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Zusammenfassung

Diese Doktorarbeit beschreibt die experimentelle Umsetzung des Fröhlich-Hamiltonoperators
in einer Mischung ultrakalter atomarer Gase. Dafür werden einzelne Atome in ein Bose-
Einstein Kondensat (BEC) eingebracht, welche die Rolle von Verunreinigungen spielen.
Diese Atome werden in einer Raumrichtung durch ein starkes, element-selektives optisches
Potential gebunden. Dabei werden ihre externen Energieniveaus durch die Kopplung an die
Anregungen (Phononen) des BECs verschoben. Dies entspricht den Lamb-Verschiebungen
im Wasserstoffatom, welche durch Wechselwirkung mit dem Vakuum entstehen. In diesem
Sinne kann das BEC als synthetisches Vakuum und die Energieänderung als phononisch-
erzeugte Lamb-Verschiebung bezeichnet werden.
Durch kinetische Ramsey-Spektroskopie wird die Lücke zwischen den niedrigsten Fallen-
Niveaus bestimmