bµ and W 3
µ it couples to both right- and left-handed leptons but

with different strength. The W±
µ bosons couple only to left-handed particles. This chiral

structure is called V − A (vector minus axial) interaction and breaks parity explicitly.
Similarly, the electroweak Lagrangian for the quarks turns into

Lquarks =
∑
i

iuiγ
µ∂µui + idiγ

µ∂µdi −
2

3
eūiγ

µAµui +
1

3
ed̄iγ

µAµdi (1.11)

− e

2 sin 2θw
ūγµ(1− 8

3
sin2 θw − γ5)Zµui +

e

2 sin 2θw
d̄iγ

µ(1− 4

3
sin2 θw − γ5)Zµdi

(1.12)

− e

2
√
2 sin θw

ūiγ
µW+

µ (1− γ5)di −
e

2
√
2 sin θw

d̄iγ
µW − µ−(1− γ5)ui,

(1.13)

with ui = uL,i + uR,i and di = dL,i + uR,i.

Higgs mechanism Introducing mass terms for fermions and gauge bosons by hand
would break explicitly the SU(2)L × U(1)Y local gauge symmetry. To avoid breaking
the symmetry in an explicit way, the Higgs mechanism is used for creating mass terms.
It introduces a complex scalar SU(2)L doublet H which can be written as

H =

(
0

h+v√
2

)
(1.14)

in unitary gauge with a vacuum expectation value v 6= 0. The extension of the SM
Lagrangian involving the new doublet is defined as

LHiggs = (DµH)†(DµH)− VH , (1.15)

where Dµ = ∂µ + igW a
µσ

a/2 + ig′ 12Bµ is the covariant derivative and VH the Mexican
hat potential

VH = −µ2H†H + λ(H†H)2, (1.16)
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with λ > 0 and −µ2 < 0. The kinetic term of the Higgs doublet couples the Higgs boson
h to the gauge bosons. This results in a mass term for W±

µ and Zµ but not for the
photon and in interaction between the Higgs particle h and the massive gauge bosons.
The masses of the gauge bosons are proportional to the vacuum expactation value v of
the Higgs doublet. The fermion masses are generated by adding the so-called Yukawa
couplings

LYukawa =
∑
i

yl,i l̄L,iHeR,i + yu,iQ̄L,iH̃uR,i + yd,iQ̄L,iHdR,i (1.17)

to the Lagrangian of the SM, with H̃ = iσ2H
∗. This results in mass terms for the

fermions proportional to v and also couplings between the massive fermions and the
Higgs boson h. Having the mass terms for fermions and bosons included, the system
with a non-zero vacuum expactation value is no longer invariant under SU(2)L × U(1)Y
transformations. However, this (spontaneous) breaking of the symmetry through a
non-zero vacuum expectation value is from a conceptional point of view a better founded
approach than breaking the symmetry explicitly by just inserting mass terms by hand
to match the observation of massive particles. It stresses the general importance of
principles connected to gauge symmetries for the description of nature.

Strong interaction The strong interaction refers to the interaction of objects which
carry color charge, namely quarks and gluons, and is described by the theory of Quantum
Chromodynamics (QCD). QCD is a non-abelian gauge theory based on the SU(3)C
gauge group with the following Lagrangian

LQCD = −1

4
(Ga

µνG
aµν) +

∑
i

q̄i,αiγ
µ∂µqi,α − gs

∑
i

q̄i,αγ
µGa

µ(λ
a/2)αβqi,β, (1.18)

where the index i runs over all quark flavors (u, d, c, s, t, b), α is the color index (r, g, b),
λa are the Gell-Mann matrices (a = 1, ..., 8) and gs the couplings constant of the strong
interaction. qi,α is the quark field spinor of a quark with flavor i and color α. The gluon
field strength tensor is defined as Ga

µν = ∂µG
a
ν − ∂νG

a
µ + igsf

abcGb
µG

c
ν with Ga

µ being
the eight gluon fields and fabc the structure constants of SU(3)L. The first term of the
Lagrangian is the kinetic term of the gluons including their self interactions with triple
and quartic gluon vertices. The self interaction arise from the non-abelian structure of
QCD ([Gµ, Gν ] 6= 0 with Gµ = Ga

µλ
a/2) and gives rise to two important features of the

theory: color confinement and asymptotic freedom. The second term is the kinematic
term of the quarks. The last term describes the interaction between two quarks and a
gluon.

Color confinement is a hypothesis which states that colored objects are always confined
to color singlet states and therefore objects with color charge cannot propagate as free
particles. This hypothesis is used to explain why free quarks have never been observed in
experiments, although there is no analytic proof for this concept. The idea arises from the
fact that the strong force between two colored objects increases linearly with the distance
as a result of the self interaction of the gluons. For this reason the existence of two free
objects with color charge separated at a macroscopic distance would correspond to an
enormous amount of energy stored in the gluon field between them. Therefore, colored
objects arrange themselves into colorless hadrons. In section 2.4 it will be discussed in
more details how the color confinement is responsible for the production of particle jets.

Asymptotic freedom refers to the fact that the strong interaction gets reduced with
increasing energies or decreasing distances and quarks asymptotically act as free particles.
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At low energies the strong coupling αs ∝ gs is of the order O(1) and therefore perturbation
theory cannot be applied. However, going to higher energies αs approaches smaller values
entering the perturbative regime. This running of αs is mainly determined by the gluon
self interaction and strongly connected to the concept of renormalization, which is not
further discussed here. The term asymptotic freedom might be misleading to some extend
since it could imply that predictions can be made for high energy experiments on the
basis of quasi-free particles and therefore leading order calculations. However, even at
the energies of modern particle physics experiments αs is still large enough (αs ≈ 0.1 at
100 GeV) so that higher-order corrections cannot be neglected.

1.2. Physics beyond the Standard Model
The SM of particle physics managed to withstand an enormous amount of experimental
tests and represents up to now the best theory of the interaction of nature’s fundamental
particles. The process of mankind understanding nature and the world of fundamental
particles is constantly developing and great progress could be achieved also during the
last decades.

Most importantly, the Higgs boson being the only particle of the SM which had not
been observed was discovered in 2012 [4, 5]. Because the idea of generating mass through
the Higgs mechanism is deeply connected to the conceptual difference between breaking
a gauge theory explicitly or keeping the symmetry of the Lagrangian but breaking it
through the vacuum, the experimental confirmation of the Higgs mechanism showed
above all that quantum field theory in form of a renormalizable gauge theory really is
the right way to describe interactions between elementary particles. Furthermore, the
observation of neutrino oscillation [6, 7] revealed that neutrinos do have mass and that the
accidental lepton flavor symmetry of the SM is, at least in the uncharged leptonic sector,
broken. Other fields of physics closely related to particle physics, like e.g. cosmology,
also discovered new insights on nature and the universe. For example, the observation of
supernovae revealed that the expansion of the universe undergoes a positive acceleration
[8] and the structure of the cosmic microwave background strongly suggest that we
live in a flat universe [9], which is the only mathematically beautiful universe. Despite
these ongoing achievements in understanding nature and the universe, several questions
remain unanswered and also the SM of particle physics incorporates some shortcomings.
Currently, one of the major drawbacks of the SM is the fact that it does not provide a
particle with suitable properties which could serve as a dark matter candidate in order to
explain the overwhelming experimental evidence for dark matter. Dark matter is believed
to be a new type of massive particle that might interact with the SM particles through
the weak interaction. Evidence for dark matter is found e.g. in observing the motions
of galaxies [10], gravitational lensing [11] as well as angular fluctuations in the cosmic
microwave background [9]. In 2016, a galaxy has been observed which is believed to
consist almost only (98 %) out of dark matter [12]. Furthermore, it has not been possible
so far to include the gravitational interaction to the SM. In addition, it is unclear what
mechanism is responsible for giving mass to neutrinos. The SM also does not provide an
answer for the question of the matter antimatter asymmetry in the universe. Another
conceptional difficulty is the so-called hierarchy problem which will be discussed in the
following section. New ideas and theories are developed to address these shortcomings of
the SM. The predicitons done by these new theories describing physics beyond the SM is
tested in experiments. The model that is tested in this thesis is the so-called ADD model
which addresses the hierarchy problem and is also discussed in the following section.
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1.2.1. The hierarchy problem and large extra dimensions
The hierarchy problem rises the question why the electroweak scale ( O(1000 GeV)) is so
much smaller than the Planck scale (≈ 1019GeV), the scale at which quantum gravity
becomes as relevant as the gauge interactions of the SM. In other words the hierarchy
problem asks for a reason explaining why the gravitational interaction is so weak. This
problem is connected to the question why the mass of the Higgs boson is relatively small
although its loop corrections are quadratically sensitive to higher energy scales. After
the naturalness criterion of G. ’t Hoof [13], a physical parameter is allowed to have a
small value only if the replacement of that value by zero would increase the symmetry
of the system. For example, small fermion masses would be allowed in the SM because
for mf = 0 the SM Lagrangian would recover an additional chiral symmetry that allows
to rotate left- and right-handed fermions independently. But for the Higgs mass such a
symmetry does not exist in the SM.

The ADD model [14] is one of the theories that addresses the hierarchy problem. This
model postulates the unification of gravitational and gauge interactions at the electroweak
scale. The weakness of gravity is explained by the existence of n ≥ 2 large compactified
extra spatial dimensions. Gravitons can freely propagate in the new dimensions while SM
particles are mostly localized in the usual four dimensions. The Planck scale is considered
as not being a fundamental scale and its large value is connected to the size of the extra
dimensions. For n extra dimensions with a radius R, Gauss’s law for two masses with a
distance r would be modified to

V (r) =
m1m2

Mn+2
D

1

rn+1
for r � R, (1.19)

where MD is the new Planck scale for n+ 2 dimensions. For larger distances the usual
1/r potential

V (r) =
m1m2

Mn+2
D Rn

1

r
for r � R (1.20)

is recovered because the gravitational flux lines cannot penetrate the extra dimensions at
these distances. The effective Planck scale for n extra dimensions is therefore connect to
the normal Planck scale MPl via

M2
Pl ∝ Mn+2

D Rn. (1.21)

Assuming MD at the order of the electroweak scale in order to solve the hierarchy problem
the modification of the gravity potential would not be noticeable for n ≥ 2 at distances
that can be probed by modern high precision experiments measuring gravity. However,
the ADD model could result in possible signals in hardon collider experiments. The
following section describes how such a signal predicted by the ADD model could look
like.

1.3. Monojet signature in searches
An event with a large amount of missing transverse energy and one high energetic jet
is referred to as monojet signature. It is one of the leading signatures in the search for
dark matter particles and gravitons at the LHC. In the SM, mainly events from Z → νν
decays and leptonically decaying W bosons result in a monojet signature. Many theories
describing physics beyond the SM predict additional contributions to this event topology.
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Figure 1.2.: Feynman diagrams for three different graviton (G) production mechanisms
involving quarks and gluons in the initial and final state.

Especially, theories providing a suitable dark matter candidate predict processes that
would increase the event yield of a monojet search. In addition, the ADD model, discussed
in the previous section, would also contribute to this signature, if it was realized in nature.
Figure 4.1 shows three different mechanism in which a graviton and a gluon or a quark are
produced in the final state. The graviton produces a large amount of missing transverse
energy and the outgoing quark or gluon is observed as a high energetic jet of particles
(discussed in section 2.4) and therefore the event results into a monojet signature. From
an experimental point of view it is interesting that the cross section σADD of the graviton
production is independent of the mass m0 of the graviton and that it holds

σADD ∝ 1

Mn+2
D

, (1.22)

with MD being the fundamental Planck scale and n being the number of extra dimensions.
This relation will be used later on to translate the limit on the cross section into a limit
on the fundamental Planck scale MD.

The searches for dark matter particles or gravitons using monojet signatures define an
event selection optimized for this signature and examine a possible excess of events in the
tail of the missing energy distribution. The sensitivity of these searches depends strongly
on how precise the SM background can be determined. To minimize the uncertainty
on the background estimate, (semi) data-driven strategies are used for the dominant
backgrounds. However, theoretical predictions in form of Monte Carlo (MC) simulations
are still needed for the background determination in most cases. Typically, the searches
are limited by the uncertainty of the jet energy scale and theoretical uncertainties coming
e.g. from the choice of the renormalization and factorization scale or the parton density
function. In chapter 3 the conventional way of such a search and its limitations are
discussed in more detail. In addition, an alternative is proposed involving the new method
of topology unfolding that can be used in searches for new physics.



2. The ATLAS experiment

The following chapter introduces the ATLAS experiment at the Large Hadron Collider
(LHC). After a brief review of the LHC (section 2.1) the most important physics aspects
of detecting particles are discussed in section 2.2, followed by a description of the ATLAS
detector in section 2.3. In addition, a discussion of particle jets is presented in section 2.4,
since the event signature used in this thesis is mainly based on jets and missing transverse
energy.

2.1. Large Hadron Collider
The LHC is the world’s largest particle collider located at CERN1 near Geneva. It is a
cricular hadron collider located in a tunnel, which hosted previously the Large Electron
Positron collider (LEP), with a circumference of 27 km about 100 m below ground level.
The LHC is designed to perform mainly proton-proton but also heavy ion collisions at a
center-of-mass energies up to 14 TeV. For the LHC, the limitating factor concerning the
center of mass energy is the bending power which is necessary to keep the protons inside
the ring. Over one thousand superconducting dipole magnets are needed for this purpose
being able to produce a magnetic field of up to 8.4 T. For proton-proton collisions, two
separate beam pipes contain so-called bunches of O(1011) protons with a distance of
25 ns. After being pre-accelerated in a system of smaller accelerators the protons reach
their final energy in the ring of the LHC. At the location of the experiments the two
beams get strongly focused and their lines intersect so that a collision can occur. The
measure that describes the proton beams is the instantaneous luminosity Linst defined as

Linst =
nN1N2f

4πσxσy
, (2.1)

where n is the number of bunches, N1 (N2) the number of protons in the first (second)
beam, f the frequency of bunch collisions and σx,y the root-mean-squared horizontal
and vertical beam sizes. Since the instantaneous luminosity is directly proportional to
the event rate, it is desired to be as high as possible. This means that the number of
protons per bunch and the number of bunches are desired to be maximized whereas the
distance between the bunches and the bunch beam size are desired to be minimized. The
integrated luminosity L is obtained by integrating the instantaneous liminosity over time

L =

∫
Linstdt. (2.2)

The data sample of proton-proton collisions which is used in this thesis was recorded in
2015 and corresponds to an integrated luminosity of L = 3.2 fb−1 at a center of mass
energy of

√
s = 13 TeV.

1CERN - European Organisation for Nuclear Research
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Besides the ATLAS2 experiment there are three other main experiments at the LHC:
ALICE3, CMS4 and LHCb5. The physics program of ATLAS and CMS is dedicated to
the discovery of the Higgs boson as well as precision measurements of parameters of the
SM. In addition, searches for physics beyond the SM are performed. The focus of the
ALICE experiment is to study the so-called quark-gluon plasma in heavy ion collisions, a
hypothetical state of matter which is expected to exist at extremely high temperatures
and densities and in which the universe might have found itself right after the Big Bang.
The LHCb experiment is designed to shed light on the matter antimatter asymmetry of
the universe and studies therefore the CP violation in rare b quark decays. [15]

2.2. Physics of particle detection
All kind of particle detectors are based on how the particles that should be detected
interact with matter. The way and the magnitude of the interaction is different for each
kind of particle, which is used to identify and distinguish different kinds of particles in
collider experiments.

Ionization and tracking When a relativistic, charged particle passes through matter,
it interacts with the atomic electrons of the medium through the electromagnetic force.
The particle can ionize the atoms and therefore loses energy. This energy loss dE

dx is
described by the Bethe-Bloch equation

dE
dx

≈ −4π~2c2α2 nZ

mev2

(
ln
[
2β2γ2c2me

Ie
− β2

])
. (2.3)

Here, v = βc is the velocity of the particle, Z the atomic number, n the number density
and Ie the effective ionization potential of the material. Because of the 1/v2 term, the
energy loss due to ionization is larger for low-velocity particles. In modern particle
physics, often very high velocities of particles occur diminishing the influence of energy
loss due to ionization. However, for one type of relativistic particles ionization is the
dominant mechanism of how to lose energy in a detector. This is the case for muons with
energies below 100 GeV, because other mechanisms like Bremsstrahlung is suppressed
for these particles, as discussed later. Therefore, since the energy lost through ionization
of high relativistic particles is quite moderate, muons travel significant distances even
in dense materials and so reach into the outermost regions of a detector, where other
particles cannot get.

The fact that charged particles ionize the material and leave a trail of ionized atoms
and liberated electrons is used to measure their trajectories, referred to as tracking. There
are mainly two techniques of how to measure this ionization of the material. First, large
gaseous volumes can be used in which a strong electric field accelerates the freed electrons
towards sense wires where they producing a signal. The second technique is based on
semiconductor technology, often based on silicon. Here, the traversing charged particle
creates typically O(10.000) electron-hole pairs in an appropriately doped wafer through
ionization. Again, an electric field is applied and the holes drift in its direction before
being collected by p-n junctions. Several hits in different layers of wafers can be combined
into a track. In addition, a strong magnetic field, e.g. in the direction of the beam axis

2ATLAS - A Toroidal LHC Apparatus
3ALICE - A Large Ion Collider Experiment
4CMS -Compact Muon Solenoid
5LHCb - Large Hadron Collider Beauty
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of a collider experiment, can be applied to bend the trajectories of charged particles due
to the Lorentz force. This is used to perform a momentum measurement because the
bending radius R is proportional to the momentum p of the particle R ∝ p.

Bremsstrahlung, pair production and electromagnetic calorimeters Bremsstrahlung
refers to a charged particle that radiates a photon in the electrostatic field of a nucleus.
For relativistic electrons, this represents a much larger effect compared to ionization,
which is only dominant below roughly 800 MeV/Z for this kind of particle. The rate of
bremsstrahlung is inversely proportional to the square of the particle’s mass

R ∝ 1

m2
e

. (2.4)

Since electrons are much lighter than muons, bremsstrahlung gives rise to a much higher
loss of energy for electrons. Muons are, because of their relatively large mass, dominated
by ionization.

Pair production is the dominant interaction of photons with an energy > 10 MeV and
describes the process in which the photon annihilates into an electron and a positron
in the electromagnetic field of a nucleus. The photoelectric effect, dominant at low
energies and the Compton scattering process, starting to be dominant around 1 MeV are
of subdominant importance for high energy particle physics experiments compared to
pair production.

The raditational length X0, being the average distance over which electrons lose 1/e of
their energy, characterizes the electromagnetic interactions of high energy electrons and
photons in matter. It is approximately proportional to

X0 ∝
1

nZ2 ln(287/Z1/2)
(2.5)

and therefore shorter for materials with a high atomic number Z. Roughly, it is equal
to 7/9 of the mean free path of the pair production process for a high relativistic
photon. When high energetic photons or electrons traverse matter, they create a so
called electromagnetic shower which describes the alternation between bremsstrahlung
and pair production which results in a cascade of electrons, positrons and photons. Such
a electromagnetic shower can be detected by a calorimeter. The calorimeter can for
example consist of optically transparent crystals with a short radiation length, in which
the electrons of the shower produce scintillation light measured by photon detectors.
Here, the amount of the scintillation light is proportional to the total energy of the
incoming electron or photon. An alternative approach to that consist of using two types
of alternating material layers (sampling calorimeter), one type being the passive high
Z-material layer in which the shower is mainly built and the other type being an active
layer in which the ionization from electrons of the shower can be measured. Both types of
electromagnetic calorimeter are used in modern high energy particle physics experiments
and typical resolutions for electrons and photons with energy E can be found in the
range of

σE
E

=
3% − 10%√

E
(2.6)

Strong interaction and hadronic calorimeters Charged and uncharged hadrons lose
energy through a strong interaction with a nucleus while passing matter. Typically, 30%
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of the initial energy is lost due to nuclear excitation and break-up. The strong interaction
produces many new particles also interacting with the medium, building up a hadronic
shower. Frequently occurring π0 particles decay very rapidly into two photons, which
results in the formation of an electromagnetic component of the shower. The nuclear
interaction length λ1 describes a hadronic shower. It is defined as the mean distance
between two hadronic interactions. The nuclear interaction length of a material is much
larger than its radiation length. Therefore, hadronic calorimeters, designed to measure
the showers of hadrons, occupy more space inside a detector compared to electromagnetic
calorimeters. For these kind of calorimeters, typically an alternating chain of thick layers
of very dense materials and thin layers of an active material is used. Similar to the
sampling type of the electromagnetic calorimeter, the shower develops in the passive
material layers and its energy deposition is measured in the thin stripes of active material.
The resolution of hadronic calorimeters is much worse compared to its electromagnetic
counter part:

σE
E

≥ 50%√
E

. (2.7)

This mainly comes from alternating amounts of electromagnetic components of a hadronic
shower and alternating the amount of energy that is lost in nuclear break-up. [16]

2.3. The ATLAS detector
Since the physics program of the ATLAS experiment includes besides the discovery of
the Higgs boson the precise measurement of SM parameters as well as a wide range of
searches for physics beyond the SM, the ATLAS detector [17] is designed as a multi
purpose detector in order to cope with many different signal signatures. It has a full
4π angular coverage around the beam pipe, a length of 46 meters and a diameter of 25
meters. In addition to the name giving system of toroidal shaped magnets, the ATLAS
detector consists of three main systems: the inner detector, the calorimeter and the muon
spectrometer, as can be seen in figure 2.1.

To describe the geometry of physics processes inside the ATLAS detector a right
handed coordinate system is used. Its origin is the interaction point at the center of the
detector. The positive x-axis points to the center of the LHC ring, the y-axis upwards
and the z-axis in the direction of the beam line. Therefore, the x− y plane, referred to
as transverse plane, lies perpendicular to the beam line. The transverse momentum and
the transverse energy

pT =
√
p2x + p2y ET =

√
E2

x + E2
y (2.8)

are defined as the projection of the momentum and the energy into the transverse
plane. The azimuthal angle φ is the angle in the transverse plane around the beam axis.
The polar angel θ refers to the angle relative to the beam axis. Hence the transverse
momentum and energy can be calculated as pT = p cos θ and ET = E cos θ. Other
important variables are the pseudorapidity which is defined as

η = − ln
(

tan θ

2

)
(2.9)

and the angular distance ∆R between two objects

∆R =
√
(φ1 − φ2)2 + (η1 − η2)2. (2.10)
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Figure 2.1.: The basic design of the ATLAS detector showing besides the magnet system
the inner detector (Pixel Detector, SCT tracker and the TRT tracker), the
calorimeter and the muon detectors [18].

The transverse and longitudinal impact parameters are calculated using the coordinates
of the point of closest approach between a track and the primary vertex. The transverse
impact parameter d0 refers to the distance of this point to the primary vertex in the
transverse plane and the longitudinal impact parameter z0 is the distance in z direction.

2.3.1. The inner detector
The inner detector measures the momentum and trajectories of charged particles in the
central region |η| < 2.5, performs particle identification and reconstructs the primary
vertex as well as additional secondary vertices. It is located inside a magnetic field of 2 T
produced by a solenoid magnet (figure 2.1) in order to bend the trajectories of charged
particles through the Lorentz force for the momentum measurement. Figure 2.2 shows
the layout of the inner detector in the central region of the detector. It consists of three
subsystems. The semiconducting Pixel Detector (PD) is located closest to the interaction
point and covers the region (|η| < 2.5). It consists of three cylindrical layers around the
beam axis in the central region. Here, an additional pixel layer [19], referred to as the
Insertable B-Layer (IBL), was added at a distance of 33 mm to the beam pipe during
the first long shutdown of the LHC, which is not shown in figure 2.2. The installation
of this additional layer was performed in order to improve the precision of measuring
the tracks and vertex locations as well as to provide an increased tracking robustness for
higher instantaneous luminosities. At the outer region of the detector the PD consists
of discs perpendicular to the beam axis. The pixel sensors of the IBL have a size of
(R−φ)× z = 50× 250 µm, the pixels sensors of the other three layers 50× 400 µm2. The
spatial resolution of the IBL is 10 µm in (R− φ) and 75 µm in z. For the other layers the
accuracy is 10 µm in (R− φ) and 115 µm in z in the central region.

The Semiconductor Tracker (SCT) is, similar to the PD, split into four cylindrical
layers in the central region. Each layer has silicon microstrips on the upper and the lower
side of the layer. One set of stripes is oriented parallel to the beam direction, the second
set of stripes is oriented orthogonal to the first one in order to measure both coordinates
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Figure 2.2.: Layout of the inner detector of ATLAS consisting of the Pixel Detector, the
Semiconducting Tracker and the Transition Radiation Tracker [20].

(R− φ, z). In the outer region of the sub-detector the SCT consists of a set of disks on
which microstrips are located radially around the beam axis. In the central region of the
detector the SCT reaches an accuracy of 17 µm in R− φ and 580 µm in z.

The information provided by Transition Radiation Tracker (TRT) is used for tracking
as well as for particle identification by measuring the transition radiation in the region
|η| < 2.0. The TRT is built out of layers of straw tubes each with a diameter of 4 mm
and filled with a gas mixture out of xenon, carbon dioxide and oxygen. A gold-plated
tungsten wire in the center of each tube along its central axis serves as an anode. In the
central region the tubes are orientated parallel to the beam axis. In the outer region the
tubes are arranged radially around the beam axis. Therefore, the TRT provides only
R − φ information with an accuracy of 130 µm. The transition radiation photons are
absorbed in the gas mixture of the tubes yielding larger signal amplitudes than ionizing
particles passing through the tubes. The transition radiation signal is distinguished
from a simple tracking signal tube by tube with different thresholds in the front-end
electronics. Since the mass of electrons is small compared to other particles they produce
more transition radiation than other particles. Therefore, the transition radiation signal
can be used to identify electrons.

As described, the inner detector of ATLAS makes use of both tracking techniques,
semiconductor technology and gaseous volumes for ionization measurements, discussed
in section 2.2. In 2015 [21] the resolution of the primary vertex position at a center of
mass energy of 13 TeV was measured to be σx,y ≈ 20 µm in the transverse plane and σz ≈
40 µm in z direction for a number of tracks associated to the vertex of 25 or higher. The
IBL installation could improve the transverse (longitudinal) impact parameter resolution
up to 40 % (60 %) [22]. The momentum resolution is measured with the 2015 dataset to
be 1.7 % for muons in the central detector region coming from J/Ψ → µµ decays [23].
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2.3.2. The calorimeter
The calorimeter of the ATLAS detector measures the energy of particles and jets. In
addition, the missing transverse energy of the event is calculated from the energy
depositions in the calorimeter. Figure 2.3 shows the layout of the ATLAS calorimeter.
It is divided into the electromagnetic calorimeter (ECAL) and the hadronic calorimeter
(HCAL), both consisting of different parts, all of them being sampling calorimeters,
discussed in section 2.2.

The ECAL is divided into the electromagnetic barrel and the two end-cap components.
The electromagnetic barrel calorimeter covers the range |η| < 1.475 and the end-cap
components measure particles between 1.375 < |η| < 3.2. The ECAL uses liquid argon
as active material and lead as the passive medium, combined in an accordion shape.
Liquid argon was chosen because of its intrinsic linear behavior as well as a pronounced
stability in the response over time and its hardness against radiation. Lead offers a high
cross section for bremsstrahlung and pair production. The accordion shape provides the
advantage of having multiple active layers in depth. The granularity of the ECAL is finest
for the first layer of the electromagnetic barrel calorimeter (∆η ×∆φ = 0.025/8× 0.1)
providing a high precision for measuring electrons and photons. The total depth of
the ECAL is 22 radiation length, long enough so that electrons and photons deposit
(almost) their full energy in the ECAL. Jets and tau leptons also deposit a large amount
of energy in the ECAL. However, their hadronic showers do not end in the ECAL
and extend into the HCAL. The energy resolution of the ECAL was measured to be
σE/E ≈ 10 %

√
GeV /

√
E [24].

The HCAL is placed outside the ECAL and consists of the tile calorimeter in the
central region, the hadronic end-cap calorimeter and forward calorimeter. The tile
calorimeter is divided into the tile barrel (|η| < 1.0) and two extended barrel components
(0.8 < |η| < 1.7). In the tile calorimeter steel serves as the absorber material and
scintillating tiles as the active component. The choice of using scintillating tiles provides
a maximal radial depth at a relatively low financial budget. The hadronic end-cap
calorimeters is located in the region 1.5 < |η| < 3.2. Here, liquid argon is used as
active material and copper as the passive material. The forward calorimeter covers
the range 3.1 < |η| < 4.9 and and consists of three different modules all using liquid
argon as active material. The first module uses copper as passive material and is
optimized for electromagnetic measurements. The other two modules are equipped
with tungsten as absorber material and are designed for measuring mostly the energy
of hadronic interactions. The energy resolution of the tile calorimeter was measured
to be σE/E ≈ 53 %

√
GeV /

√
E [25]. The energy resolution of the hadronic end-cap

calorimeter was determined to be σE/E ≈ 71 %
√
GeV /

√
E for pions [26]. The forward

calorimeter showed an energy resolution of σE/E ≈ 29 %
√
GeV /

√
E for electrons and

σE/E ≈ 94 %
√
GeV /

√
E for hadrons [27].

2.3.3. The muon spectrometer
The muon spectrometer of the ATLAS detector is designed to determine the momentum
of muons by performing a precise measurement of their trajectories which are bent by
the presence of a magnetic field. In addition, the muon spectrometer is used to trigger on
muon tracks. Figure 2.4 shows the layout of the muon spectrometer. It is a combination
of the large superconducting toroid magnets and a system of different types of gaseous
tracking chambers for tracking.

In the central region of the detector (|η| < 2.7), Monitored Drift Tubes (MDT) chambers
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Figure 2.3.: Layout of the calorimeter of the ATLAS detector. The electromagnetic
calorimeter consists of the barrel calorimeter and two end-cap components.
The hadronic calorimeter is divided into the barrel and extended barrel
component as well as the two-end cap and the forward calorimeter [28].

are used to precisely measure the tracks of muons. Each chamber consists of three to
eight layers of pressurized drift tubes with a length of 30 mm filled with a mixture of
Argon and carbon dioxide. The sense wire in the middle of each tube is made out of
tungsten-rhenium and has a diameter of 50 µm and is operated at a voltage of around
3000 V. The MDTs give an average resolution of 80 µm per tube.

The innermost layer of the forward region 2 < |η| < 2.5 is covered by Cathode-Strip
Chambers (CSC), since they show a higher rate capability and better time resolution.
The CSCs are multiwire proportional chambers. The wires are oriented in the radial
direction with a diameter of 30 µm. The two cathodes are divided into strips. One set of
strips is orthogonal to the wires, the other set of stripes parallel to the wires. Therefore,
both coordinates can be measured. The gas mixture used inside the CSCs is also a
mixture of argon and carbon dioxide. The operating voltage is 1900 V. The resolution is
60 µm per CSC plane.

In order to provide the capability to trigger on muon tracks, a system of fast trigger
chambers is also installed in the muon spectrometer. The fast trigger chambers are needed
to deliver track information within a very short period of time. In the central region
(|η| < 1.05) Resistive Plate Chambers (RPC) and in the end-cap region (1.05 < |η| < 2.4)
Thin Gap Chambers (TGC) are used for this purpose. The RPCs are gaseous parallel
electrode-plate detectors, whereas the TGCs are specifications of multi-wire proportional
chambers. These two types of trigger chambers can deliver signals within 15-25 ns. The
momentum resolution of muons was measured [30] to be σp/p ≈ 0.25TeV/pT⊕0.17pT/TeV
in the central region of the detector. [17]

2.3.4. Trigger system
The trigger system of ATLAS [31] is an essential part of the experiment deciding if an
event from a bunch-crossing should be recorded for further investigation. It underwent
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Figure 2.4.: The muon spectrometer and the outer magnet system. The muon spectrom-
eter consists of Monitored Drift Tubes (MDT), Cathode Strip Chambers
(CSC) as well as Resistive Plate Chambers (RPC) and Thin Gap Chambers
(TGC) [29].

a major update during the first long shutdown of the LHC in 2013 and 2014 in order
to improve its performance under an increased center of mass energy, higher luminosity
as well as an increased number of proton-proton interactions per bunch crossing. The
trigger system consists of a first-level trigger (L1) which is based on hardware and a
high-level trigger (HLT), based on software.

The trigger decision on L1 is based on high energetic objects, like photons, electron,
muons, tau leptons and jets as well as missing transverse energy. It is made by the
Central Trigger Processor (CTP) based on information of the calorimeter and the muon
system. The main systems used here are the L1 calorimeter trigger (L1Calo) and the L1
muon triggers.

The L1Calo trigger identifies regions of interest (RoI) and multiplicities for electrons,
photons, taus and jets. It consists of the Preprocessor, the Cluster Processor and the
Jet/Energy Processor. The Preprocessor digitizes and calibrates the analogue signals
and transmits the information to the Cluster Processor and the Jet/Energy Processor.
The Cluster Processor defines RoIs for electrons, photons and taus as 2× 2 trigger tower
clusters, where a trigger tower is built from the cells inside ∆η ×∆φ = 0.1× 0.1 of the
ECAL. A RoI is formed if the summed transverse energy from at least one pair of nearest
neighbor towers is larger than a programmable threshold. In addition, different isolation
criteria can be used. The RoIs of jets are identified by the Jet/Energy Processor. The
jet RoI are found by looking for a set of 4× 4 or 8× 8 trigger towers for which the sum
of the transverse energy is higher than a given threshold and which surrounds a 2× 2
trigger tower area that shows a local maximum of energy. The area of the 2× 2 trigger
tower in the center is the jet RoI. They are used to calculate global sums of scalar and
missing transverse energy of the event.

The L1 muon trigger uses the fast trigger chambers (RPCs and TGCs) to look for
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muon tracks forming coincidences between the different planes of the trigger chambers.
The trajectory of a muon is compared to fixed templates of muon trajectories above a
certain transverse momentum threshold.

The information of the L1Calo trigger and the L1 muon trigger are transmitted to the
CTP which makes the trigger decision on L1. The initial bunch crossing rate of 40 MHz is
reduced to 100 kHz by the L1 trigger [32]. In 2016, a new topological trigger (L1Topo) was
added to the detector. L1Topo searches for geometric or kinematic associations between
objects from the L1Calo trigger or the L1Muon trigger. Also the missing transverse
energy is recalculated using more information. However, the data set used for this thesis
was recorded in 2015, before L1Topo was installed.

The HLT processes the events that are accepted by the L1 trigger using finer-granularity
calorimeter information as well as tracking information from the muon system and the
inner detector. For this the HLT reconstruction can be performed either within the L1
RoIs or for the full detector. Most of the HLT triggers use a two-stage algorithm. The
first stage reconstruction filters out most of the events in a small time window. The
second stage takes more time for a more precise reconstruction for the events passing
stage one. The final recording rate is reduced to 1 kHz by the HLT trigger [32].

2.4. Particle jets in ATLAS
Particle jets are the most frequently occurring collision products at the LHC and refer
to a collimated cone of hadrons and other particles. This spray of particles is produced
as a consequence of the production of quarks or gluons at collider experiments and the
confinement of Quantum Chromodynamics, discussed in section 1.1. The process by
which the quarks and gluons produce jets at collider experiments is called hadronization.
It can be explained qualitatively with the example of two quarks being produced in e.g.
a qq̄ → Z → qq̄ process in a proton-proton collision drifting apart from each other. The
two quarks interact through the exchange of virtual gluons (figure 2.5 (a)). The gluons
carry color charge and therefore attractive interactions exist between the exchanged
gluons. These interaction squeeze the color field between the quarks into a tube. The
energy that is stored in the field increases linearly with the distance of the quarks. The
energy density was measured to be approximately 1 GeV/fm. At some point the energy
stored in the field is sufficient to produce a new qq̄ pair (figure 2.5 (b)), resulting in a
breaking of the color field which can be thought of as energetically favorable for nature.
This process of creating new qq̄ pairs is repeated until all the quarks end up with a
relatively low energy and therefore combine into colorless hadrons (figure 2.5 (c)). Some
of these hadrons decay before reaching the detector producing also other particles like e.g.
photons or leptons. Finally the two spreads of hadrons and other particles originating
from the initial quark and antiquark are observed as two jets. On average 60 % of a
jet’s energy is built up by charged particles, mostly pions, 30 % by photons from neutral
pion decays and 10 % by neutral hadrons like neutrons. It is not possible to resolve all
particles in a jet because groups of particles hit the same calorimeter cells.

In general, the process of hadronization is poorly understood and no derivation from
first-principles has been achieved. Similarly, no analytic proof of the underlying concept
of color confinement exists, although progress is made using lattice QCD calculations. In
modern particle physics, phenomenological models [33, 34] are used to create a description
of hadronization which can describe the experimental data to some extend.
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Figure 2.5.: Visualization of jet production originating from two intial quarks flying apart
from each other. The interaction of the two quarks through the exchange
of virtual gluons and the attractive interaction between these gluons which
squeezes the color field is visualized in (a). At a certain distance the energy
in the field is large enough to create a second qq̄ pair from the vacuum (b).
This process is repeated many times until color neutral hadrons are formed
(c). These particles and their decay products are observed as a jet.
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2.4.1. Jet reconstruction
The strict definition of a jet in collider experiments depends on the algorithm that is
used to reconstruct the jet by forming topological clusters of calorimeter cells with energy
depositions. The algorithm used throughout this thesis is the anti-kt algorithm [35]. The
input for this algorithm consists of a collection of topological clusters built from a seed
calorimeter cell showing a significant energy deposition above a certain noise threshold
and the neighboring cells. The distance measure dij between two objects i and j in the
anti-kt algorithm is defined as

dij(R) = min

(
1

p2T,i

,
1

p2T,j

)
∆R2

ij

R2
, (2.11)

where pT,i (pT,j) is the transverse momentum of the object i (j), ∆Rij the angular
distance as defined in equation (2.10) and R the radius input parameter of the algorithm,
which is chosen to be R = 0.4 for the work of this thesis. In addition, the exit condition
di for the sequential algorithm is defined as

di =
1

p2T,i

, (2.12)

The algorithm works as follows. First, the distance measure dij is calculated for all
possible combinations of objects i and j in the event as well as the exit condition di for
all objects. Next, the smallest value of the distance measures and the exit conditions is
identified. If the smallest value is a distance measure dij the objects i and j are combined
by adding their four-vectors. If the smallest value is an exit condition di, the object i is
identified as a jet and removed from the list of objects. This procedure is repeated until
no objects are left.

Effectively, the anti-kt algorithm starts by recombining the hard objects of the event
with the spatial closest ones. This is a result of weighting the distance ∆R2

ij with 1/p2T .
The distance measure will be smaller for pairs involving a hard object with a high
momentum compared to the distance measure of two soft objects with a similar spatial
distance. Therefore, the soft particles get mostly combined with a hard object before
the soft particles merge among themselves. If there is no second hard object within 2R
around the first hard object, this object will accumulate all soft particles within R. The
result is a jet with the shape of a perfect cone. If there is a second hard object within
a distance of 2R but not within R, two hard jets with more complex shapes will be
formed. For the case of having two hard objects within a distance of smaller than R, the
algorithm will return a single jet with a possibly more complex shape. The important
feature of this algorithm is that these complex shapes are determined by the hard objects,
namely by the amount of transverse momentum, and not by the soft particles. The
robustness against the contributions from soft particles offers some advantages, although
it cannot be judged a priori whether a jet algorithm with a resilience or a sensitivity
of soft particles should be preferred. A robustness against soft particles can simplify
certain theoretical calculations and minimize the decrease of the momentum resolution
due to effects coming from the underlying event or additional hard interactions in the
same bunch crossing.

2.4.2. Jet calibration
The response of the ATLAS calorimeter is different for electromagnetic energy depositions
compared to hadronic energy deposition, referred to as a non-compensating calorimeter.
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This results in the challenging task of calibrating the jet energy scale. This calibration is
done as a relative calibration to the electromagnetic scale. Therefore, the calorimeter
is calibrated by default at the electromagnetic scale, which would underestimate the
energy of hadronic jets without further corrections. The response of the calorimeter
at the electromagnetic scale depends on the energy and the η position of the jet. This
section reviews the different steps of the jet energy scale calibration as performed in 2015
by ATLAS [36].

Origin Correction After reconstructing the jets from the topological clusters as explained
above the jet direction is corrected so that its origin is compatible with the corresponding
primary vertex. This correction is necessary because the topological clustering and the
jet reconstruction algorithm use the center of the ATLAS detector as the origin for
the four-momenta. The origin correction has no influence on the energy of the jet but
improves the η resolution of jets.

Pile-up correction Next, a pile-up correction is performed accounting for additional
energy contribution to the jet energy from additional proton-proton interaction in the
same (in-time pile-up) as well as in previous and following bunch crossings (out-of-time
pile-up). This correction aims at subtracting this additional energy and is carried out
in two steps. First, an energy subtraction based on the area A of the jet is performed.
This subtraction is based on the median energy density ρ in the η × φ plane. Second, a
residual correction is applied as a function of the number of primary vertices NPV in the
event, to cover in-time pile-up contributions, and the average number of proton-proton
collisions per bunch crossings < µ >, to cover out-of-time pile-up contributions. The
dependence on these two variables is measured to be approximately linear. Therefore,
the full pile-up correction on the transverse momentum of the jet can be formulated as

pcorr
T = pEM

T − ρ×A− α× (NPV − 1)− β× < µ >, (2.13)

where pEM
T is the transverse momentum at the electromagnetic scale after the jet recon-

struction is performed.

Jet energy scale and η calibration This calibration step corrects the reconstructed
jet energy, after application of the origin and pile-up correction, to the jet energy at
particle level and is therefore performed using MC simulations. Reconstructed jets are
matched to particle level jets within ∆R < 0.3. For the derivation of the calibration only
isolated jets are used to avoid introducing a bias from the geometrical matching. The
jet calibration factor for this correction is the inverse average energy response which is
defined as the mean of a Gaussian fit to the center of the distribution showing the ratio of
the reconstructed energy and the particle level energy of the jet. This correction factor is
provided as a function of the energy and η. In addition, biases in the jet η reconstruction
are also accounted for. A bias can arise from a jet reconstructed in a transition region
between different calorimeter technologies or different calorimeter granularities. The two
sides of the transition region show a different energy response, which increases the energy
of one side of the jet compared to the other side.

Global sequential calibration The global sequential calibration refers to a series of
corrections applied independently one after the other. These corrections take care of
the dependence of the jet energy scale on longitudinal and transverse features of the jet,
which are (largely) uncorrelated among each other. Such dependencies originate mainly
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from the particle composition of a jet, varying between jets initiated from gluons or
quarks, and differences in the detector interaction with different particles. The correction
are constructed not to change the mean jet energy. In 2015, five corrections were used in
the global sequential calibration accounting for the dependencies of the jet energy on
the following, by MC simulation well modeled variables: the energy measured in the
first layer of the tile calorimeter as well as the one measured in the third layer of the
electromagnetic LAr calorimeter, the average momentum weighted transverse distance
between the jet and all associated tracks, the number of tracks and the number of muon
segments. This correction reduces e.g. flavor dependencies of the jet energy scale.

In-situ calibration In-situ calibration methods are applied only to data in order to
account for differences in the jet response between data and MC simulations. These
differences come from limitations in the detector material description, the modeling of
hadronic and electromagnetic showers as well as the modeling of pile-up effects. The
effect of this calibration step is that the jet energy scale in data and in MC simulation
are set to the same scale by construction.

Several steps are involved in this calibration step. The η-intercalibration uses dijet
events in order to correct the response of forward jets. The basic idea behind this
approach is that the transverse momentum of both jets from a dijet event is expected to
be the same. The central region of |η| < 0.8 is used as a well-understood reference region
with a very homogeneous detector geometry. Therefore, for events with one central and
one forward jet with η > 0.8, the well-measured reference jet in the central region can be
balanced against the second jet in the forward region.

In addition to the η-intercalibration, three other in-situ calibrations correct the response
of central jets with η < 0.8. Each of these methods focuses on different pT regions using
different reference objects recoiling against the jet. Z bosons and photons are used as
reference objects for low and intermediate energy ranges. Photons are good reference
objects because they are measured (mostly) with the electromagnetic calorimeter. The cal-
ibration of Z bosons rely on the leptonic decays into electron-positron or muon-anitmuon
pairs, which are again measured with quite high precisions through the tracking and the
electromagnetic calorimeter or the muon spectrometer. The Z-jet calibration is limited
to 20 < pT < 506 GeV due to the statistical limitation of the pT range of the Z boson.
Photons can be used in 36 < pT < 944 GeV because of the low statistic at higher energies
and dijet contamination. Additionally, a multijet balance is performed in order to extend
the calibration to higher regions of pT. Here, events with three or more jets are used
where one high energetic jet is balanced against several lower energetic jets with energy
accessible to the Z/γ-jet calibration.

For each in-situ calibration method the quantity R is calculated as the pT ratio between
a jet and its reference object. The ratio of this quantity in data and in MC simulation

c =
Rdata

RMC (2.14)

is used as the estimator of the ratio between the jet energy scale in data and MC simulation
as a function of the transverse momentum of the jet and, for the η-intercalibration, also
as a function of η. These calibration factors of each in-situ method are combined into a
final in-situ calibration which covers the full kinematic region. The size of the overall
correction is approximately 4 % at low energies and decreases to 2 % at a transverse
momentum of 2 TeV.
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Jet energy scale uncertainty The here presented jet calibration includes up to 80
different sources for uncertainties on the jet energy scale. Most of them originate from
the in-situ calibration coming from mismodeling of physics effects in the MC simulation,
the event selection for the calibration, sample statistics and the electron, muon and
photon energy scales. Uncertainties associated to a potential mismodeling of certain
physics effects are determined by performing the calibration method with two different
MC generators and taking the difference between the two results as the uncertainty. The
full uncertainty is provided as a function of pT and η. For a central jet at η = 0 the
uncertainty is approximately 6 % at low energies and decreases to 1 % at 200 GeV. From
here up to an energy of 2 TeV the uncertainty stays approximately flat with a small
increase due to the decrease in the statistical power related to the in-situ calibration
methods. At 2 TeV the overall uncertainty increases again to higher values because the
end of the range related to the multijet balance in-situ technique is reached.

2.4.3. Jet cleaning
Jets that are selected by an analysis are required to pass certain quality criteria which
increases the probability that the jets come from the proton-proton collision and not
from a non-collision origin, such as detector noise or cosmic rays. Two sets of quality
criteria are defined, referred to as loose and tight selection critera [37]. The loose selection
criteria result in a selection efficiency for jets from proton-proton collisions of 99.5 % or
higher depending on the energy of the jet. The tight selection criteria introduce one
additional criterion to the loose selection criteria and is mostly used for analyses being
sensitive to non-collision backgrounds. The tight selection criteria result in an efficiency
of 95 % or higher.

The loose selection consists of a set of criteria designed to reject jet signals from
sporadic noise bursts in the HCAL, large coherent noise or isolated pathological cells in
the ECAL, hardware issues, beam induced background and cosmic muon showers. Here,
beam induced backgrounds arises from proton losses upstream of the interaction point.
Especially hereby produced muons can reach the detector due to their long range in
matter and deposit energy in the calorimeter of the detector, which can be interpreted as
a jet. Signals from sporadic noise bursts in the HCAL are rejected using variables that
describe the quality of the signal pulse shapes and the amount of cells with large negative
energy deposits. Signals from noise in the ECAL are rejected by defining criteria on the
energy fraction deposited in the ECAL and the energy fraction deposited in the LAr
calorimeter cells of jets with poor signal shape quality as well as the average pulse shape
quality. Three more general criteria make use of the jet energy fraction coming from
charged particles using tracking information, the energy fraction deposited in the energy
layer with the most energy deposit and the total energy fraction deposited in the ECAL.
These criteria reject signals from hardware issues, beam induced background and cosmic
rays.

The tight jet cleaning selection adds one more condition to the loose jet requirements
in order to further suppress non-collision backgrounds. This criterion is based on the
charged-particle fraction fch and the maximum fraction of the jet energy collected by
a single calorimeter layer fmax: fch/fmax > 0.1, where fch is defined as the scalar sum
of the transverse momenta of tracks which are matched to the primary vertex and lie
within ∆R < 0.4 around the jet axis, divided by the jet transverse momentum determined
from the calorimeter information fch =

∑
ptrack, jet

T /pjet
T . This criterion is based on the

observation that fake jet candidates tend to have fch ≈ 0 and fmax ≈ 1, whereas jets
from proton-proton collisions have typically fch > 0 and fmax < 1.



3. Unfolding

3.1. Motivation
High energy experiments like ATLAS at the LHC test the SM and search for new physics
phenomena, for example gravitons. The usual approach to search for new physics is
visualized in figure 3.1. First, one or a group of theoretical models describing physics
beyond the SM to be tested is chosen. Then, the corresponding event signature predicted
by this specific theoretical framework is identified. As discussed in section 1.3, such
a theory could be the ADD model and the corresponding signature could describe a
monojet-like event-topology, namely a large amount of missing transverse energy together
with a high energetic jet. Afterwards, an event selection is optimized for the specific
event-topology and the SM background is estimated. Finally, the event yield of the
analysis is compared to the SM expectation in order to determine if events predicted by
the theory in question might have been observed. If no excess above the SM prediction
can be found, the results of the analysis can be used to set exclusion limits on parameters
of the theory, for example on the fundamental Planck scale of the ADD model.

However, in order to set limits on a given theory it is necessary to know the efficiency at
which events predicted by this theory pass the event criteria of the analysis. This requires
an exact knowledge and understanding of the ATLAS detector, which is combined into a
full simulation of the ATLAS detector. The simulation accounts for all imperfections of
the detector, such as reconstruction efficiencies, limit acceptance and finite resolutions.
This makes it possible to get a theoretical prediction in form of an event yield in a given
phase space that can be compared to the event yield of an analysis and used to set limits
on the theory. The crucial point is that this simulation of the ATLAS detector and the
underlying efficiencies are not available outside the ATLAS collaboration.

Limitations of this approach Since the ATLAS simulation and the underlying efficien-
cies are not accessible outside the collaboration it becomes very difficult to set limits on
other theories that are not included in the original analysis. Typically, in the original
publication a few benchmark points of the chosen theory are transfered through the
ATLAS simulation and compared to the event yield of the analysis. Limits are set
commonly on simplified theories which might later be translated into much weaker limits
for more realistic models. In this way, the results of a search analysis are used quite
inefficiently since only a very limited amount of theoretical models can be tested. Likewise
it is complicated to combine the results from ATLAS analyses with other analyses inside
ATLAS or even other experiments, because the observed event yield depends on the
detector. This marks a major drawback in the way results from LHC analyses are inter-
preted because the most powerful limits or signal significances are obtained from analyses
that combine several measurements. For example, the discovery threshold of 5σ signal
significance in the Higgs boson search could only be reached by ATLAS after combining
several measurements analyzing different decay channels of the new fundamental particle.
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Figure 3.1.: Logic diagram of a typical ATLAS search analysis for physics beyond the
Standard Model. First, a theory that should be tested is chosen and the
corresponding event signature is identified. Afterwards, an event selection is
defined and the backgrounds from SM processes are determined. The final
event yield can be compared to the theoretical prediction after the use of
the ATLAS simulation, which is not available outside the collaboration.

Unfolding The so called unfolding is a process designed to overcome the limitations
mentioned above. Unfolding a distribution means correcting it for all detector effects and
efficiencies as well as, if desired, for certain physics effects1 using amongst the detector
simulation. Therefore, the distribution at reconstruction level of an analysis can be
turned into a particle or parton level distribution. In the example of the Monojet analysis,
the unfolding accounts for example for bin migrations in the energy distribution of the
leading jet caused by resolution effects.

The big advantage of unfolded distributions is that they are independent
of the detector. Hence, they can be compared to any theories and not
only to the ones considered in the original analysis.

Therefore, unfolded results can be used for a longer period of time testing future theories
that are not formulated yet. In addition, it is much easier to combine unfolded results
with other analysis and experiments. Publishing unfolded distributions leads to a more
efficient and sustainable way of presenting the results of an analysis.

The strategy for an analysis of the ATLAS collaboration providing unfolded distribution
is shown in figure 3.2. First, a signature that is sensetive to a variety of theoretical
models is chosen. Then, a corresponding event selection is optimized for that signature
and the SM background is determined. The event yield as a function of an observable is
then unfolded using the ATLAS simulation. This unfolding procedure produces a well
defined cross section in a well defined phase space, which can be easily calculated for a
given theory or obtained from MC simulations. Therefore, the unfolded results can be
used to test a variety of theories during the analysis or after publication.

1When measuring for example the mass peak of a Z boson in a Drell-Yan process at a hadron collider,
the presence of e.g. final state radiation has an influence on the Z mass peak. This could also be
corrected for in the unfolding.
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Figure 3.2.: Logic diagram of an ATLAS search analysis using unfolding. After chosing
a signature for the analyis an event selection is optimized for this specific
signature. The background is estimated and the event yield unfolded using
the ATLAS simulation. The unfolded result can be compared to any theory.

3.2. Unfolding topologies
So far, when unfolding was used in ATLAS analyses, mostly a background subtraction
from the observed data was performed before the unfolding. That means that one physical
process was defined as the signal-process and all other processes that also pass the selection
of the analysis were considered as background processes. The dominant backgrounds are
typically estimated using (semi) data-driven methods while sub-dominant backgrounds
can be estimated purely using MC simulations. The background is subtracted from
the observed data and the resulting distribution is unfolded using an unfolding matrix
obtained from a MC simulation of only the signal process, as visualized in figure 3.3.
In other words, the distribution that is considered as the input to the unfolding is the
difference of the observed data distribution and the background distributions

InputUnfolding = Data −
∑
i

Backgroundi (3.1)

This thesis aims at exploring a different strategy of how to use unfolding in an ATLAS
analysis. Instead of unfolding a single signal process, an inclusive event topology is
unfolded. That means that

a selection based on a given event topology is performed, which can be
passed by multiple processes, and the resulting distribution is unfolded
without subtracting any background,

as visualized in figure 3.4. The input to the unfolding is the selected data without any
subtraction

InputUnfolding = Data (3.2)
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Figure 3.3.: Visualization of the conventional use of unfolding in an ATLAS analysis.
The obtained data of events passing the event selection of the analysis
incorporates contribution from different processes: one process is defined as
the signal (pink), the other processes are considered as background (other
colors). After the background determination, the background is subtracted
from the signal process. Afterwards, the signal process is unfolded using the
unfolding matrix built from this specific signal process.
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Figure 3.4.: Visualization of topology unfolding. Different processes (P1-P6) pass the
event selection. No distinction into signal and background processes is
made. The selected data is unfolded using a unfolding matrix which has
contributions from each process that pass the selection. Therefore, also the
unfolded result consists of contributions from different processes.
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This strategy, referred to as topology unfolding or unfolding a topology, represents a
more general method of unfolding, because here a cross section is defined that contains
multiple processes and that can correspond to a quite complex event topology, which
makes the unfolding more challenging. To explore the potential of the topology unfolding
method, a monojet-like topology is tested in the following studies. The results of the
newly introduced method is validated by comparing its results to a covnentional way of
unfolding. A comparison between the uncertainties on the unfolding methods is presented.
In addition, the limits at particle level are set on a parameter of the ADD model using
topology unfolding and the conventional unfolding in order to compare the results.

From a conceptional point of view, the topology unfolding method could offer some ad-
vantages. Especially the omission of the background subtraction could give rise to a higher
sensitivity of searches for new physics, because it is associated with experimental and
often also theoretical uncertainties. The subtraction of the background in equation (3.1)
is the Achilles’ heel of the conventional search. The uncertainties on the background
determination have a direct impact on the distribution which is used as input for the
unfolding. This might lead to a larger effect of the uncertainties on the unfolded results
compared to the topology unfolding method, because here the experimental uncertainties
have only an indirect impact on the unfolded result by changing the relative fractions of
the different contributions to the unfolding matrix. Furthermore, some uncertainties will
be reduced by construction like the uncertainty coming from the limited statistic of the
MC simulation used to construct the unfolding matrix, since in the conventional way
this matrix is constructed from one single process, whereas for topology unfolding this
matrix is the sum of many matrices from different processes. More details on this part
of the conceptional difference can be found in section 4.7. In addition, using topology
unfolding leads to a clearer separation of experimental and theoretical uncertainties,
since the conventional way introduces theoretical uncertainties in many cases already in
the measured distribution that serves as input to the unfolding. This comes from the
fact that the background determination is done in most cases with semi data-driven
techniques. These methods still rely on MC simulation and therefore do contain theoreti-
cal uncertainties. This can happen for example by introducing a scale factor obtained
from MC simulation for transferring a background process from a control region into the
signal region, which is a commonly used method for background determination. The
theoretical uncertainties in the topology unfolding can again only influence the unfolding
matrix. More important is however, that the theoretical uncertainties can be applied to
the theoretical expectation to which the unfolded result is compared to in e.g. a limit
setting procedure. This creates a more intuitive handling of theoretical uncertainties.
This topic is further discussed in section 5.4.1.

3.3. Iterative unfolding using Bayes’ theorem
This section describes an unfolding procedure using Bayes’ theorem which arises quite
naturally from the task that unfolding represents. Thinking of a MC simulation that
generates events of a given process, transfers these events through a detector simulation
and creates an output at reconstruction level, the problem of unfolding can be formulated
in the following way.

Effectively, the simulation creates repeatedly an event in a bin Tj of the parton level
distribution of a given observable, which ends up after considering physics effects, like e.g.
final state radiation, and detector effects in a bin Ri of the reconstructed distribution.
Therefore, the simulation emulates the conditional probability P (Ri|Tj) of observing the
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event in the bin Ri given that it was created in the bin Tj . Therefore, accepting that
this problem is indeed of a truely probabilistic nature, the number of observed events
N(Ri) in the i-th bin can be described as

N(Ri) =
∑
j

P (Ri|Tj) ·N(Tj), (3.3)

where N(Tj) represents the number of events that were created in the j-th bin. The process
of unfolding aims to estimate the reverse way of this mapping. Given a reconstructed
distribution, it tries to estimate how many events were created in each bin of the parton
or particle level distribution, which is equivalent to estimate P (Tj |Ri) from P (Ri|Tj)
given by the MC simulation

P (Ri|Tj) −→ P (Tj |Ri). (3.4)

This formulation of the problem that unfolding represents leads directly to Bayes’ theorem,
which connects two specification of such conditional probabilities:

P (A|B) =
P (B|A) · P (A)

P (B)
. (3.5)

Applying Bayes’ theorem to the unfolding task gives the following starting point for the
conditional probability P (Ti|Rj) in question:

P (Ti|Rj) =
P (Rj |Ti) · P0(Ti)

P0(Rj)

=
P (Rj |Ti) · P0(Ti)

NT∑
l=1

P (Rj |Tl) · P0(Tl)

, (3.6)

where P0(Ti) and P0(Rj) describe prior probabilities for creating an event or observing
an event in bin i or j respectively and NT the number of bins of the parton or particle
level distribution. Then, the number of events in the i-th bin of the parton or particle
level distribution nunf (Ti) can be calculated from the number of observed events nrec(Rj)
via

nunf (Ti) =

NR∑
j=1

P (Ti|Rj) · nrec(Rj). (3.7)

This considerations takes only the migration of events from one bin to another due to
detector or physics effect into account. In order to use Bayes’ theorem in a real analysis,
it has to be generalized in order to describe two more effects. The first effect arises
from events that are created but not observed due to an inefficiency of e.g. the detector,
referred to as miss-events. The second effect describes events that get reconstructed
but have no valid correspondent at parton or particle level, referred in the following
to as fake-events. Such an event could for example come from an object of the event
that fails a kinematic criterion at parton or particle level but passes the criterion at
reconstruction-level due to e.g. a smearing of the corresponding kinematic variable
due to the finite resolution of the detector. Considering these two effects in addition,
equation (3.6) and equation (3.7) turn into the final expression for the distribution at
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parton or particle level estimated from the reconstructed distribution:

P (Ti|Rj) =
P (Rj |Ti) · P0(Ti)

NT+1∑
l=1

P (Rj |Tl) · P0(Tl)

nunf (Ti) =
1

εi

NR∑
j=1

P (Ti|Rj) · nrec(Rj)

=

NR∑
j=1

Mij · n(Rj),

(3.8)

(3.9)

where M is the so-called unfolding matrix. The generalization of Bayes’ theorem reveals
itself in two parts. First, the inefficiencies are corrected for by multiplying an overall
factor 1/εi, where εi describes an overall reconstruction efficiency for the bin i. Second,
the fake-events are accounted for on the one hand in the normalization of P (Tj |Ri) where
an extra bin has been added and in the other hand in the normalization of the prior
probability. The following list provides the definition of every single component of the
unfolding formula.

• P0(Ti) =
n0(Ti)

n0(Ttot)+nMC(fakestot)
is the prior probability of the i-th bin. It is calculated

by dividing the number of events created in the i-th bin divided by the overall
number of generated events plus the number of overall fake-events.

• P (Rj |Ti) =
Nij

nMC
0 (Ti)

is calculated by dividing the ij-th entry of the so-called response
matrix N by the total number of generated events in the i-th bin. The entry Nij

quotes how many events that are generated in bin i get reconstructed in bin j.

• Since the last summand of the denominator in equation (3.8) takes the fake-
events into account, the definition is here slightly changed to P (Rj |Ti)fake =

nMC(fakesj)

nMC(fakestot)
=

nrec(Rj)−
NT∑
i=1

Nij

NR∑
l=1

(
nrec(Rl)−

NT∑
i=1

Nil

) and P0(Tl)fake =
nMC(fakestot)

nMC(fakestot)+nMC
0 (Ttot)

.

• εi =
NR∑
k=1

P (Rk|Ti) is the efficiency of observing an event that was generated in

the i-th bin of the parton- or particle-level distribution in any valid bin of the
reconstruction-level distribution.

The physics effect that should be corrected for in the unfolding can be handled through
the event or object selection on particle or parton level. Final state radiation can for
example be accounted for in the unfolding by selecting the particles on parton level
directly after the hard interaction before they can radiate off any other particles. [38]

Iterative unfolding procedure In a real analysis, the response matrix and the parton
or particle level distributions is taken from MC simulations. Especially the use of a
prior probability that has to be determined by the simulation of the same process that
should be measured in the analysis seems to be a conceptional limitation of this approach.
Therefore, an iterative unfolding procedure has been developed which aims at reducing



3.3 Iterative unfolding using Bayes’ theorem 35

the influence of choosing the prior probability. In each step of this iterative procedure
the parton or particle level distribution n0(Ti) used to calculate P0(Ti) is replaced by the
unfolded result of the previous iteration nunf (Ti). So after the first step of the unfolding
where as a particle or parton distribution a MC simulation was used, the replacement

P 1st step
0 (Ti) =

nMC
0 (Ti)

nMC
0 (Ttot) + nMC(fakestot)

(3.10)

↓ (3.11)

P 1st iter.
0 (Ti) =

n1st step
unf (Ti)

n1st step
unf (Ttot) + nMC(fakestot)

(3.12)

takes place, where the fake distribution stays the same. In the second iteration n1st step
unf (Ti)

is replaced by n1st iter.
unf (Ti) and so on. It can be shown for simulated data that the

probability obtained from the unfolding P unf
0 lies between PMC

0 and the true probability.
In addition, the remaining bias resulting from the choice of the prior distribution can

be estimated in a dedicated test and its result is considered as a systematic uncertainty.
Typically, the resulting uncertainty is sub-dominant compared to other uncertainties
introduced by the unfolding. Furthermore, studies were completed in the past performing
unfolding with initial prior probabilities that showed a completely different shape than
the underlying parton distribution showing that this procedure is still able to obtaining
convincing results. More crucial for this unfolding method seems to be the response
matrix and therefore the underlying detector simulation as well as the distribution at
reconstruction level is unfolded.

Making use of this iterative procedure requires the formulation of a convergence criterion
that determines how many iterations are performed. In principle, a smaller number of
iterations should result in a larger bias from the choice of the initial prior probability,
whereas a higher number of iterations increases the statistical uncertainties and their
correlation between the bins. If too few iterations are performed a signal of new physics
that might be present in the data distribution but not in the MC simulation used for the
unfolding could potentially be lost since the unfolding procedure needs a few iterations
to incorporate the signal into the prior probability. Two criteria are used in the following
analysis to determine a suitable number of iteration. First, the unfolded distribution of
the current iteration j is compared to the unfolded distribution of the previous iteration
j − 1 using the following definition

χ2
red =

1

Nbins

Nbins∑
i=1

(nj
unf − nj−1

unf )
2

(σj
i )

2 + (σj−1
i )2

, (3.13)

where σj
i is the uncertainty of the i-th bin of the unfolded distribution from the j-th

iteration. If the two distributions are statistically consistent in terms of

χ2
red < 1, (3.14)

no further iterations are performed. This criterion ensures that a signal present only
in the data cannot be lost by performing too few iteration. Second, the dedicated
uncertainty describing the bias from choosing the initial MC prior probability is required
to be sufficiently small.
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Uncertainty propagation The uncertainties of the measured distribution nrec(Rj) are
propagated through the unfolding by taking into account that also the unfolding matrix
Mij depends on this distribution after the first step of the unfolding because the MC prior
distribution is replaced by the unfolded result after each iteration. Since the unfolding
takes the migration of bins into account, it correlates the uncertainties between different
bins. As explained later on, it is important to provide correlation matrices for the unfolded
distributions. In addition, the uncertainties on the reconstructed distribution that should
be unfolded might already be correlated between the different bins at reconstruction
level.

The uncertainty σ2
unf (Ti) of the i-th bin of the unfolded distribution is calculated by

σ2
unf (Ti) =

NR∑
j=1

(
∂nunf (Ti)

∂nrec(Rj)

)2

σ2
rec(Rj) (3.15)

+

NR∑
k=1

NR∑
l=1,l 6=k

(
∂nunf (Ti)

∂nrec(Rk)

)(
∂nunf (Ti)

∂nrec(Rl)

)
ρreckl σrec(Rk)σrec(Rl), (3.16)

where ρreckl = covrec(k,l)
σrec(Rk)σrec(Rl)

is the correlation coefficient, giving the correlation between
the two uncertainties σrec(Rk) and σrec(Rl) of the reconstructed distribution in bin
k and bin l using the covariance cov(k, l) of these two uncertainties. The correlation
matrix ρ could be diagonal for uncorrelated uncertainties. This could correspond to
the statistical uncertainties of the reconstructed distribution, which are in general not
correlated between bins for a given distribution. However, ρ could also not be diagonal
for an uncertainty that shows a correlation between bins, like an uncertainty coming
from the jet energy scale.

For the first unfolding step, calculating ∂nunf (Ti)/∂nrec(Rj) is trivial, since the unfold-
ing matrix does not depend on the reconstructed distribution. Therefore, the unfolded
distribution is just a linear combination of the different bins of reconstructed distribution
and it holds that(

∂nunf (Ti)

∂nrec(Rj)

)1st step
= Mij . (3.17)

The covariance matrix of the unfolded distribution is then simply

cov(i, j)unf1st step =
∑
k

∑
l

Mikcov(k, l)recMjl (3.18)

or

covunf
1st step = McovrecMT . (3.19)

For the first iteration, this does not hold anymore, because now the unfolding matrix
depends also on the reconstructed distribution. Therefore, the unfolded result is no
longer just a linear combination of bins of the reconstructed distribution. The Jacobi
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matrix becomes

Jij =
∂nunf (Ti)

∂nrec(Rj)
(3.20)

= Mij +
1

εi

NR∑
k=1

P (Rk|Ti)
NT+1∑
l=1

P (Rk|Tl) · n0(Tl)

∂n0(Ti)

∂nrec(Rj)
nrec(Rk) (3.21)

− 1

εi

NR∑
k=1

P (Rk|Ti) · n0(Ti)(
NT+1∑
m=1

P (Rk|Tm) · n0(Tm)

)2

NT+1∑
l=1

P (Rk|Tl)
∂n0(Tl)

∂nrec(Rj)
nrec(Rk)

(3.22)

= Mij +

NR∑
k=1

Miknrec(Rk)

(
1

n0(Ti)

∂n0(Ti)

∂nrec(Rj)
−

NT+1∑
l=1

εl
n0(Tl)

∂n0(Tl)

∂nrec(Rj)
Mlk

)
,

(3.23)

where the second summand takes the dependency of Mij on nreco(Rj) after the first
iteration into account. The term ∂n0(Ti)/∂nrec(Rj) is the same element of the Jacobi
matrix from the previous iteration until the first unfolding step is reached. Here, n0 is
the MC particle level distribution nMC

0 and is therefore independent of the reconstructed
distribution

∂nMC
0 (Ti)

∂nrec(Rj)
= 0. (3.24)

The elements of the Jacobi matrix are used for the uncertainty propagation but also for
providing the covariance matrix of the unfolded distribution which is now

cov(i, j)unf =
∑
k

∑
l

Jikcov(k, l)recJjl (3.25)

or

covunf = JcovrecJT . (3.26)

From this result the correlation matrix

ρunfij =
covunf (i, j)

σunf
i σunf

j

(3.27)

can be calculated. Some examples for such a correlation matrix are given later on when
the unfolded results will be discussed and an explanation is given why it is important to
calculate and publish these correlation matrices. [39]



4. Topology unfolding

This chapter presents the validation of the newly introduced method of topology unfolding.
The object and event selection used for this analyis represents the selection of a typical
monojet search and is defined in section 4.2. MC simulations of the two dominant
Standard Model backgrounds, Z → νν and W → τν in association with jets, are used
for this study. The two MC simulations are split event by event into pseudo-data and
MC background. The splitting is done by assigning every second event to the pseudo-data
and the rest of the events to the MC background sample independent of the fact if
the event passes the selection criteria or not. This choice tries to avoid a bias in the
splitting and is chosen because the events in the MC simulations are sorted by the
transverse momentum of the gauge bosons. After studying the resolution (section 4.3),
the distribution obtained by applying the selection are shown in section 4.4 in order to
check if a bias was introduced by the splitting algorithm. Next, the relevant quantities
for the unfolding are presented in section 4.5.1. After performing a closure test for the
unfolding, the pseudo-data is unfolded as described in section 4.5.2 and section 4.5.3.
Finally, the topology unfolding method is validated by comparing it to a conventional
way of unfolding (section 4.6). In addition, the uncertainties on the unfolding and the
influence of systematic uncertainties of the MC and data input on these two methods are
compared in section 4.7.

4.1. The dominant Standard Model contribution
The dominant SM background contribution in monojet searches are given by the Z → νν
and W → τν events in association with jets. Two Feynman diagrams for these processes
are shown in figure 4.1. The Z boson is produced in association with a jet originating
from an outgoing quark and decays into a neutrino and an antineutrino, which results
into a significant amount of missing transverse energy. Alternatively, the jet can also
occur from initial state radiation. The event topology of these events is the same as the
expected signal event topology, which makes the Z → νν process in association with
jets an irreducible background. The second dominant background is the production of a
W boson decaying into a tau lepton and a tau antineutrino, also in combination with
jets. Because the tau lepton has a short lifetime of about 290 femto seconds [40], it
decays before reaching the detector predominantly into a tau neutrino and one or three
charged and additional uncharged pions. The resulting detector signature is similar to
an energetic QCD-jet. The missing transverse energy comes from the neutrinos of the W
boson and the tau lepton decay.

4.2. Object and event selection
The object selection provides the definition of jets, electrons, muons, photons and missing
energy as used in the analysis. A distinction into baseline and good objects is made for
muons and jets. Baseline objects fulfill basic selection criteria and are used as input for
an overlap removal routine, a lepton veto and the missing transverse energy calculation.
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Figure 4.1.: Two examples for Feynman diagrams of the two dominant Standard Model
processes for the monojet search. A Z boson is produced in association with
a quark jet and decays into a neutrino and an antineutrino (a). A quark and
an antiquark produce a W boson which decays into a tau lepton and a tau
antineutrino (b).

Good muons and jets fulfill stricter criteria compared to the baseline selection and
are used in the final event selection of the signal and control regions. In general, the
here presented object and event selection follows very closely the selection of a recently
published monojet search [41]. The same selection will also be used in chapter 5 in order
to be able to compare results to the already published analysis.

4.2.1. Jet definition
Jets are reconstructed using the anti-kt algorithm, discussed in section 2.4.1, with a radius
parameter of 0.4. After calibration, jets are required to have a transverse momentum of
pT > 20 GeV and lie within |η| < 2.8. In addition, the jet candidates have to pass the
loose jet cleaning criteria, as discussed in section 2.4.3.

For low energetic central jets with |η| < 2.4 and 20 GeV < pT < 50 GeV a jet-vertex
fraction (JVT) value of > 0.64 is required in order to suppress jets coming from pileup
collisions. The jet vertex fraction is defined as the sum of the transverse momentum of
the tracks associated to the jet and the primary vertex divided by the sum of all tracks
associated to the jet. Jet candidates that fulfill these criteria are considered as baseline
jets and are used in the overlap removal routine and the missing energy calculation. If
the jet candidate fulfills in addition the requirements imposed by the overlap removal
routine, as discussed in section 4.2.5, and has a transverse momentum of pT > 30 GeV, it
is considered as a good jet.

4.2.2. Muon definition
Muons used in this analysis are reconstructed using the so-called combined (CB) and
stand-alone (SA) type definitions. CB muons are formed by combining tracks of the muon
spectrometer with tracks from the inner detector and form the class of muons with the best
sample purity and momentum resolution. SA muons are reconstructed from trajectories
that are built only from signals of the muon spectrometer. Both types of muons are
reconstructed using the Chain 3 algorithm as defined in [42]. In the identification step, a
set of quality criteria is applied on these reconstructed muons, mainly to minimize the
misidentification of hadrons as muons and ensure a robust momentum measurement. In
this analysis the baseline and good muons are required to pass the Medium identification
criteria defined in [43], which are designed to minimize the systematic uncertainties
associated with the reconstruction and calibration of muons. These identification criteria
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include requirements on the number and location of the signals corresponding to muon
tracks in the MDT and CSC as well as selection criteria on the compatibility between the
ID and MS momentum measurements. In addition, baseline muons are required to have
a transverse momentum of pT > 10 GeV and a pseudorapidity of |η| < 2.5. These muons
are used for the overlap removal and the lepton veto in the signal region. Good muons are
selected by requiring in addition the following criteria on the transversal and longitudinal
impact parameters: d0/σd0 < 3 mm, |z0 sin θ| < 0.5 mm, which aims at increasing the
probability that the muon originates from the primary vertex.

4.2.3. Electron definition
Electrons are reconstructed from energy depositions in the ECAL that are matched
to a track in the inner detector. The identification of electrons consists of criteria on
different variables describing the longitudinal and transverse shape of the EM showers,
the properties of the tracks from the inner detector and matching criteria between
tracks and energy clusters in the calorimeter. These variables are combined to form a
multivariate analysis. An electron likelihood is defined using uncorrelated signal and
background probability density functions (PDF), which are obtained from data. An
overall probability is calculated for each object to be signal and a second probability to be
background. These two probabilities are used to define a single discriminant on which a
selection criterion can be applied. This analysis uses the loose selection as defined in [44],
whose selection of variables is focused on discriminating electrons against light-flavor jets.
In addition, a transverse momentum criterion of pT > 20 GeV and a pseudorapidity of
|η| < 2.47 is required. These electrons are used for the overlap removal, the electron veto
in the signal and control regions as well as for the calculation of the missing transverse
energy.

4.2.4. Photon definition
Photons are reconstructed based on their energy depositions in the ECAL. Since the
photon passes through matter when transversing the inner detector, it can convert into an
electron-positron pair. Therefore, two different approaches exist when it comes to defining
a track criterion in the photon reconstruction. If a cluster in the ECAL has no associated
tracks from the inner detector, it is considered as an unconverted photon candidate. If
a cluster is matched to a pair of oppositely-charged tracks, that are compatible with
electrons in the transition radiation tracker or only to one track, it is considered as a
converted photon candidate. To discriminate the photon candidates with one associated
track from an electron that was produced at the interaction point, the track is required to
have no hits in the innermost layer of the pixel detector. The photon identification aims
at discriminating photons from hadrons and background photons from hadron decays.
Hadrons release typically a significant fraction of energy in the HCAL and result in a
broader shower. Photons from hadron decays are often pairs of two photons that are
close to each other, e.g. from a decay of an uncharged pion. Therefore, the photon
identification uses discriminating variables describing the energy fraction released in the
HCAL and the shower shape. For this analysis the tight identification is used as defined
in [45], which uses the full granularity of the ECAL and different requirements on the
discriminant variables for converted and unconverted photons. In addition, the photons
are required to have a transverse momentum of pT > 20 GeV. Photons fulfilling these
criteria are used for the calculation of the missing transverse energy.
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4.2.5. Overlap removal
After selecting the baseline objects as defined in the previous sections an overlap removal
routine based on the angular and tracking information of the objects is performed in order
to avoid associating one objects to more than one object class. A baseline jet is removed
if an electron exists in the event that satisfies ∆R(jet, e) < 0.2, or if the jet has less than
three tracks and a baseline muon exists in the event with ∆R(jet, µ) < 0.4. An electron
is removed if any baseline jet in the event lies within a range of 0.2 < ∆R(j, e) < 0.4 to
the electron. A baseline muon is rejected from the event in case a jet with at least three
tracks can be found satisfying ∆R(jet, µ) < 0.4.

4.2.6. Missing transverse energy definition
Conservation of momentum in the plane transverse to the beam axis implies that in an
ideal case in which every particle can be detected and measured precisely, the transverse
momentum of the decay products of each collision should sum up to zero. However, some
particles do not interact with the detector and leave it therefore undetected. The SM
provides only one type of particle of that kind, neutrinos. In addition to undetected
particles, also detected particles with a mismeasured energy create an energy imbalance
in the transverse plane. This imbalance is referred to as missing transverse energy. In
this analysis the components of the missing transverse energy are calculated from the
energy deposits associated to jets, electrons, photons or softer energy contributions not
associated to any of these objects as

Emiss
x(y) = Emiss,jet

x(y) + Emiss,e
x(y) + Emiss,γ

x(y) + Emiss,soft
x(y) . (4.1)

Each term represents the negative vectorial sum of the momenta of the corresponding
objects defined in the previous sections. The soft term is based on tracks associated to
the hard scattering vertex, which makes it more robust against pileup compared to a
soft term based on calorimeter depositions. The term missing transverse energy usually
refers to the magnitude of the vector

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2 (4.2)

Muons are treated as invisible particles throughout this analysis. [46]

4.2.7. Event selection on reconstruction level
The basis of the event selection of this analysis in the signal and control regions is a
trigger logic selecting events with Emiss

T > 70 GeV (HLT_xe70). Each event is required
to have a reconstructed primary vertex with at least two associated tracks each carrying
a transverse momentum of pT > 0.4 GeV1. A standard event cleaning is performed
ensuring all components of the detector were working normally. Events are rejected if
they contain baseline jets failing the loose jet quality criteria [37] after the overlap removal.
As discussed in section 2.4.3, applying this criterion rejects jet signals coming from noise
in the ECAL or HCAL and reduces the influence of hardware issues, beam-induced
backgrounds and cosmic muons. In addition to these basic selection criteria, the following
event selection criteria are applied, summarized in table table 4.1.

1In the case where several vertices fulfill this criterion, the primary vertex is identified by selecting the
one with the largest sum of p2T of the associated track.
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Event Selection
All

HLT_Xe70
primary vertex

loose jet cleaning
Emiss

T > 250 GeV
1 to 4 good jets

tight jet cleaning j1

pj1T > 250 GeV
|ηj1| < 2.4

∆φ(j, ~Emiss
T ) > 0.4

SR Z → µµ CR W → τν CR
veto baseline el. veto baseline el. veto baseline el.

veto baseline mu. two good muons one good muon
veto other muons veto other muons

66 GeV < mµµ < 116 GeV 30 GeV < mT < 100 GeV

Table 4.1.: Criteria of the event selection on reconstruction level common to all regions
(All), the signal region (SR) as well as the Z → µµ and W → τν control
region (CR).

The events are required to have a missing transverse energy larger than 250 GeV, to
ensure that the used trigger is fully efficient as shown in [47]. The number of good jets in
the event has to be between one and four, whereas the leading jet is required to have a
transverse momentum of pT > 250 GeV and a pseudorapidity of |η| < 2.4. The transverse
momentum criterion for the leading jet and the transverse energy criterion are symmetric,
because in the signal process the leading quark or gluon jet recoils against the missing
energy produced by a graviton. This is also the case for the diagram of the leading SM
contribution (Z → νν) as shown in figure 4.1 (a). The criterion of having a maximum of
four good jets in the event is applied because the signal is not expected to have a large
jet multiplicity while this criterion decreases contributions from some SM backgrounds
like tt̄ events. The tight jet cleaning criterion [37], as discussed in section 2.4.3, is applied
to the leading jet in order to further suppress non-collision backgrounds. In addition,
a requirement on the azimutal angle between any jet of the event and the direction
of the missing transverse energy ∆φ(j, ~Emiss

T ) > 0.4 is used to reduce the background
from multijet events, where the energy of one of the jets is mismeasured. In case of an
underestimation of the jet energy the direction of the missing transverse energy points
into the direction of the mismeasured jet. In case of an overestimation of the energy,
the missing energy tends to point into the opposite direction of this jet and since the
dominant contribution to multijet events is the dijet production, this direction falls
also in a direction of a jet. For the signal region events are rejected if they contain
a baseline electron or muon. For the Z → µµ control region exactly two good muons
and no additional baseline muons or electrons are required, in addition to a criterion of
the invariant mass of the two muons of 66 GeV < mµµ < 116 GeV. For the W → µν
control region exactly one good muon and no other baseline muons or electrons are
required. Here, the transverse mass, defined as mT =

√
2pµTp

ν
T[1− cos(φµ − φν)] with
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pµT being the transverse momentum of the muon and pνT being the missing transverse
energy and with φµ and φν being the corresponding azimuthal angles, is required to be
30 GeV < mT < 100 GeV.

4.2.8. Object and event selection at particle level
This analysis unfolds the reconstructed distributions to particle level. Therefore, a
selection at particle level has to be defined. This selection follows closely the one
on reconstruction level in order to avoid an extrapolation into kinematic regions that
are not considered at reconstruction level, which is usually connected with additional
uncertainties. Jets at particle level are reconstructed through the anti-kt algorithm with
a radius parameter of 0.4. The kinematic criteria on pT and |η| are the same as on
reconstruction level for jets, muons and electrons. At particle level, a baseline jet is
removed if a muon or an electron exists in the event within ∆R < 0.4 of the jet. The
event selection at particle level consists of a subset of the criteria used for the event
selection on reconstruction level. The same criteria are used for the missing transverse
energy, the number of jets, the leading jet pT and |η| requirement, the number of baseline
and good electrons and muons, the ∆φ criterion between the missing transverse energy
and the jets of the event as well as for the mµµ and the mT criterion for the two control
regions.

4.3. Resolution
The main purpose of studying the resolution is to find adequate bin sizes for the different
distributions that is robust against the finite resolution of the detector. Therefore, the
detector resolution for variables that are used later on is determined in this chapter.
These variables are the missing transverse energy of the event, the transverse momentum
of the leading and second leading jet as well as the invariant mass of the two leading jets,
which is defined as

mjj =
√
(Ej1 + Ej2)2 − |~pj1 + ~pj2|2. (4.3)

To obtain the resolution, the value of a given variable on particle level is compared to its
value on reconstruction level in the following way.

First, a matching of jet objects between particle level and reconstruction level is
performed. A jet is declared as matched between these two levels if ∆R(jetpart., jetreco.) <
0.1. This matching of jet objects is performed for all variables except the missing transverse
energy which is a global variable of the event. Next, the distribution of e.g. the missing
transverse energy on reconstruction level is divided by the distribution on particle level.
This division is performed bin by bin in different ranges of the corresponding variable. To
illustrate this procedure, the resulting distribution of the ratio is shown in figure 4.2 for
the missing transverse energy in the region 1050 < Emiss

T < 1250 GeV. The distribution
shows a large population around a ratio of one and sharp falling tails to higher and lower
values of the ratio. Then, a Gaussian function is fitted to the central part of the ratio
distribution. The resolution is defined as the width of resulting fitted function. Therefore,
the resolution of the missing transvers energy in the range 1050 GeV < Emiss

T < 1250 GeV
corresponds to the width of the Gaussian function indicated by the purple, dashed line
in figure 4.2. The fit is only performed at the center of the distribution around its mean
because the outer parts of the distribution show a non Gaussian behavior. However, the
tails are not expected to have any influence on the analysis, such that they can safely be
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Figure 4.2.: Example for the ratio distribution of the reconstructed and generated missing
transverse energy in the range 1050 GeV < Emiss

T < 1250 GeV of the Z → νν
simulation. The purple line shows the result of fitting a Gaussian function
to the central part of the distribution around its mean.

neglected. This procedure is performed for the whole range of the missing transverse
energy and also the other variables mentioned at the beginning of this section.

The resolution of the missing transverse energy and the leading jet transverse momentum
are shown in figure 4.3. Here, the results obtained from using different sizes for the ranges
in which the resolution is determined are shown. For all variables the results from using
different sizes for the regions are consistent. The resolution of the missing energy and
the leading jet transverse momentum are almost constant throughout the whole energy
range with a slow decrease twoards higher energies. The resolution for both variables
is located around 3 % to 5 %. The resolution of the invariant mass of the two leading
jets and the transverse momentum of the second leading jet are shown in appendix A.1
and have a slightly more distinct decrease towards higher energies. In these distribution
the fit quality at lower energy is not as good as it is at higher energies. Since the most
interesting part of the distribution for a search is in general the high energy regime, a
conservative estimate of 10 % can be made for the low energy region (< 400 GeV) for
these two distributions. This does not effect the choice of the binning for these variables
defined at the end of this section. The resolution at the higher energies is around 5 %.
As expected, no significant difference can be observed between the resolution of the two
simulated processes in all four variables. Based on these results, the bin size for the
four distributions is chosen to be 50 GeV up to energies of 1 TeV and 100 GeV for higher
energies. This choice ensures that the bin size at a given energy is always larger than the
corresponding resolution.

4.4. Results at reconstruction and particle level
This section presents the several distributions on reconstruction and particle level ob-
tained with the object and event selection described in section 4.2. Different kinematic
distributions are evaluated with respect to the agreement between pseudo-data and MC
background in the signal region, both consisting of simulated Z → νν and W → τν
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Figure 4.3.: The resolution of the missing transverse energy and transverse momentum
of the leading for the Z → νν (a,c,e,g) and W → τν (b,d,f,h) simulation.
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events. To simplify the comparison of the event yield with the analysis performed in
chapter 5, all distributions are normalized to an integrated luminosity of 3.2 fb−1. The
contribution to the event yield in the signal region of the Z → νν process is roughly
three times higher than the contribution of the W → τν process. Figure 4.4 shows the
distributions of the missing transverse energy, the transverse momentum of the leading
jet, the pseudorapidity of the leading jet, the number of jets, the transverse momentum
of the second leading jet and the invariant mass of the two leading jets on reconstruction
level. The ratio of pseudo-data and the sum of the two MC backgrounds is shown in
the lower part of each distribution. Here, the uncertainties include only the statistical
uncertainty of the pseudo-data and the MC background. In the vast majority of the bins
of each distribution the ratio is compatible with one, which shows that the splitting of
the MC simulations into MC background and pseudo-data did not introduce a bias. A
similarly good agreement between pseudo-data and MC background can also be observed
in the particle level distributions, shown in figure 4.5. This high level of agreement
between the pseudo-data and the MC background in the distributions on reconstruction
and particle level validates the splitting algorithm and is important for further studies.

4.5. Unfolding
The following section consists of validation studies concerning the input of the unfolding.
First, the reconstruction efficiencies, fake rates, purities and response matrices are
presented. Afterwards, a closure test validates the unfolding procedure, followed by an
explanation of the uncertainties that are considered in the upcoming analysis. First
results for the uncertainties on each unfolding step are presented as well.

4.5.1. Efficiency, fake rate, purity and response matrix
The reconstruction efficiency, the fake rate, the purity as well as the response matrix rep-
resent import quantities for the unfolding. As explained in section 3.3 the reconstruction
efficiency εi is used to correct for events that are not reconstructed due to any kind of
imperfection of the detector. Its definition given in section 3.3 is equivalent to

εi =

NR∑
k=1

Nik

nMC
0 (Ti)

, (4.4)

where Nik is the ik-th entry of the response matrix and nMC
0 (Ti) the i-th bin entry of

MC distribution on particle level. In other words, the efficiency for a particle level bin i
is computed by dividing the number of events that pass the selection criteria on particle
level in this bin and the requirements on reconstruction level in any bin by the overall
number of events that pass the particle level criteria in the i-th bin. The reconstruction
efficiency for the missing transverse energy, the transverse momentum of the leading and
second leading jet and the invariant mass of the two leading jets are shown in figure 4.6.
In general, the efficiency is quite high and apart from one bin approximately constant for
all distributions. It lies roughly between 80% to 95% for Z → νν and between 70% to
85% for W → τν events depending on the distribution. The difference between the two
processes could arise from the different nature of the (leading) jet coming from a quark or
gluon for Z → νν events and from a τ lepton for W → τν events and the corresponding
jet reconstruction efficiencies. The efficiency for the sum of the processes is located quite
close to the dominant Z → νν process, which can be seen in the lower plots showing the
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Figure 4.4.: The results on reconstruction level obtained from splitting the MC simulations
for the processes Z → νν and W → τν into MC background (blue, pink) and
pseudo-data (black). Shown are the distributions of the missing transverse
energy (a), the transverse momentum of the leading jet (b), the pseudorapidity
of the leading jet (c), the number of jets (d), the transverse momentum of
the second leading jet (e) and the invariant mass of the two leading jets (f).
The lower plot of each distribution shows the ratio of the pseudo-data and
the sum of the two MC backgrounds.
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Figure 4.5.: The results on particle level obtained from splitting the MC simulations for
the processes Z → νν and W → τν into MC background (blue, pink) and
pseudo-data (black). Shown are the distributions of the missing transverse
energy (a), the transverse momentum of the leading jet (b), the pseudorapidity
of the leading jet (c), the number of jets (d), the transverse momentum of
the second leading jet (e) and the invariant mass of the two leading jets (f).
The lower plot of each distribution shows the ratio of the pseudo-data and
the sum of the two MC backgrounds.
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Figure 4.6.: The reconstruction efficiencies for the missing transverse energy (a), the
transverse momentum of the leading (b) and second leading jet (c) and the
invariant mass of the two leading jets (d) for the Z → νν (pink) and W → τν
(blue) process as well as for the sum of these two processes (green). The
lower plots show the ratio distributions of the efficiency of one process and
the efficiency for both processes.
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Figure 4.7.: The fake rates for the missing transverse energy (a), the transverse momentum
of the leading (b) and second leading jet (c) and the invariant mass of the
two leading jets (d) for the Z → νν (pink) and W → τν (blue) process as
well as for the sum of these two processes (green).

efficiency of one process divided by the efficiency for both processes. For some values of
the transverse missing energy above 1 TeV the reconstruction efficiency is larger than
one for the W → τν process. The reason for this can be found in the weights of the MC
simulation, which can be positive or negative. That is the reason why the sum of weights
of a subset can be larger than the sum of the total set. However, this only occurs in low
statistics regions with very few events. Therefore, the influence of these weights is small.

The fake rate of bin i is defined as the ratio of events that pass the selection criteria
on reconstruction level in this bin but not on particle level in any bin and the overall
number of events that pass the reconstruction requirements in this bin:

fi =

nMC(Ri)−
NT∑
k=1

Nki

nMC(Ri)
. (4.5)

The fake rate is a measure for the fake-events discussed in section 3.3. Figure 4.7 presents
the fake rates as a function of the same variables as for the reconstruction efficiencies.
For the missing transverse energy and the leading jet transverse momentum a larger
fake rate in the first bin is observed coming from events with a missing transverse
energy or a leading jet transverse momentum on particle level just smaller than the
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Figure 4.8.: The purity for the missing transverse energy (a), the transverse momentum
of the leading (b) and second leading jet (c) and the invariant mass of the
two leading jets (d) for the Z → νν (pink) and W → τν (blue) process as
well as for the sum of these two processes (green).

corresponding selection criterion. Therefore, they do not pass the particle level selection.
The reconstructed values for the Emiss

T or the leading jet pT migrate just above the
selection criterion and end up in the first bin of the corresponding distribution. A smaller
increase of the fake rate at low energies can also be observed for the second leading jet
transverse momentum or the invariant mass distribution. The fake rates decrease towards
higher energies for all distributions and stays approximately constant. The Z → νν
process shows a smaller fake rate throughout all distributions.

The purity of bin i is defined as the number of events that pass the selection criteria at
particle and at reconstruction level in the same bin i divided by the overall number of
events that pass the selection criteria in this bin on particle level:

pi =
Nii

nMC
0 (Ti)

. (4.6)

It corresponds to the diagonal entries of the response matrix and is therefore a measure
for the amount of bin to bin migration from particle to reconstruction level, where a
higher purity means less migration. The purity distributions are shown in figure 4.8.
For the studied variables the purity is between 60 % to 70 % at lower energies and
shows a decreasing behavior towards higher energies for all distributions. Therefore, a
higher relative amount of migration between bins takes place at higher energies. The
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Z → νν process shows for nearly all phase space regions a higher purity and therefore
less migration.

The high fraction of events reconstructed in the same bin on particle and reconstruction
level can also be seen by directly looking at the response matrices, shown in figure 4.9
for the missing transverse energy and transverse momentum of the leading jet. The
response matrix of the Z → νν process appears to have a wider spread of events off the
diagonal. However, the values of these entries are far below one event and come from
the higher statistics compared to the W → τν process. Therefore, the purity is a better
way to judge the migration of events. Response matrices for other variables are shown in
appendix A.2.

The event selection presented here results in a modest task for an unfolding procedure.
High reconstruction efficiencies and low fake rates are the reason why the distributions
on reconstruction and particle level (compare figure 4.4 and figure 4.5) show no big
difference concerning their overall number of events. The relatively high purity ensures a
modest amount of bin-to-bin migration. Therefore, the presented event selection offers
a good opportunity to test the newly proposed unfolding strategy. Once the topology
unfolding method is validated for such an relatively easy unfolding task, it can be tested
in more complex scenarios with e.g. a much lower reconstruction efficiency. However, the
first proof of concept studies are performed with an selection that results in a modest
unfolding task to estimate the potential of the new method. By taking into account
several distributions with different values but a similar behavior in e.g. the reconstruction
efficiency, the robustness of the results from the unfolding studies can be tested in
addition. That is the reason why also distributions like the invariant mass of the leading
jets are considered in these studies, although it is not expected that these distributions
are sensitive to new physics in a monojet search.

The presented event selection offers a good opportunity to explore
the possibilities of the new method of topology unfolding. Different
kinematic distributions are considered for robustness studies.

4.5.2. Closure test
The following study presents an established way of validating the implementation of the
unfolding. The reconstructed distribution from the same MC simulation that is used
for the unfolding input, namely the response matrix, the prior probabilities as well as
the estimate of the fake- and miss-events, is unfolded. For the first unfolding step, the
particle level information of the MC is used for the prior probability

P0(Ti) =
nMC
0 (Ti)

nMC
0 (Ttot) + nMC(fakestot)

. (4.7)

Therefore, using the definitions given in section 3.3 the conditional probability P (Ti|Rj)
reduces for the first unfolding step to

P 1st step(Ti|Rj) =
Nij

NT+1∑
l=1

Nlj

=
Nij

NT∑
l=1

(Nlj + nMC(fakesj))

(4.8)
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Figure 4.9.: The response matrices for the missing transverse momentum (a,c,e) and the
transverse momentum of the leading jet (b,d,f) for the W → τν (a,b), the
Z → νν process (c,d) and the sum of the two processes (e,f) as used for
topology unfolding.
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Unfolding the reconstructed MC distribution yields

n1st step
unf (Ti) =

1

εi

NR∑
j=1

P (Ti|Rj) · nMC
rec (Rj) (4.9)

=
1

NR∑
k=1

Nik

nMC
0 (Ti)

NR∑
j=1

Nij

NT∑
l=1

(Nlj + nMC(fakesj))

· nMC
rec (Rj) (4.10)

The reconstructed distribution of the MC simulation is the sum of the events that also
pass the selection criteria on particle level plus the fake events

nMC
rec (Rj) =

NT∑
l=1

(
Nlj + nMC(fakesj)

)
. (4.11)

Using this expression in equation (4.10) yields the final result for the unfolded distribution
of the first unfolding step:

n1st step
unf (Ti) = nMC

0 (Ti), (4.12)

which is exactly the particle level distribution of the MC simulation. Therefore,

the basic principle of the closure test is to unfold the reconstructed
distribution of the MC simulation that was used for the unfolding inputs
and check if the result is equal to the MC particle level distribution.

The closure test is performed by unfolding each process individually and also by unfolding
the sum of the two processes (topology unfolding). Figure 4.10 shows the results of
the closure test for the missing transverse energy and the transverse momentum of the
leading jet for unfolding the Z → νν process and for topology unfolding. The closure
test for other distributions and for the unfolding of the W → τν process can be found
in appendix A.3. The ratio plots show a very good agreement between the unfolded
results and the particle level distribution. However, some small discrepancies can be
noticed in a few bins, mostly at high energies. This can be explained again by negative
MC weights. A bin on particle level can e.g. have a positive number of events, but is
split into an input for the response matrix (events passing the criteria at particle level
and reconstruction level) and an input for miss-events (events passing only the particle
level criteria). If the number of events on particle level is small, e.g. at high energies,
this splitting into response matrix and miss-events can produce a negative number of
events for one of these inputs. This can also happen for the splitting of events into events
for the response matrix and fake events. In addition, in each reconstruction bin of the
response matrix there are particle level bins with low statistics and vice versa. These are
the bins far away from the diagonal of the response matrix and therefore also negative
number of events can occur here. A negative number of fake-, miss- or matched events
is not physically. The fact that these negative numbers of events appear really means
that there is not a sufficent amount of statistical power to make any prediction of these
extrem phase spaces. Therefore, negative number of events are not used when building
the unfolding matrix. This follows the intention to keep the physical meaning of the
procedure but leads to small deviations in the closure test. However, having understood
this effect, the result of the closure test demonstrates the correct implementation of the
unfolding algorithm using Bayes’ theorem.
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Figure 4.10.: The results of the closure test for the missing transverse energy (a,b) and
the transverse momentum of the leading jet (c,d) for unfolding the Z → νν
process (a,c) and for topology unfolding (b,d). The lower plots show the
ratio between the unfolded result and the particle level distribution.
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Figure 4.11.: The reduced χ2
red distribution between the unfolded result of the current and

the previous iteration for unfolding the transverse momentum distribution
of the leading jet for the Z → νν process. The first bin shows the χ2

red value
between the distribution coming from the first step of the unfolding and
the first iteration. For this case, performing two iterations results already
into a reduced χ2 < 1.

4.5.3. Unfolded results
In order to unfold the pseudo-data distributions the number of iteration is chosen first.
Afterwards three different ways of unfolding are performed. First, the two processes
Z → νν and W → τν are unfolded individually. This means that for unfolding the
Z → νν process the W → τν MC estimate is subtracted from the pseudo-data distribution
and the remaining spectrum is unfolded with the unfolding matrix of the Z → νν process
and vice versa. The third option is the topology unfolding method which means that the
full pseudo-data is unfolded without performing a background subtraction. The unfolding
matrix used here carries information from the MC simulations of both processes. All
unfolding procedures are compared to the results of the so-called bin-by-bin unfolding
and the corresponding particle level distributions.

Choosing the number of iterations The number of iterations is chosen with the help
of the criterion defined in section 3.3. An example for the χ2

red distributions discussed
earlier is shown in figure 4.11 for unfolding the transverse momentum of the leading jet
of the Z → νν estimate. The chosen number of iterations for all kinematic variables
are listed in table 4.2 for the three unfolding procedures. For the missing transverse
energy and the leading jet distribution the χ2

red criterion is fulfilled after two iterations
for all unfolding methods. The distribution of the transverse momentum of the second
leading jet and the invariant mass of the two leading jets need four and three iterations
to meet the criterion. One possible reason for this is the fact that the agreement between
pseudo-data and MC background for these two variables is slightly worse compared to
the Emiss

T and the pT distribution of the second leading jet. Therefore, the unfolding
procedure needs to update the prior probability once or twice more often to get closer to
the prior probability of the pseudo-data until convergence is reached. The criterion used
shows a robustness against the choice of the unfolding method.
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Number of Iterations
Emiss

T pj1T pj2T mjj

W → τν 2 2 4 3
Z → νν 2 2 4 3
Z → νν + W→τν 2 2 4 3

Table 4.2.: The number of iterations for the missing transvers energy, the transverse
momentum of the leading and second leading jet and the invariant mass of
the two leading jets for unfolding W → τν and Z → νν individually and for
topology unfolding.

Unfolded distributions The unfolding is performed with the number of iterations de-
scribed in the previous section. Figure 4.12 and figure 4.13 show the unfolded distributions
for the missing transverse energy and the transverse momentum of the leading jet. The
uncertainties shown include only the statistical uncertainty from the reconstructed pseudo-
data distribution propagated through the unfolding as discussed in section 3.3. Other
unfolded distributions can be found in appendix A.4. The figures also show the corre-
sponding particle level distribution of the pseudo-data and the results from the bin-by-bin
unfolding method. The latter is calculated for each bin via:

nunf (Ti) =
nMC(Ti)

nMC(Ri)
· nrec(Ri). (4.13)

Here, the reconstructed data distribution nrec(R) is multiplied by the ratio of the MC
distribution on particle level and the MC distribution on reconstruction level in each bin.
This procedure ignores any migration of events between bins. As can be seen in figure 4.12
and figure 4.13, the unfolding using Bayes’ theorem and the bin-by-bin unfolding agree
well at low energies where the purity is high and therefore less migration occurs compared
to higher energies. Hence, the difference between the two methods gets larger with
higher energies, but both approaches agree still within their statistical uncertainties.
This reflects again that the amount of migration between bins is moderate. However, the
iterative procedure using Bayes’ theorem should be preferred over the bin-by-bin unfolding,
because it accounts for the migration between bins and is therefore well-founded from a
conceptional point of view. The unfolded results and the particle level simulations agree
very well for the missing energy distribution even up to high energies. For the leading
jet transverse momentum distribution the agreement worsens slightly at higher energies
due to MC events with large weights. The W → τν distribution for example contains an
event with a large positive weight in the bin 1200 GeV < pT < 1300 GeV of the particle
level distribution (compare section 4.4, figure 4.5) leading to an excess of events in the
unfolded distribution in this bin and through migration also in the neighboring bins. In
the same bin the particle level distribution of the Z → νν pseudo-data distribution has
an excess due to an event with a large weight, which also worsens the agreement between
the unfolded result and the particle level distribution.

This observation underlines the importance of using MC simulations
with a sufficient amount of statistics for the unfolding in order to
minimize the influence of simulated events with large weights.
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Topology unfolding has in general a higher statistical power, which reduces the effect of
this problem.

Since the unfolding accounts for bin to bin migration, it correlates the uncertainties
between bins. To visualize this, the correlation matrix, discussed in section 3.3, is given
for each unfolded distribution in figure 4.12 and figure 4.13 for the statistical uncertainties
of the reconstructed pseudo-data distribution. A value of one, minus one or zero reflects
fully correlated, fully anti-correlated or fully uncorrelated uncertainties. The correlation
of uncertainties between bins can be interpreted as moderate. The correlation seems
to be significant only for directly neighboring bins. For projects like [48], which aim at
setting limits on physical models from combining different analysis, it is very important
to publish information about the correlation of the uncertainties between different bins.
The reason for this is that the full potential of combining different analysis can only be
exploited if the combination takes the correlation of the uncertainties among different
analyses into account.

Therefore, researchers using unfolding techniques in their analyses
should be encouraged to include information about the correlation of
uncertainties when publishing their analyses.

4.5.4. Definition of uncertainties
This section discusses the uncertainties that are considered in the analysis and partially
also in chapter 5. Besides the statistical uncertainties of the distributions that are
unfolded several sources of systematic uncertainties are taken into account: the limited
statistics of the MC simulation used for the unfolding, the resulting bias of choosing
the prior probability, the cross section of the MC processes as well as the shape of the
pseudo-data distribution. Possible differences in the impact that these uncertainties have
on the unfolded distributions between the conventional way of unfolding and the topology
unfolding method are studied in section 4.7.

Statistical uncertainty

The statistical uncertainty of the reconstructed distribution that is unfolded is propagated
through the unfolding procedure as discussed in section 3.3. This uncertainty propagation
takes into account that the unfolding matrix itself is affected by the statistical uncertainties
of the reconstructed distribution after the first unfolding step, because for the first iteration
the prior probability is calculated using the unfolded result of the first unfolding step. This
method of handling the statistical uncertainties was validated e.g. in [49] by comparing
it to a different method using toy MC samples.

Since the full data yield is unfolded in topolgy unfolding, the relative
statistical uncertainty on the result is expected to be smaller compared
to the conventional unfolding method in which only one process is
unfolded.
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Figure 4.12.: Unfolded distributions for the transverse missing energy and the correla-
tion matrices of the statistical uncertainty coming from the reconstructed
pseudo-data distribution for unfolding the W → τν (a,b), the Z → νν (c,d)
process and topology unfolding (e,f). The unfolded result is compared to the
result obtained from bin-by-bin unfolding and the particle level distribution
of the pseudo-data (PD, green).
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Figure 4.13.: Unfolded distributions for the transverse momentum of the leading jet
and the correlation matrices of the statistical uncertainty coming from the
reconstructed pseudo-data distribution for unfolding the W → τν (a,b), the
Z → νν (c,d) process and topology unfolding (e,f). The unfolded result is
compared to the result obtained from bin-by-bin unfolding and the particle
level distribution of the pseudo-data (PD, green).
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Systematic uncertainty from limited MC statistics

The limited statistics from the MC simulation used as input for the unfolding results in a
systematic uncertainty on the unfolded result. To estimate this uncertainty, each entry of
the response matrix is varied by drawing random numbers for each bin from a Gaussian
distribution. The mean of the Gaussian distribution corresponds to the nominal entry of
the bin and its width to the statistical uncertainty of the bin entry. Each bin of the fake-
and miss-events is varied simultaneously in the same way. After having varied each bin
of the response matrix as well as the estimate of the fake- and miss-events, the nominal
distribution is unfolded with the new matrix and the new fake- and miss-estimates. This
procedure is repeated 100 times for each distribution, giving 100 outcomes of the unfolded
distribution. The systematic uncertainty for the i-th bin of the unfolded distribution is
defined as the standard deviation of the distribution that is build from the 100 unfolded
results of the bin i.

The topology unfolding method can be more robust against these varia-
tions of the unfolding matrix, because it is built from several processes
and not from only one like in the conventional way of unfolding.

Systematic uncertainty from MC cross section

The cross section used for the MC simulations is not exactly known because of uncertainties
on theoretical input parameters like the renormalization and factorization scale, the
parton density function (PDF) or the modeling of the initial and final state radiation.
Since this chapter describes a proof of concept study, the exact value of this uncertainty
is not deciding and therefore the uncertainty on the cross section is taken to be 10 % for
both processes. This corresponds to the typical order of magnitude for these uncertainties.
The value of the cross section of one processes is increased and decreased by 10% and
the unfolding is performed again for both cases. The associated systematic uncertainty is
defined as the maximal difference in each bin between the nominal unfolded result and
the result obtained from performing the unfolding with the lowered or increased cross
section.

It is important to notice that an uncertainty on the cross section used in the MC
simulation affects the two unfolding methods differently. The conventional unfolding
method unfolds a background subtracted data distribution with an unfolding matrix built
from the MC simulation of a single process, e.g. Z → νν. A variation of the cross section
has no effect on the matrix, since it contains only probabilities and efficiencies obtained
from number of event ratios of this simulation. An overall change of the normalization has
no effect. However, in case that MC simulation is used for the background subtraction,
a variation of the cross section affects the reconstructed distribution that is unfolded
through this subtraction of the backgrounds. This is not the case for the topology
unfolding method, because here no background subtraction is performed. The unfolding
matrix is not built from a single process and has contributions from different processes in
this method. Here, the change of the cross section affects the unfolding matrix, because it
changes the relative contribution of the different processes. Since the matrix is dominated
by one process and the unfolding matrix of the different processes is not expected to be
very different, the topology unfolding can be less sensitive to such an uncertainty.
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The uncertainty of the MC cross sections affects the two unfolding
methods in a different way. The topology unfolding method is supposed
to be more stable against such an uncertainty.

Systematic uncertainty from MC mis-modeling

The following procedure estimates the uncertainty coming from a possible mis-modeling
of the shape of the MC simulation on particle or parton level. With a perfect modeling
of the parton and particle level distribution as well as a perfect detector simulation, the
reconstructed MC distribution would look exactly like the data distribution.

In this test, every discrepancy between the reconstructed MC distribu-
tion and the data is interpreted as a result of a mis-modeling of the
MC simulation at parton or particle level.

The detector simulation is assumed to be perfect. Ideally, to perform this test, a
new particle or parton level distribution would be generated, which would result in a
reconstructed MC distribution that looks exactly like the data distribution. Then, the
unfolding would be performed using this new MC simulation and the difference to the
unfolded result obtained from using the nominal MC simulation could be used as an
uncertainty. However, the generation of a new MC simulation presents a far too big effort
for the underlying purpose. Therefore, the following procedure is performed in order to
estimate this uncertainty.

First, a reweighted reconstructed MC distribution is obtained by multiplying a weight
to each bin of the nominal reconstructed MC distribution that contains only events which
pass the selection criteria at reconstruction as well as at particle or parton level. This
reconstructed distribution is obtained bin by bin from the response matrix by adding up
all entries of a column

MCreco′
i =

NT∑
k=1

Nki. (4.14)

Miss- or fake-events are not considered in this uncertainty since they present only a
minor contribution for the presented event selection. Each bin i of this reconstructed
MC distribution is multiplied by a weight wi. This weight is calculated by dividing the
number of events of the data distribution by the number of events of the reconstructed
MC distribution in this bin:

wi =
N(data)i
N(MC)i

. (4.15)

The reweighted MC distribution shows now, per construction, a perfect agreement with
the data distribution.

Second, a reweighted parton or particle level MC distribution is obtained bin by bin by
adding all entries of a column, each weighted by the factor wj , of the response matrix N

MCparticle′
i =

NR∑
j=1

Nijwj . (4.16)
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Effectively, the weights from comparing the reconstructed MC distribution with data
are transfered through the response matrix in order to obtain a particle or parton level
distribution MCparticle′

i which results in a reconstructed MC distribution that agrees well
with data when applying the detector simulation to it.

Finally, the reweighted MC distribution MCreco′
i is unfolded using the nominal response

matrix. The difference between the unfolded result and the reweighted parton or particle
MC distribution MCparticle′

i is interpreted as a systematic uncertainty coming from a
mis-modeling of the MC simulation on parton or particle level.

Systematic shape uncertainty

The influence of a systematic uncertainty modifying the shape of the reconstructed
distributions is studied. Such an uncertainty corresponds for example to variations of
the jet energy scale in a real analysis distorting e.g. the shape of the leading jet pT
distribution.

To simulate such an uncertainty, the transverse momenta of all jets in the event are
distorted by multiplying the jet momenta with a random number. The underlying
distribution of the random numbers is a Gaussian distribution with a mean which varies
as a function of the jet pT from one to higher values and a width of 0.1. The shift of the
mean is defined as

s = (pT[GeV]− 250) · 0.5

1500− 250
, (4.17)

where 250 and 1500 GeV are the beginning and the end of the spectrum of the leading jet
pT. Therefore, the shift changes between 0 (pT = 250 GeV) and 0.5 (pT = 1500 GeV) as a
linear function of the jet pT. The mean of the corresponding shifted Gaussian distribution
takes values from 1 to a maximum of 1.5. The distortion of the distribution comes from
the fact that all distributions considered in the unfolding show a falling spectrum towards
higher energies. The distortion of the transverse momentum of e.g. the leading jet might
migrate the corresponding entry of the leading jet distribution into one of the neighboring
bins.

Since more events are located in the i-th bin compared to the i+1-th bin,
more entries are expected to migrate from bin i to bin i+1 than from
bin i+ 1 to bin i. This decreases the negative slope of the spectrum.

The difference of the distorted and the nominal distributions is scaled by a factor of
0.01 in order to produce a realistic order of magnitude of the uncertainty. With these
parameters a relative distortion of around 2 % can be reached for the Z → νν unfolding
and the topology unfolding as shown in figure 4.14. This corresponds roughly to the order
of magnitude of the jet energy scale uncertainty for central anti-kt jets at the energy above
250 GeV [50]. For unfolding one process individually, the pseudo-data distribution and
the MC background distribution of the second process are distorted. Then, the distorted
MC background distribution is subtracted from the distorted pseudo-data. For topology
unfolding, the pseudo-data distribution is distorted. As can be seen in figure 4.14, the
relative change resulting from the distortion procedure is larger for the W → τν unfolding
compared to the other unfolding procedures, because here the dominant background
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Figure 4.14.: The relative difference between the distorted and nominal distribution as a
function of the transverse momentum of the leading jet (a). For the W → τν
process (blue), the distorted MC Z → νν distribution is subtracted from
the distorted pseudo-data distribution. For the Z → νν process (magenta)
the distorted MC W → τν distribution is subtracted from the distorted
pseudo-data. For the topology unfolding input (green) the pseudo-data is
distorted. The jet energy scale uncertainty for central anti-kt jets is shown
in (b) [50]. The order of magnitude of the uncertainties on reconstruction
level is compatible for (a) and (b).

(Z → νν) is distorted and subtracted from the distorted pseudo-data, producing a larger
relative change.

After the distortion of the transverse momenta of the jets in the event, all other
variables based on these quantities are recalculated, including e.g. the missing transverse
energy of the event, the invariant mass of the two leading jets and the number of jets.
The event selection for the distorted values of the variables is done in parallel to the event
selection for the nominal values. This procedure results in a duplicate of each distribution
with a distorted shape. The distorted distribution is unfolded and the difference to the
nominal unfolded result is interpreted as the underlying uncertainty.

4.5.5. Uncertainties of unfolded distributions
The uncertainties of the unfolded results are shown in figure 4.15 and figure 4.16. The
total uncertainty is calculated as the square root of the quadratic sum of the single
uncertainties. When unfolding the two processes Z → νν and W → τν individually,
the uncertainty on the MC background cross section is important. For unfolding the
dominant process (Z → νν) the cross section uncertainty of the other process is dominant
at low and intermediate energies. For unfolding the sub-dominant process (W → τν), the
cross section uncertainty for the Z → νν process is one of the dominant uncertainties over
the whole energy spectrum. This underlines the crucial role the background subtraction
plays for the result on reconstruction as well as on particle level for the conventional
way of unfolding. The topology unfolding is not affected by this uncertainty. It is
subdominant throughout the whole spectrum for all variables. The unfolding matrix is
therefore quite insensitive to a shift of the contributions from the different processes. At
higher energies the statistics of the reconstructed distribution becomes important for
both unfolding strategies. Also the shape uncertainty plays an important role at higher
energies for Z → νν and topology unfolding. The uncertainty from MC mis-modeling is
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quite moderate except from a few excesses , which justifies the choice of the number of
iterations in addition to the χ2

red criterion. The limited statistics of the MC input to the
unfolding seems to have no influence on the unfolded result.

4.6. Validation of topology unfolding
In order to validate the newly introduced topology unfolding method, its results are
compared to the conventional way of unfolding, which refers to unfolding a single signal
process of a data set after background subtraction. For this, the results of unfolding
the Z → νν and the W → τν process individually (compare section 4.5.3) are added
together, referred to as process by process (PbyP) unfolding. The results are compared to
the results of topology unfolding. For this comparison, the statistical and the systematic
uncertainties discussed in the previous section are included. Figure 4.17 shows the
comparison of the unfolded results. For the great majority of the bins,

the two results from the different unfolding methods agree within their
statistical uncertainties. This agreement validates the newly introduced
topology unfolding procedure.

The direct comparison of the transverse momentum distribution of the second leading
jet shows again that the topology unfolding is slightly more robust against distortion
of the spectrum coming from large weights of the MC simulation. At high energies,
the distributions indicate that the systematic and the statistical uncertainties of the
process by process unfolding are larger compared to topology unfolding. However, this
comparison is not of a fair nature, because in a real analysis the process by process
unfolding would not be used. Instead, only the dominant process would be unfolded.
This is the reason why the following section describes the comparison of the uncertainties
between the topology unfolding method and unfolding only the Z → νν process.

4.7. Comparison of uncertainties
Figure 4.18 presents the relative fractions of the uncertainties described in section 4.5.4
for the Z → νν unfolding (magenta) and the topology unfolding (black) as a function of
the missing transverse energy and the transverse momentum of the leading jet. These
distribution of other observables are shown in appendix A.5. The statistical uncertainty of
the reconstructed pseudo-data distribution results, as expected, for the Z → νν unfolding
into a larger relative uncertainty of the unfolded distributions. The uncertainty coming
from the limit MC statistics used for the unfolding has a significantly smaller contribution
to the total uncertainty. For both unfolding methods this uncertainty is below 1 %
for most parts of the distributions. Only the transverse momentum distribution of the
second leading jet is more sensitive to this uncertainty at higher energies. However, this
uncertainty does not show a significant difference between the two unfolding methods.
The uncertainty coming from a potential mis-modeling of the MC simulation is also quite
compatible between the two methods with the Z → νν unfolding showing a slightly higher
fractional uncertainty. For the missing energy distribution, this uncertainty is at the
1 % level or below for both unfolding methods. The transverse momentum distributions
of the leading and second leading jet show a small relative uncertainty at low energies



4.7 Comparison of uncertainties 66

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

R
el

at
iv

e 
U

nc
er

ta
in

ty
 [%

]

0

20

40

60

80

100

120

140

160
)ντ→ Uncertainties (Wmiss

TE

Total

MC Statistics

MC Mis-Modeling

)ντ→(Wσ
)νν→(Zσ

Shape

Data Statistics

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

U
nc

.
T

ot
al

0.5

1

1.5

(a)

 [GeV]
T

Leading Jet p

0 200 400 600 800 1000 1200 1400

R
el

at
iv

e 
U

nc
er

ta
in

ty
 [%

]

0

20

40

60

80

100

120

140

160

180
)ντ→ Uncertainties (W

T
1st Jet p

Total

MC Statistics

MC Mis-Modeling

)ντ→(Wσ

)νν→(Zσ

Shape

Data Statistics

 [GeV]
T

Leading Jet p
0 200 400 600 800 1000 1200 1400

U
nc

.
T

ot
al

0.5

1

1.5

(b)

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

R
el

at
iv

e 
U

nc
er

ta
in

ty
 [%

]

0

2

4

6

8

10

12

14

16 )νν→ Uncertainties (Zmiss
TE

Total

MC Statistics

MC Mis-Modeling

)ντ→(Wσ
)νν→(Zσ

Shape

Data Statistics

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

U
nc

.
T

ot
al

0.5

1

1.5

(c)

 [GeV]
T

Leading Jet p

0 200 400 600 800 1000 1200 1400

R
el

at
iv

e 
U

nc
er

ta
in

ty
 [%

]

0

5

10

15

20

25 )νν→ Uncertainties (Z
T

1st Jet p

Total

MC Statistics

MC Mis-Modeling

)ντ→(Wσ

)νν→(Zσ

Shape

Data Statistics

 [GeV]
T

Leading Jet p
0 200 400 600 800 1000 1200 1400

U
nc

.
T

ot
al

0.5

1

1.5

(d)

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

R
el

at
iv

e 
U

nc
er

ta
in

ty
 [%

]

0

2

4

6

8

10

12  Uncertainties (Topology)miss
TE

Total

MC Statistics

MC Mis-Modeling

)ντ→(Wσ

)νν→(Zσ
Shape

Data Statistics

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

U
nc

.
T

ot
al

0.5

1

1.5

(e)

 [GeV]
T

Leading Jet p

0 200 400 600 800 1000 1200 1400

R
el

at
iv

e 
U

nc
er

ta
in

ty
 [%

]

0

2

4

6

8

10

12

14

16

18
 Uncertainties (Topology)

T
1st Jet p

Total

MC Statistics

MC Mis-Modeling

)ντ→(Wσ

)νν→(Zσ

Shape

Data Statistics

 [GeV]
T

Leading Jet p
0 200 400 600 800 1000 1200 1400

U
nc

.
T

ot
al

0.5

1

1.5

(f)

Figure 4.15.: The relative systematic uncertainties on the unfolded missing energy and
the transverse momentum of the leading jet for unfolding the W → τν
process (a,b), the Z → νν process (c,d) and topology unfolding (e,f).
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Figure 4.16.: The relative systematic uncertainties on the transverse momentum of the
second leading jet and the invariant mass of the two leading jets for unfolding
the W → τν process (a,b), the Z → νν process (c,d) and topology unfolding
(e,f).
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Figure 4.17.: Comparison of the topology unfolding method and the process by process
(PbyP) unfolding. The lower plots show the ratio of the unfolded results
obtained by the two different methods of unfolding. Here, the uncertainty
band reflects the systematic uncertainties.
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Figure 4.18.: Relative uncertainties for the Z → νν unfolding (magenta) and the topology
unfolding (black) for the missing transverse energy (a,b) and the transverse
momentum of the leading (c,d).

with some spikes towards the end of the spectra. The uncertainties on the Z → νν and
the W → τν cross section are not affecting the topology unfolding significantly. This
uncertainty stay below the one percent level except for the very last bin of the transverse
momenta distribution of the leading and second leading jet. This shows again that the
unfolding matrix of the topology unfolding matrix is largely unaffected by changes in the
relative contribution of the different processes. The Z → νν unfolding is sensitive to the
cross section of the W → τν through the background subtraction resulting in a significant
uncertainty for all tested distributions. The shape uncertainty on the reconstructed
distributions result in a significant uncertainty on the unfolded distributions at higher
energies for the missing transverse energy and the transverse momentum of the leading
jet. Both unfolding methods show a very similar behavior for this uncertainty.

In conclusion,

the difference in the uncertainty between the two unfolding methods is
coming from the statistical uncertainty of the reconstructed distributions
and the uncertainty on the MC background cross section,

which affects the Z → νν unfolding significantly through the background subtraction.
This results in a much smaller overall uncertainty at low energies, which can be seen
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Figure 4.19.: Full relative uncertainty (a,b) and the full relative systematic uncertainty
(c,d) for the missing transverse energy and the transverse momentum of the
leading jet. The lower plots show the ratio of the relative uncertainties of
the Z → νν unfolding and the topology unfolding.

in figure 4.19 for the missing transverse energy and the transverse momentum of the
leading jet. Additional distributions are shown in appendix A.5. At higher energies, the
statistical uncertainty dominates leading to a 20 % to 60 % smaller uncertainty for the
topology unfolding method. The systematic uncertainty is compatible between the two
methods at higher energies. All in all, the results of the topology unfolding method are
shown to be compatible with the conventional way of unfolding and its uncertainties
are smaller than or compatible with the uncertainties from unfolding the dominant SM
process. These results are produced for different kinematic distributions having different
reconstruction efficiencies and fake rates, which shows a robustness of the results against
variations in these input parameters for the unfolding. Therefore, the topology unfolding
method is validated and the smaller uncertainties compared to the conventional way of
unfolding offers a promising opportunity to use topology unfolding in searches for new
physics.



5. Topology unfolding for a monojet search

This chapter explores the possibility of setting limits on parameters of theories describing
physics beyond the SM with the unfolded results of a monojet search. The object and
event selection previously defined in section 4.2 is applied to the proton-proton collision
data provided by the LHC in 2015, corresponding to an integrated luminosity of 3.2 fb−1.
After estimating the contribution from SM processes to the event yield (section 5.1),
the detector level results are presented in section 5.2. The treatment of systematic
uncertainties is discussed in section 5.2.1. Afterwards, the missing transverse energy
distribution is unfolded using the topology unfolding method and, for comparison, the
Z → νν unfolding in section 5.3. The limit setting procedure is explained in section 5.4.1.
As a validation of the limit setting procedure model independent limits are obtained from
the results on detector level (5.4.2) and compared to the result of [41]. Afterwards, the
unfolded results are used to set limits on the fundamental planck scale of five different
specifications of the ADD model (section 5.4.3). The resulting limits are compared
between the two different methods of unfolding as well as to the limits obtained in [41]
on detector level.

5.1. Background estimation
The contribution from SM processes to the event yield of the selection for the signal region
is estimated by scaling the MC simulations in the signal region by an overall correction
factor obtained from the W → µν control region. The correction factor accounts for
an overall normalization discrepancy coming from the finite order calculation used in
the MC simulation. The value of the correction factor is validated by comparing it
to an alternative correction factor obtained from the Z → µµ control region. Besides
the simulation for the two dominant SM processes, Z → νν and W → τν, already
used in the previous chapter, the following subdominant processes are included as well:
W → µν, W → eν, tt̄ and single top quark processes as well as diboson and Z → µµ
events. Non-collision backgrounds, multijet as well as Z → ee and Z → ττ events are
neglected in this study, because their contribution to the event yield of the signal region
is altogether smaller than 1 % [41].

The correction factor fW→µν (fZ→µµ) is obtained by dividing the overall event yield in
data by the overall event yield of the MC simulations of the SM processes in the W → µν
(Z → µµ) control region. The following values are obtained

fW→µν =
N(Data)CRW→µν

N(MC)CRW→µν
= 0.97± 0.02 (5.1)

fZ→µµ =
N(Data)CRZ→µµ

N(MC)CRZ→µµ
= 0.92± 0.03, (5.2)

where the quoted uncertainty refers to the statistical uncertainty. Both correction factors
have values close to one and agree within their statistical uncertainty validating the
procedure. Figure 5.1 shows the missing energy distribution of the data and the MC
simulation for the SM processes in the W → µν (Z → µµ) control region before and
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Figure 5.1.: The missing energy distribution for data (black) and the SM background
estimate (colored) in the W → µν (a,b) and the Z → µµ (c,d) control region
before (a,c) and after (b,d) the application of the overall correction factor to
the MC distributions.

after scaling the MC prediction with the correction factor fW→µν (fZ→µµ). Applying the
correction factors to the MC distributions in the control region improves the agreement
between data and MC background, which can be seen by comparing the lower ratio plots
of figure 5.1 (a) and (b) or (c) and (d). The W → µν control region shows a higher
statistical power for the underlying selection. Therefore, the factor fW→µν is used to
scale the reconstruction level MC distributions in the signal region for the following
studies.

5.2. Results at reconstruction level
The distribution at reconstruction level for data and the background estimate of the
SM processes after scaling the MC simulations by the correction factor fW→µν can be
seen in figure 5.2 for the transverse missing energy and the transverse momentum of
the leading jet. Both distributions show a reasonable agreement between data and the
SM prediction, since most of the bin values in the ratio plot agree with one within their
statistical uncertainties. In addition, no singificant difference in the shape between the
data and the sum of the SM processes is observed. This level of agreement is compatible
with the level of agreement in the published monojet search [41]. No significant excess
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Figure 5.2.: The missing transverse energy distribution (a) and the transverse momentum
distribution of the leading jet (b) for data (black) and the estimate of the
SM processes (colored). The lower plots show the ratio of the data and the
sum of the SM processes with the statistical uncertainties.

above the SM expectation is observed in both distributions.

5.2.1. Systematic uncertainties and event yield
Since this thesis aims at exploring the possibilities of a new analysis concept based on
topology unfolding using the selection of an already published ATLAS analysis [41], rather
than carrying out an established analyzing method for a not yet published search signature,
the estimate of the systematic uncertainties is not repeated. Instead, the estimate for
the relative uncertainties in the signal region on detector level are obtained from [41].
In [41] the dominant SM background processes, Z → νν, ττ, µµ and W → eµ, µν, τν
in association with jets, are estimated with a semi data-driven method using several
control regions. To estimate the contribution of a SM process in the signal region, the
data yield of the control region is subtracted by the MC estimate of all other processes
in that control region and multiplied by a transfer factor. The transfer factor is first
estimated as the ratio of the MC yield of the process in the signal region and the MC
yield of the process in the control region. In a simultaneous fit over all control regions the
final transfer factors are obtained. All systematic uncertainties are treated as nuisance
parameters with a Gaussian shape in this fit. This method has two main advantages.
First, many experimental and theoretical uncertainties that affect the MC prediction are
greatly reduced by taking the ratio of the MC distributions of the signal and the control
region for the transfer factor. Second, the fit takes correlation of the uncertainties into
account. The dominant systematic uncertainties are coming from the jet energy scale and
resolution, the renormalization and factorization scale as well as uncertainties coming
from the parton distribution function. For this analysis, the same relative uncertainties
are used for the results of the previous section. The event yield in the signal region for
data as well as the total SM prediction and the corresponding uncertainties are given in
table 5.1 and table 5.2 for several inclusive and exclusive regions of the missing transverse
energy. The inclusive regions are used later on to set model-independent limits, the
exclusive ones are used for setting limits on the ADD model. The data event yield agrees
within the uncertainties with the event yield of the total SM prediction for every inclusive
and exclusive region. The fractional contribution of each process to the SM prediction
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Region Emiss
T [GeV] > 250 > 300 > 350 > 400

Data (2015) 20063 11143 5919 3153
SM prediction 19728± 853 11205± 518 5997± 310 3265± 193

Z → νν 59 % 62 % 65 % 67 %
W → τν 21 % 19 % 18 % 17 %
W → µν 8 % 7 % 7 % 6 %
W → eν 8 % 7 % 6 % 5 %
tt̄ 3 % 3 % 3 % 2 %
t 1 % 1 % 1 % 1 %
Diboson 1 % 1 % 1 % 1 %
Z → µµ < 1 % < 1 % < 1 % < 1 %

Region Emiss
T [GeV] > 500 > 600 > 700

Data (2015) 1044 381 163
SM prediction 1071± 73 400± 35 165± 20

Z → νν 71 % 73 % 76 %
W → τν 16 % 14 % 12 %
W → µν 6 % 6 % 6 %
W → eν 5 % 4 % 4 %
tt̄ 2 % 1 % 1 %
t 1 % 1 % 1 %
Diboson 1 % 1 % 1 %
Z → µµ < 1 % < 1 % < 1 %

Table 5.1.: Event yield for data and SM prediction in the signal region on reconstruction
level for different inclusive missing transverse energy regions. The uncertainties
given for the SM prediction include systematic and statistical uncertainties
and take correlations into account. In addition the contribution of each SM
process to the SM prediction is given.

shows that only the Z → νν and W → eν, µν, τν processes in association with jets give
a significant contribution for the presented selection.

5.3. Unfolding
The missing energy distribution of the signal region is unfolded with two different methods,
unfolding only the Z → νν process after subtracting the other backgrounds from the
reconstructed data distribution and topology unfolding. The choice for the number of
iterations is determined in the same way as in section 4.5.3. The corresponding χ2

red

values can be found in appendix B.2. The test yields two iterations for Z → νν unfolding
and three iterations for topology unfolding. Since the reconstructed MC distributions
are scaled by the factor fW→µν , the MC distribution on particle level and the response
matrices are also scaled by the same factor in order to keep a consistent normalization
between reconstruction and particle level. The response matrices used for the unfolding
can be found in appendix B.3.
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Region Emiss
T [GeV] 250 - 300 300 - 350 350 - 400

Data (2015) 8920 5224 2766

SM prediction 8523± 372 5208± 235 2732± 145

Z → νν 54 % 59 % 63 %
W → τν 23 % 21 % 19 %
W → µν 10 % 8 % 7 %
W → eν 9 % 8 % 7 %
tt̄ 3 % 3 % 3 %
t 1 % 1 % 1 %
Diboson < 1 % 1 % < 1 %
Z → µµ < 1 % < 1 % < 1 %

Region Emiss
T [GeV] 400 - 500 500 - 600 600 - 700

Data (2015) 2109 663 218
SM prediction 2194± 136 671± 49 235± 24

Z → νν 66 % 69 % 71 %
W → τν 18 % 16 % 15 %
W → µν 7 % 6 % 6 %
W → eν 6 % 5 % 5 %
tt̄ 3 % 2 % 2 %
t 1 % 1 % < 1 %
Diboson 1 % 1 % 1 %
Z → µµ < 1 % < 1 % < 1 %

Table 5.2.: Event yield for data and SM prediction in the signal region on reconstruction
level for different exclusive missing transverse energy regions. The uncertain-
ties given for the SM prediction include systematic and statistical uncertainties
and take correlations into account. In addition the contribution of each SM
process to the SM prediction is given.
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Figure 5.3 (a,c) shows the result of the two unfolding methods compared to bin-by-bin
unfolding explained earlier and the corresponding MC distribution on particle level.
In addition, three systematic uncertainties on the unfolding as well as the statistical
uncertainty from the data distribution propagated through the unfolding are shown in
figure 5.3 (b,c). This analysis considers the limited MC statistics used for the unfolding
inputs, a potential mis-modeling on the MC particle level and the cross section of the
different MC simulation processes used to determine the SM prediction and build the
response matrices as sources for systematic uncertainties. The first two uncertainties are
determined as explained in section 4.5.4. The uncertainty coming from the MC cross
sections is also obtained as discussed in section 4.5.4 with the addition that the procedure
described in section 4.5.4 is done for every SM process considered in this analysis. One
cross section of the MC processes is varied at a time by 10 % and the unfolding procedure
is repeated. The quoted overall uncertainty is the square root of the quadratic sum of
the uncertainties for the different processes.

Both unfolding methods show a good agreement with the particle level distribution
and the result from bin-by-bin unfolding. The effect of two underfluctuations in the
reconstructed data distributions in the two bins 950 GeV < Emiss

T < 1000 GeV and
1200 GeV < Emiss

T < 1300 GeV can be observed in the unfolded distributions, especially
in the range 1200 GeV < Emiss

T < 1300 GeV where no event in data is observed. In the
determination of the uncertainty from a potential mis-modeling on MC particle level,
the reconstructed MC distribution is reweighted to data (compare section 4.5.4), where
a relatively large weight occurs in the two bins where the underfluctation is observed.
This results in a relatively large uncertainty from a potential MC mis-modeling for these
two bins, as seen in figure 5.3 (b,d). However, the increased uncertainty in these bins is
understood as a result of the underfluctation in data being the reason for the discrepancy
between the data and the MC distribution in these bins. Neglecting these two small
subregions of the missing transverse energy, the uncertainty from a mis-modeling is
moderate, which validates the choice for the number of iterations in addition to the χ2

test. The other uncertainties behave similar to what was observed in the study using MC
and pseudo-data (see section 4.5.5), with the difference that the statistical power of the
reconstructed data distribution is far worse compared to the reconstructed pseudo-data.
From figure 5.3 (b,d) it can clearly be seen that the statistical uncertainty coming from
the reconstructed data distribution is by far the dominant uncertainty. The uncertainty
coming from the limited MC statistics is subdominant throughout the whole energy range.
An uncertainty in the MC cross section is only of importance for the Z → νν unfolding
at lower energies. Here, the influence of the conceptual difference of how this particular
uncertainty affects the two unfolding methods becomes important again, as discussed
earlier. The overall relative uncertainty is smaller in all but one bin for the topology
unfolding method although one more iteration was used for this unfolding procedure
compared to the Z → νν unfolding. The one bin (1200 GeV < Emiss

T < 1300 GeV) with a
higher uncertainty for topology unfolding is due to the underfluctuation in data and has
a larger effect because one more iteration was used for topology unfolding.

The unfolded event yield for the exclusive regions is shown in table 5.3 together with the
relative uncertainties. These results will be used in section 5.4.3 to set limits on the ADD
model. In every exclusive region of the missing energy distribution, the overall uncertainty
is smaller for topology unfolding. The difference in the relative uncertainty ranges from
approximately 300 % at low energy to 80 % at high energies with the statistical uncertainty
from the data distribution and the systematic uncertainties from the MC cross sections
being mostly responsible for the difference.
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Figure 5.3.: The unfolded missing transverse energy distribution for Z → νν unfolding
(a) using two iterations and topology unfolding (c) using three iterations.
The corresponding systematic uncertainties and the statistical uncertainty
are shown in (b) and (d) for Z → νν unfolding and topology unfolding.
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Region Emiss
T [GeV] 250 - 300 300 - 350 350 - 400

Topology Unfolding 7841± 130 4698± 108 2513± 65

σ(MC Statistics) < 0.1 % < 0.1 % <0.1 %
σ(MC Mis-Modeling) 0.9 % 1.3 % 0.6 %
σ(MC Cross Section) 0.7 % 0.5 % 0.4 %
σ(Data Statistics) 1.2 % 1.8 % 2.5 %
σ(Total) 1.7 % 2.3 % 2.6 %
Z → νν Unfolding 4659± 247 2964± 151 1648± 80

σ(MC Statistics) < 0.1 % < 0.1 % < 0.1 %
σ(MC Mis-Modeling) 1.5 % 1.7 % 0.4 %
σ(MC Cross Section) 4.6 % 3.9 % 3.3 %
σ(Data Statistics) 2.1 % 2.7 % 3.5 %
σ(Total) 5.3 % 5.1 % 4.8 %

Region Emiss
T [GeV] 400 - 500 500 - 600 600 - 700 > 700

Topology Unfolding 1934± 85 626± 44 200± 24 156± 42

σ(MC Statistics) < 0.1 % 0.1 % 0.2 % 1.5 %
σ(MC Mis-Modeling) 1.6 % 1.4 % 3.9 % 9.2 %
σ(MC Cross Section) 0.4 % 0.3 % 0.3 % 0.5 %
σ(Data Statistics) 3.9 % 6.6 % 11.4 % 24.2 %
σ(Total) 4.4 % 7.0 % 12.1 % 27.2 %
Z → νν Unfolding 1306± 87 449± 41 145± 22 122± 38

σ(MC Statistics) 0.1 % 0.1 % 0.1 % 0.6 %
σ(MC Mis-Modeling) 2.2 % 1.6 % 4.4 % 8.9 %
σ(MC Cross Section) 3.1 % 2.5 % 2.6 % 1.6 %
σ(Data Statistics) 5.3 % 8.5 % 14.3 % 28.3 %
σ(Total) 6.7 % 9.1 % 15.3 % 30.8 %

Table 5.3.: Unfolded event yield for exclusive missing transverse energy regions for topolgy
unfolding and Z → νν unfolding together with the systematic and statistical
uncertainties considered in the unfolding. The total uncertainty σ(Total) is
the square root of the quadratic sum of the individual uncertainties.
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5.4. Limit setting
5.4.1. Limit setting procedure
Search analyses observing no excess of events above the SM prediction are used to set
exclusion limits on parameters of the given theory. These parameters could for example
be the mass of a new particle or the modification of an expected cross section for a process
of the given theory. This analysis uses the CLs method [51] to set model independent
limits on the visible cross section for new physics production as well as lower limits on
the fundamental Planck scale for five different specification of the ADD model. The
following section reviews the limit setting procedure.

In an analysis, the set of measurements carried out are denoted by

X = {Xi}. (5.3)

In this analysis Xi corresponds to the number of events in a given energy i of the
missing transverse energy distribution in the signal region. Next, a set of probability
densities gi(Xi|µ, ν) is constructed for each observation Xi assuming an underlying
theory with the parameters µ and ν. Here, µ, the so-called parameter of interest, is the
fundamental parameter of the theory under study. In general, there can be more than
one parameter of interest. Since this analysis uses a single parameter of interest for the
limit setting procedure, the following discusses the case for one parameter of interest.
The parameters ν = {νi} are the nuisance parameters. These are parameters that are not
under investigation in the analysis but that still have an influence on the prediction of a
given theory, like the luminosity of the dataset used in the analysis. Nuisance parameters
are usually derived from an independent measurement or physical assumptions. Since
this analysis selects and counts events in different energy regions of a rather extreme
phase space, the probability of an event to pass these selection is very small compared to
the total cross-section of any scattering event happening. Therefore, g(Xi|µ, ν) is chosen
to be a Poisson distribution

gi(Xi|µ, ν) =
λXi
i e−λi

Xi!
, (5.4)

where λi = λi(µ, ν) is the expectation value of the prediction that a given theory makes.
In this analysis, the prediction corresponds to the number of events that the SM predicts
in the energy range i of the missing transverse energy distribution plus additional
contributions from e.g. the ADD model. A distribution is suitable to test a theory if the
additional contribution of that theory is sufficiently large compared to the SM prediction.
In order to calculate the prediction of a theory λ = {λi(µ, ν)} the nuisance parameters ν
have to be fixed to certain values ν̃. Therefore, the likelihood used for the CLs method
is chosen to be the product of the likelihood to observe the measured number of events
Xi and the likelihood to observe the nuisance parameter values ν̃, that where used to
calculate the prediction, in an independent analysis

L =
∏
i

gi(Xi|µ, ν̃)
∏
j

hj(ν̃j |νj)

=
∏
i

λ̃Xi
i e−λ̃i

Xi!

∏
j

hj(ν̃j |νj). (5.5)

Here, the index i runs over all regions of the phase space that are considered in the
limit setting procedure and the index j runs over all nuisance parameters. For those
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nuisance parameters whose values are obtained from an independent experiment, like for
example the luminosity, it is possible to argue how the underlying probability density hj
should look like based on the nature of the underlying experiment. However, for nuisance
parameters that are not obtained from an underlying experiment a conceptional problem
arises at this point, since it is not clear what probability density is suitable for these
kind of nuisance parameters. In ATLAS, the usual policy is to use Gaussian probability
densities for all nuisance parameters. However, it can be argued that this might not be
the ideal choice in some cases. How the Likelihood looks and which nuisance parameters
are considered in this analysis, will be explained in the sections that present the results of
the limit setting. This section concentrates on the general procedure of the CLs method.

In this method, the agreement of the observation X with a theoretical model providing
the prediction λ(µ, ν) is evaluated relative to the agreement of the observation with
a second theoretical model λ(µ′, ν ′). The term test-statistic refers to a measure that
quantifies the agreement of a theoretical prediction with an observation relative to the
agreement of a second prediction with the observed data. In this analysis, the so-called
profiled log-likelihood ratio qµ(X) is used as the test-statistic, defined as

qµ(X) =

{
−2 ln L(X|µ,ν̂µ)

L(X|µ′,ν̂µ′ )
, µ ≥ µ′ ≥ 0

0 , else
≥ 0. (5.6)

The values of the nuisance parameters ν̂µ are obtained from a constrained likelihood fit
of the prediction to the observation for a given µ, so that

L(X|µ, ν̂µ) ≥ L(X|µ, ν) ∀ν (5.7)

and the likelihood of the observation is maximized. The parameters µ′ and ν̂µ′ are
obtained from an unconstrained likelihood fit, so that

L(X|µ′, ν̂µ′) ≥ L(X|µ, ν) ∀µ, ν. (5.8)

These values of the parameters correspond therefore to the global maximum of L. The
constraint of µ′ ≥ 0 comes from the implication that only positive values for µ should be
allowed, since µ corresponds in this analysis to the modification of a cross section which
is defined to be non negative. The constrain of the test-statistic being zero for µ < µ′

gives rise to the fact that this analysis aims at setting one-sided limits in the sense of
upper limits on the modification µ of a cross section describing a process arising from a
theory beyond the SM. The larger the value of qµ is, the more disagrees the observation
X with the prediction λ(µ, ν̂µ) compared to the prediction λ(µ′, ν̂µ′). The here presented
choice for the test-statistic follows the usual procedure used by the ATLAS collaboration
[52].

Since the observation X corresponds to counting number of events in a specific phase
space region, it is of a statistical nature meaning that a second independent measurement
might observe a different number of events. Therefore, also the test-statistic qµ(X) is
affected by statistical fluctuations. The distribution f(qµ|µ, ν̂µ) of qµ(X) assuming that
the prediction λ(µ, ν̂µ) of a theory describes the expectation value of the observation
cannot be evaluated analytically. In practice, two different ways exists how the distribution
f(qµ|µ, ν̂µ) can be obtained.

1. The profiled log-likelihood ratio qµ(X) is calculated for a large number of simulated
toy measurements. Here, a replica of the measurement XR is generated by drawing
random numbers for each phase space region from a Poisson distribution around
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the expectation λ(µ, ν̂µ). The values of all nuisance parameters are obtained from
a constrained fit for a fixed value of µ, as explained above. In addition, a replica
for each nuisance parameter ν̂R is created as well. To obtain these replica random
numbers are drawn from the corresponding distribution of h(ν̂|ν̂Rµ ). Then, the
test-statistic is computed for the replicas XR and ν̂R in the same way as for X
and ν. The procedure is repeated in order to obtain the distribution f(qµ|µ, ν̂µ).
The disadvantage of this method is that the number of iterations for a sufficient
precision and the computing time can be quite large, depending on the complexity
of L.

2. The second possibility is to use an analytical approximation for the distribution
f(qµ|µ, ν̂µ). In [53] it is shown that f(qµ|µ, ν̂µ) follows a non central chi-square
distribution for a sufficiently large sample size. Starting point of this approximation
is

qµ =
(µ− µ̂)2

σ2
+O(1/

√
N) for µ ≥ µ′ ≥ 0, (5.9)

where µ̂ is Gaussian distributed around the true value µ′, according to which the
data is assumed to be distributed, with a standard deviation σ [54]. The standard
deviation σ can be estimated with the help of an artificial data set, called Asimov
data set. This data set is defined as having infinite statistics and yielding the true
value when it is used to evaluate an observable. True is understood with respect to
the assumption that is made. In other words, the Asimov data set is the data set
in which all observed quantities are set equal to their expected values. It is shown
in [53] that the standard deviation σ can be obtained by

σ2 =
(µ− µ′)2

qµ(XA)
, (5.10)

where qµ(X
A) is the test-statistic for the Asimov data set XA. The Asimov data

set can be evaluated either by calculating the expected values of the hypothesis
exactly or by using a MC simulation of the prediction. If the O(1/

√
N) term can

be ignored in equation (5.9) the test-statistic follows the non-central chi-square
distribution

f(qµ|µ, ν̂µ) =
1

2
√
2πqµ

(
e−

1
2
(
√
qµ+

√
Λ)2 + e−

1
2
(
√
qµ−

√
Λ)2
)

(5.11)

with the non-centrality parameter Λ

Λ =
(µ− µ′)2

σ2
. (5.12)

In the absence of a signal contribution to the event yield, one has µ′ = 0, which
corresponds to the background only hypothesis. The more signal, the larger µ, the
smaller gets the non-centrality parameter and so the maximum of f(qµ|µ, ν̂µ) shifts
towards zero.
The big advantage of using this approximation is a much smaller computing time
needed to calculate the limits compared to the first approach. Inside ATLAS, it is
recommended to use this approximation only if there are at least O(30) background
events in the phase space region. For the selection of this analysis this requirement
is fulfilled for all phase space regions.
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So far, the outcome X = {Xi} of a measurement was used to calculate the test-statistic
qµ(X) and the distribution f(qµ|µ, ν̂µ) of the test-statistic was obtained with the help of
toy measurements or an analytical approximation.

X = {Xi} calculate−−−−−−→ qµ(X)
approximate−−−−−−−−→

simulate
f(qµ|µ, ν̂µ)

The CLs approach of testing a hypothesis is to compare the p-values of two different
models with different predictions. In this analysis the hypothesis of new physics beyond
the SM (µ > 0) is compared to the so-called background-only hypothesis. This hypothesis
predicts only events coming from SM processes and no additional signal contribution
(µ = 0). The aim is to set an upper limit on the modification µ of the cross section for a
process beyond the SM predicted by the first hypothesis. First, the two distributions
f(qµ|µ, ν̂µ) and f(qµ|0, ν̂0) are obtained from using toy measurements or the analytical
approximation. The two p-values that are compared with each other are CLS+B(µ) and
1− CLB(µ). The first p-value

CLS+B(µ) = P (qµ(X
′) ≥ qµ(X)|S +B) =

∫ ∞

qµ(X)
f(qµ|µ, ν̂µ)dqµ (5.13)

is the probability of making a second observation X ′ with qµ(X
′) ≥ qµ(X) assuming

that the prediction λ(µ, ν̂µ) describes correctly the outcome of the measurement. A large
value of CLS+B(µ) suggests that the observation X is compatible with the theory that
is tested. The CLS+B(µ) is compared to a second p-value

1− CLB(µ) = P (qµ(X
′) ≥ qµ(X)|B) =

∫ ∞

qµ(X)
f(qµ|0, ν̂0)dqµ, (5.14)

which gives the probability to observe a second measurement X ′ with qµ(X
′) ≥ qµ(X)

assuming that the background-only hypothesis describes the data. Large values of the 1−
CLB(µ) quantity indicate a disagreement of the observation X with the background-only
hypothesis λ(0, ν̂µ). The ratio of these two p-values, referred to as CLs value,

CLs =
CLS+B(µ)

1− CLB(µ)
(5.15)

is the measure that is used to judge if a certain value for µ of the given theory can be
excluded or not. Small CLs values suggest that the observation X favors the prediction of
the background-only hypothesis compared to the prediction from the new physics model
λ(µ, ν̂µ), suggesting an exclusion of this theory for physics beyond the SM. The devision
by 1− CLB(µ) prevents the analyzer from excluding models to which the analysis is not
sensitive to. This can be understood with the help of figure 5.4 showing illustrations for
the two distributions f(qµ|0, ν̂0) and f(qµ|0, ν̂0) for three different cases. They represent
different specifications of a non-central chi-square distribution, where the non-centrality
parameter is always larger for the background only hypothesis (µ′ = 0) according to
equation (5.12). The three scenarios represent typical situations encountered during
the limit setting when the parameter space of µ is scanned. For small values of µ, the
additional signal contribution from a theory describing new physics is small and cannot
be statistically distinguished from the background only hypothesis. Therefore, this value
of µ cannot be excluded. This scenario is shown in figure 5.4 (a). The two distributions
f(qµ|0, ν̂0) and f(qµ|µ, ν̂µ) show a relatively large overlap and the CLS+B value (green)
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is large and compatible with the 1−CLB (yellow) value. This results in a moderate CLs

value being larger than the exclusion threshold. The scenario (b) shows a case where a
clear exclusion can be made. The observation is located at the tail of f(qµ|µ, ν̂µ) yielding
a very small value of CLS+B value and a moderate value of 1− CLB. This combination
drives the CLs value down and the particular value of µ can be excluded. For the
scenarios (a) and (b), it would in principle be sufficient to evaluated only the CLS+B,
where large values (a) indicate that the theory is compatible with the observation and
small values (b) recommend an exclusion. The last scenario (c) shows why it makes sense
to base the exclusion on the CLs value. In this scenario the two distributions of the
test statistics are quite compatible at the upper end of the distributions. The observed
value of the profiled log-likelihood ratio is located in the tail of the distributions. This
results in a very small CLS+B value and the model might be exclude by a limit setting
procedure based on only the CLS+B value. However, the 1− CLB(µ) is very small as
well. An observation so far out on the tail of the background only distribution is highly
unlikely assuming that the background only assumption describes the data. This might
indicate a general problem in the analysis or be the result of a large underfluctuation in
the data. Since the CLS+B and 1 − CLB(µ) value are both small but compatible the
CLs value is located close to one preventing an exclusion of the theory. In this sense,
the CLs method is conservative but presents a good handling of the exclusion because
the fact that the two distributions show a large overlap really means that the analysis
might not be sensitive to the specific model and an unlikely small value of 1− CLB(µ)
might result from a problem in the analysis. After calculating the CLs values for many
values of the parameter of interest µ, the upper limit can be identified. Values of µ̃ are
excluded if

CLs(µ̃) < α, (5.16)

where α is for a 95 % CLs confidence level equal to 1− 0.95 = 0.05. The upper limit µup
corresponds to the smallest value of µ for which this condition is fulfilled.

The observed upper limit is usually quoted with an expected limit. The expected limit is
used to characterize the sensitivity of an analysis while several definitions of an expected
limit exist. This analysis replaces the observed value of the test statistic qµ(X) by the
median of the background only distribution f(qµ|0, ν̂0) and recalculates the upper limit,
which is interpreted as the expected limit. To obtain uncertainty bands the observed
value of the test statistic is replaced by the median of the background only distribution
plus or minus one or two standard deviations.

5.4.2. Model-independent limits
In order to validate the limit setting procedure and the construction of the likelihood the
results on reconstruction level (section 5.2.1) are used to set model-independent upper
limits on the visible cross section σvis for new physics phenomena entering the considered
phase space of the analysis. The visible cross section can be understood as the product of
the cross section of the new process times the acceptance and the efficiency σvis = σ ·A · ε.
The following likelihood function Li will be used to set a separate upper limit for each
inclusive region i, as defined in table 5.1,

Li = P

N i
obs|σi

vis · L ·
(
σ(L)

L
+ 1

)θiL

︸ ︷︷ ︸
signal

+N i
b ·
(
σ(N i

b)

N i
b

+ 1

)θib

︸ ︷︷ ︸
background

 ·G(0|θiL, 1) ·G(0|θib, 1),
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Figure 5.4.: Visualizations of the non-central chi-squared distributions of the test statistics
for the background only hypothesis (black) and a signal hypothesis (blue).
The vertical red lines show the observed value of the test statistic and the
green area indicates CLS+B , the yellow area 1−CLB. Three typical scenarios
are show: (a) a parameter of interest value that cannot be excluded, (b) a
value that can be excluded and (c) a parameter of interest value that will
not be not excluded by the CLs method but might be excluded by other
limit setting procedures.
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(5.17)

where

• N i
obs is the number of observed events in the region i (given in table 5.1),

• σi
vis is the visible cross section in the region i and the parameter of interest,

• L is the luminosity,

• σ(L) is the uncertainty of the luminosity, assumed to be 5 %,

• N i
b is the number of events predicted by the SM in region i (given in table 5.1),

• σ(N i
b) is the overall statistical and systematic uncertainty on N i

b (given in table 5.1),

• θiL and θib the nuisance parameters for L and N i
b .

P stands for a Poisson distribution and G for a Gaussian. As discussed in the previous
section, the underlying probability density of the measurement is a Poisson distribution.
It is evaluated at Nobs and has a mean of Nsignal + Nbackground. The two nuisance
parameters of the luminosity and the background uncertainty are chosen to follow a
Gaussian distribution. The response function for these two nuisance parameters is chosen
to be the so-called log-normal response R(θ) = (σ(N)/N + 1)θ, which is discussed in
more detail in appendix B.1.

Figure 5.5 (a) shows the observed upper limits on the visible cross section for all seven
inclusive regions obtained from the CLs method at a 95 % confidence level using the
analytical approximation for the test statistic distribution. In addition, the expected
limits and the limits from the published monojet analysis [41] are shown as well. The
limits obtained by this analysis are compatible with the ones from [41]. The small
differences that are observed between the limits come mainly from the fact that [41]
includes several control regions in the likelihood and the limit setting procedure, which
makes the limits in general more reliable, whereas this analysis uses for simplicity only
the signal region for the limit setting. Nevertheless, the limits obtained in this analysis
are very similar, which validates the presented limit setting procedure. Figure 5.5 (b)
shows an example for the different CLs values obtained from the parameter scan of the
parameter of interest σvis for the inclusive region Emiss

T > 300 GeV. The smaller the
visible cross section the less events are produced in the signal region. Small values of
σvis can statistically not be distinguished from the background only hypothesis and are
therefore not excluded. The red horizontal line represents the 0.05 threshold of the CLs

value at a 95 % confidence interval. All visible cross sections with a CLs value below
that line are excluded. For the inclusive region shown in figure 5.5 (b) this is the case for
σvis ' 300 fb. The observed limit is slightly better than the expected limit because in
this inclusive region of the missing transverse energy slightly less events are observed in
data than predicted by the SM expectation.

5.4.3. Limits on the fundamental Planck scale in the ADD model
This section presents the results of the limit setting on the ADD model. First, the
limit setting procedure described in section 5.4.1 is performed at reconstruction level.
This allows a comparison with the results from [41] and to the later on discussed limits
obtained on particle level after the unfolding.
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Figure 5.5.: Reconstruction level limits on the visible cross section for seven inclusive
Emiss

T regions (a): observed (red) and expected (black) limits as well as the
±1σ interval around the expected limit (green) from this analysis, observed
limits from [41] (blue). The observed and expected CLs values as a function
of the parameter of interetest σvis are shown in (b) for Emiss

T > 300 GeV. The
vertical blue line indicates the observed limit, the vertical light blue lines the
expected limits and the ±1σ interval.

5.4.4. Limits at reconstruction level
Figure 5.9 shows the missing transverse energy and the transverse momentum distribution
of the leading jet at reconstruction level for the observed data, the SM prediction and
five different specifications of the ADD model with the difference being the number of
extra dimensions ranging from two to six, the fundamental Planck scale and the mass
of the graviton. More details on the ADD models used in the analysis are presented
in appendix B.4. As can be seen in Figure 5.9 the ADD models predict a significant
amount of events at higher energies in addition to the SM prediction demonstrating the
sensitivity of these two distributions to the ADD models. The transverse momentum
distribution of the leading jet is in addition to the Emiss

T distribution sensitive to these
new physics models because the leading jet recoils against the missing transverse energy
for Z and W boson production in association with one jet and also for hypothetical final
states involving a graviton and a quark or gluon. This analysis follows the approach of
[41] to use the missing transverse energy distribution from Emiss

T = 400 GeV up to higher
energies for the limit setting. The missing transverse energy distribution is divided from
this energy upwards into exclusive regions as defined in table 5.2. In each of these regions
a counting experiment is performed comparing the observed to the expected event yield.
The expectation includes the SM prediction for the background only hypothesis and in
addition the contribution from the ADD model for the signal hypothesis. Dividing the
missing transverse energy in several exclusive regions means that the shape information
of the distribution is used in the limit setting. At reconstruction level, the following



5.4 Limit setting 87

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

E
ve

nt
s 

/ G
eV

2−10

1−10

1

10

210
 (Reconstruction Level)

miss
TE

Data (2015)
νν →Z 
ντ →W 
νµ →W 
ν e→W 

tt
Single Top
Diboson

µµ →Z 
ADD (n=6, m=3.0 TeV)
ADD (n=5, m=3.2 TeV)
ADD (n=4, m=3.6 TeV)
ADD (n=3, m=4.1 TeV)
ADD (n=2, m=5.3 TeV)

 [GeV]miss
TE

0 200 400 600 800 1000 1200 1400

D
at

a 
/ M

C

0.8

1

1.2

(a)

 [GeV]
T

Leading Jet p

0 200 400 600 800 1000 1200 1400

E
ve

nt
s 

/ G
eV

2−10

1−10

1

10

210
 (Reconstruction Level)

T
1st Jet p

Data (2015)
νν →Z 
ντ →W 
νµ →W 
ν e→W 

tt
Single Top
Diboson

µµ →Z 
ADD (n=6, m=3.0 TeV)
ADD (n=5, m=3.2 TeV)
ADD (n=4, m=3.6 TeV)
ADD (n=3, m=4.1 TeV)
ADD (n=2, m=5.3 TeV)

 [GeV]
T

Leading Jet p
0 200 400 600 800 1000 1200 1400

D
at

a 
/ M

C

0.8

1

1.2

(b)

Figure 5.6.: Missing transverse energy (a) and the transverse momentum distribution of
the leading jet (b) at reconstruction level for data (black), the SM prediction
(colored) and five different specification of the ADD model (red, dashed).

likelihood function is used,

L =

4∏
i=1
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[
N i

obs

∣∣∣∣∣µ · σADD ·
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)
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+ 1

)θAADD,Ren/Fac

· εifilter · L ·
(
σ(L)
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+ 1

)θL

+Nb ·
(
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b)
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b

+ 1

)θb
]

· G(0|θσADD,Jet/E, 1) · G(0|θσADD,PDF, 1) · G(0|θσADD,Ren/Fac, 1)

· G(0|θAADD,Ini/Fin, 1) · G(0|θAADD,PDF, 1) · G(0|θAADD,Ren/Fac, 1)

· G(0|θL, 1) · G(0|θb, 1) · Gi(0|θiεADD
, 1) (5.18)

where i runs over the four exclusive region of the Emiss
T distribution and in addition to the

variables µ, L, σ(L), N i
obs, Nb, σ(N i

b) (explained in the previous section) the following
variables where used:

• σADD: cross section of the ADD model with uncertainties σ(σi
ADD,Jet/Emiss

T
), σ(σi

ADD,PDF)

and σ(σi
ADD,Ren/Fac) coming from jet energy and missing transverse energy scale,

the parton density function (PDF) and the renormalization and factorization scale

• εiADD = N(reco)i/N(particle)i: signal efficiency, defined as the number of events
passing the reconstruction level selection divided by the number of events passing
the particle level requirements in region i with a statistical uncertainty σ(εiADD),
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• Ai
ADD = N(particle)i/N(generated)i: acceptance defined as the number of events

passing the particle level selection divided by the overall generated number of events
in region i with uncertainties σ(Ai

ADD,Ini/Fin), σ(A
i
ADD,PDF) and σ(Ai

ADD,Ren/Fac)
coming from the modeling of the initial and final state radiation, the PDF as well
as the renormalization and factorization scale.

• εifilter: filter efficiency.

The luminosity uncertainty is assumed again to be 5 %. The statistical and systematic
uncertainty on the background prediction are taken from table 5.2. The uncertainties
on the cross section and the signal acceptance are taken from [41] and are summarized
in appendix B.4. The cross section uncertainty coming from the PDF ranges from 16 %
for the ADD model specification with two extra dimensions up to 42 % for six extra
dimensions, the uncertainty from the renormalization and factorization scale from 23 %
to 36 %. The uncertainty from the jet energy and the missing transverse energy scale
is 3 % for all specifications of the ADD model. The uncertainty on the acceptance is
dominated by the PDF uncertainty, ranging from 10 % up to 20 % and the uncertainties
from the initial and final state modeling and the renormalization and factorization scale
are estimated to be 10 %. To every uncertainties a nuisance parameter θx is assigned in
the likelihood. The nuisance parameters of the signal efficiency θiεADD

are uncorrelated
because the statistical uncertainty in one exclusive region is independent from the
statistical uncertainty in the other regions. Therefore, each region has one independent
nuisance parameter. The individual cross section and acceptance uncertainties are fully
correlated among the different exclusive Emiss

T regions. That is the reason why there is
only one nuisance parameter for all regions per uncertainty. Also the overall background
uncertainty is assumed to be fully correlated throughout the exclusive regions and only
one nuisance parameter θb is introduced. That simplification is due to the fact that
the real correlation of the uncertainties is not published in [2]. The response function
is chosen to be the log-normal response for every uncertainty and the distribution of
the nuisance parameters is assumed to be Gaussian. For some uncertainties like the
PDF uncertainty also other choice would be possible. The Gaussian choice is another
simplification which does not affect the analysis too heavily. The definition of L and the
simplification mentioned before are validates by reproducing the limits on detector level
and comparing them to the results from [41].

The limit setting procedure is performed for each specification of the ADD model
separately and one upper limit on the modification µ of the cross section that is assumed
by the model is extracted. The results can be seen in figure 5.9 (a). The observed
limits are compatible with the expected limits since no excess above the SM is observed.
Figure 5.9 (b) shows one example for the CLs value as a function of µ for the model with
three extra dimension. The values of µ to the right of the vertical blue line are excluded
because their CLs values are below 5 % indicated by the red horizontal line. These upper
limits on µ can be translated into lower limits of the fundamental Planck scale MD in
the ADD model. This is done by using the relation

σADD ∝ 1

Mn+2
D

, (5.19)

where n is the number of extra dimensions. For a given number of n and a given center
of mass energy, the proportional constant is just a constant number A. Therefore the
lower limit on the fundamental Planck Scale M lim

D can be calculated from the upper limit
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Figure 5.7.: Observed (red) and expected (black) limits (a) obtained at reconstruction
level with the ±1σ interval on the modification µ of the cross section σADD.
(b) shows the CLs value as a function of the parameter of interest µ for the
ADD model with three extra dimensions. The blue vertical line indicates
the observed limit on µ corresponding to the value smallest value of µ with
CLs < 0.05. The light blue vertical lines indicate the expected limit as well
as the ±1σ variations.

µlim as

M lim
D =

(
A

σADD · µlim

) 1
n+2

. (5.20)

The results for the lower limits on MD are given in figure 5.8. These results can be
compared to the limits quoted in [41] which are also shown in figure 5.8. Both sets of
limits show a good agreement validating once again the limit setting procedure and the
small impact of the simplification that have been made in this analysis.

5.4.5. Limits on particle level
The unfolded missing energy distribution is used to set lower limits on the fundamental
Planck scale of the ADD model for Z → νν unfolding and topology unfolding. The results
are compared to the limits obtained on particle level. The same likelihood function is used
as in the previous chapter with some modifications. The signal efficiency is dropped since
the prediction of the different specifications of the ADD model are used on particle level.
The prediction of the SM contribution is also evaluated on particle level. The uncertainties
on that prediction are assumed to be the same uncertainties at reconstruction level. In
addition, the unfolding uncertainties as discussed in section 5.2.1 are included. In order
to avoid a bias these uncertainties are associated to the background prediction and not
to the observed number of events. This complication is briefly discussed in [55]. Taking
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Figure 5.8.: Observed (red) and expected (black) limits (reconstruction level) with the
±1σ interval as well as the observed limits from [41] on the fundamental
Planck scale MD for five different specifications of the ADD model predicting
two to six large extra dimensions.

these modifications into account yields the following likelihood

L =
4∏

i=1

Pi

[
N i

obs

∣∣∣∣∣µ · σADD ·

σ(σi
ADD,Jet/Emiss

T
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·
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·
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· G(0|θσADD,Jet/E, 1) · G(0|θσADD,PDF, 1) · G(0|θσADD,Ren/Fac, 1)

· G(0|θAADD,Ini/Fin, 1) · G(0|θAADD,PDF, 1) · G(0|θAADD,Ren/Fac, 1)
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· G(0|θb,σ(MC), 1). (5.21)

Figure 5.9 shows the obtained limits from the unfolded distribution on the fundamental
Planck scale MD for Z → νν unfolding and topology unfolding. Both unfolding methods
result in a very similar limit. No significant difference can be observed although the
Z → νν limit is constantly above the topology unfolding limit. This can be seen better in
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Figure 5.9.: Observed (red) and expected (black, green) limits obtained from the unfolded
missing transverse energy distribution on the fundamental Planck scale MD

in the ADD model for Z → νν unfolding (a,c) and topology unfolding (b,d).
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Figure 5.10.: The limits on the fundamental Planck scale from Z → νν (blue) and
topology (magenta) unfolding divided by the limit obtained at reconstruction
level. The green band indicates the ±1σ interval of the expected limit at
reconstruction level.

figure 5.10 which shows the ratio between the observed limit from the unfolding methods
and the observed limit on detector level on MD. Both ratios are very close to one and
well within the ±1σ interval of the expected limit at reconstruction level.

Therefore, it is shown that

limits obtained from unfolded distributions and limits obtained at
reconstruction level are compatible. The results from topology unfolding
agree well with results from the conventional way of unfolding.

The underlying assumption of this study is the fact that the relative uncertainties of the
SM prediction at particle level are the same at reconstruction level. As explained earlier,
some experimental and theoretical uncertainties at reconstruction level are reduced
because the background estimation of [41] includes ratios of MC predictions. If the full
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uncertainties at particle level were estimated instead of assuming the same uncertainties
at reconstruction level, the uncertainties could become larger. However, the uncertainties
can in principle also be derived from control regions including ratios canceling some
fraction of the uncertainties. These control regions would then be unfolded control regions.
This idea is not investigated in this analysis but might be subject of further studies.

The promising results obtained using the topology unfolding method clear the way
for a second attractive possibility. A new concept could be developed which relies not
on a background subtraction any longer, but only on topology unfolding. The selected
data would be unfolded with the topology unfolding technique using MC simulations
and directly compared to calculated cross sections or MC distributions on particle level.
This analysis strategy involves two main advantages. First, the background estimation is
no longer needed, which results in a massive shortening of the time scale of an analysis.
Second, as mentioned earlier the treatment of theoretical and experimental uncertainties
would follow a more natural way. Besides the unfolding uncertainties, the observation
would be affected only by experimental uncertainties, because no MC simulations are
used to subtract a background. In most analysis in which a background subtraction is
performed a semi datadriven method is applied using at some point MC simulations.
Therefore, the observed number of events are affected by theoretical uncertainties after
the background subtraction. Furthermore, the expectation of the analysis using topology
unfolding would be of a pure theoretical nature. This results in a clean separation of
theoretical and experimental uncertainties.



6. Conclusion

This thesis presents a proof of concept analysis for a newly introduced unfolding method,
topology unfolding. This method makes no distinction between signal and background
processes and performs no background subtraction before the unfolding. Instead, the
inclusive reconstructed data distribution is unfolded using MC simulations of all SM
processes that pass the selection criteria. This approach follows the general idea of
unfolding, namely to provide an unfolded data distribution which is as independent of
other assumptions or measurements as possible. In the conventional way of unfolding,
only one signal process is unfolded after a background subtraction is performed. The
resulting distribution is independent of the detector, which offers several advantages
like the possibility to use the provided data in future analysis or for comparisons with
other experiments. A distribution unfolded with the topology unfolding technique is in
addition to that also independent of the estimation of the SM processes because here no
background subtraction is performed. This analysis shows in the context of a monojet
search for new physics that the results obtained by topology unfolding are consistent with
the results from the conventional way of unfolding. In addition, topology unfolding results
in smaller uncertainties, mostly because the higher statistics of the inclusive reconstructed
data distribution is used through this technique and the topology unfolding matrix is
more stable against shifts in the normalization of the different SM processes than the
background subtraction performed in the conventional unfolding method. Furthermore,
it is shown that the unfolded results from the topology unfolding method and from the
conventional unfolding technique can be used to set limits on models predicting physics
beyond the standard model that are compatible with limits obtained at reconstruction
level. This study is performed with the 2015 dataset provided by the LHC corresponding
to an integrated luminosity of 3.2 fb−1 in the context of large extra dimensions and the
ADD model probed by a monojet search. Limits are set on the fundamental Planck
scale of five different specifications of the ADD model. The results are validated by a
comparison to a recently published monojet search of the ATLAS collaboration. The
general advantages of unfolding and the here presented proof that unfolded distributions
result in the same limits as obtained at reconstruction level recommend that unfolding
should be used commonly in searches for new physics. The topology unfolding offers
additional advantages. This techniques results in smaller uncertainties, provides a more
intuitive separation of theoretical and experimental uncertainties and could be used to
design a new analysis concept in which the huge effort of estimating the SM contribution
to an event selection could be omitted. The here presented study understands itself as a
proof of concept analysis. The promising results of the new unfolding method offer the
possibility of testing topology unfolding in an independent search for new physics in near
future.



A. Topology unfolding

A.1. Resolution
Figure A.1 shows the resolution for the invariant mass of the two leading jets and the
transverse momentum of the second leading jet. The procedure to obtain the resolution
is described in section 4.3.

A.2. Efficiency, fake rate, purity and response matrix
For completeness of section 4.5.1, the response matrices of the transverse momentum
of the second leading jet and the invariant mass of the two leading jets are shown in
figure A.2.

A.3. Closure test
Figure A.3 shows further results of the closure test for Z → νν and topology unfolding
in addition to the ones shown in section 4.5.2. Figure A.4 present the full results of the
closure test from section 4.5.2 for unfolding the W → τν process.

A.4. Unfolded results
Figure A.5 and figure A.6 show the unfolded results from section 4.5.3 for the transverse
momentum of the second leading jet and the invariant mass of the two leading jets,
together with the corresponding correlation matrices for each unfolded distribution of
the statstical uncertainties of the reconstructed distribution.

A.5. Comparison of uncertainties
Figure A.7 shows the relative fractions of different uncertainties as a function of the
transverse momentum of the second leading jet and the invariant mass of the two leading
jets as discussed in section 4.7. The full relative and the full systematic uncertainties for
the transverse momentum of the second leading jet and the invariant mass of the two
leading jets are shown in figure A.8 for both unfolding methods.
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Figure A.1.: The resolution of the invariant mass of the two leading jets (a,b) and the
transverse momentum of the second leading jet (c,d) for the Z → νν (a,c)
and W → τν (b,d) simulation.
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Figure A.2.: The response matrices for the transverse momentum of the second leading
jet (a,c,e) and the invariant mass of the two leading jets (b,d,f) for the
W → τν (a,b), the Z → νν process (c,d) and the sum of the two processes
(e,f) as used for the topology unfolding method.
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Figure A.3.: The results of the closure test for the transverse momentum of the second
leading jet (a,b) and the invariant mass of the two leading jets (c,d) for
unfolding the Z → νν process (a,c) and for topology unfolding (b,d). The
lower plots show the ratio between the unfolded result and the particle level
distribution.
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Figure A.4.: The results of the closure test for the missing transverse energy (a), the
transverse momentum of the leading (b) and second leading (c) jet as well as
for the invariant mass of the two leading jets (d) for unfolding the W → τν
process. The lower plots show the ratio between the unfolded result and the
particle level distribution.
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Figure A.5.: Unfolded distributions for the transverse momentum of the second leading
jet and the correlation matrices of the statistical uncertainty coming from
the reconstructed pseudo-data distribution for unfolding the W → τν (a,b),
the Z → νν (c,d) process and topology unfolding (e,f). The unfolded result
is compared to the result obtained from bin-by-bin unfolding and the particle
level distribution of the pseudo-data (PD).
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Figure A.6.: Unfolded distributions for the invariant mass of the leading and second
leading jet and the correlation matrices of the statistical uncertainty coming
from the reconstructed pseudo-data distribution for unfolding the W → τν
(a,b), the Z → νν (c,d) process and topology unfolding (e,f). The unfolded
result is compared to the result obtained from bin-by-bin unfolding and the
particle level distribution of the pseudo-data (PD). .
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Figure A.7.: Relative uncertainties for the Z → νν unfolding (magenta) and the topology
unfolding (black) for the transverse momentum of second leading jet (a,b)
and the invariant mass of the two leading jets (c,d).
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Figure A.8.: Full relative uncertainty (a,b) and the full relative systematic uncertainty
(c,d) for the transverse momentum of the second leading jet and the invariant
mass of the two leading jets. The lower plots show the ratio of the relative
uncertainties of the Z → νν unfolding and the topology unfolding.



B. Topology unfolding for a monojet search

B.1. Log-normal Response
This section discusses briefly the idea of the log-normal response. Starting point is a
counting experiment in a single phase space region with an observed number of events
of N and an expectation of s + b, where s refers to the parameter of interest, namely
additional contribution from a new process, and b to the expected background events.
The background prediction has an uncertainty σb. The underlying measurement of the
corresponding nuisance parameter is assumed to follow a Gaussian distribution. Therefore,
the likelihood is defined as a Poisson distribution times Gaussian with mean b and width
σb

L = P(N |s+ b) ·G(b0|b, σb) (B.1)

= P (N |s+ b) · 1√
2πσ2

b

· exp
(
−1

2

·(b− b0)
2

σ2
b

)
. (B.2)

Substituting θ = (b− b0)/σb gives

L = P(N |s+ θ · σb + b0) ·
1√
2πσ2

b

· exp
(
−1

2
· θ2
)

(B.3)

= P(N |s+ b0(
σb
b0

· θ + 1)) · 1√
2πσ2

b

· exp
(
−1

2
· θ2
)

(B.4)

= P(N |s+ b0(
σb
b0

· θ + 1)) · 1

σb
· G(0|θ, 1), (B.5)

with R(θ) = (σb/b0 · θ + 1) being the response function. Now, the Gaussian is centered
around θ and evaluated at zero. θ can be interpreted as the new nuisance parameter. This
definition is useful for the case that more than one (overall) uncertainty is considered for b.
The new nuisance parameter θ gives the nominal value of b for θ = 0 since R(θ = 0) = 1.
However, θ is not bounded from below and can in principle produce negative number
of events R(θ) → −∞ for θ → −∞. This happens predominantly for a small number
of expected events. Negative numbers of events should be avoided since they are not
physical. This can be done by redefining the response function to the so-called log-normal
response:

R(θ) = (σb/b0 + 1)θ. (B.6)

This response function yields again the nominal value of b for θ = 0, but it cannot yield
a negative number of events because of the behavior R(θ) → 0 for θ → −∞. Therefore,
a good model for the likelihood function is

L = P

(
N

∣∣∣∣∣s+ b0

(
σb
b0

+ 1

)θ
)

· G(0|θ, 1). (B.7)
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Figure B.1.: The reduced χ2 values of the unfolded missing energy distributions from the
current and the previous iteration for Z → νν unfolding (a) and topology
unfolding (b).
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Figure B.2.: The response matrices for Z → νν unfolding (a) and topology unfolding (b).

The constant 1/σb was omitted because it would cancel in a likelihood ratio. The name
for this specific response function comes from the fact that ln(R) ∝ θ and θ is normally
distributed.

B.2. Number of iterations
The distribution of the reduced χ2 values obtained from the current and the previous
iteration of unfolding of the missing transverse energy distribution as performed in
section 5.3 is shown in figure B.1.

B.3. Response matrices
The response matrices used for unfolding the missing transverse energy distributions in
section 5.3 are shown in figure B.2.
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Specifications of the ADD model
n MD [GeV] m0 [GeV] σ [pb]
2 5300 800 1.500± 0.006
3 4100 1500 1.823± 0.006
4 3600 2200 2.289± 0.008
5 3200 2800 4.18± 0.02
6 3000 3300 7.22± 0.03

Table B.1.: Details of the ADD models: the number of extra dimensions n, the funda-
mental Planck mass MD, the mass of the graviton m0 and the cross section
σ.

Uncertainties on the signal cross section σ
σ(σADD,Jet/Emiss

T
) σ(σADD,PDF) σ(σADD,Ren/Fac)

n = 2 3 % 16 % 23 %
n = 3 3 % 22 % 26 %
n = 4 3 % 28 % 29 %
n = 5 3 % 35 % 32 %
n = 6 3 % 42 % 36 %

Table B.2.: Systematic uncertainties for the different ADD models on the signal cross
section. The sources for the systematic uncertainties are the jet energy and
missing transverse energy scale, the parton density function (PDF) and the
renormalization and factorization scale.

B.4. ADD model
Table B.1 shows some details of the five specifications of the ADD model. Given are
the number of extra dimensions n, the fundamental Planck mass MD, the mass of the
graviton m0 and the cross section σ.

The systematic uncertainties on the signal cross section and the signal acceptance are
shown in table B.2 and table B.3.
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Uncertainties on the signal acceptance A
σ(AADD,Ini/Fin) σ(AADD,PDF) σ(AADD,Ren/Fac)

n = 2 10 % 10 % 10 %
n = 3 10 % 12 % 10 %
n = 4 10 % 15 % 10 %
n = 5 10 % 17 % 10 %
n = 6 10 % 20 % 10 %

Table B.3.: Systematic uncertainties for the different ADD models on the signal accep-
tance. The sources for the systematic uncertainties are initial and final state
modeling, the parton density function (PDF) and the renormalization and
factorization scale.
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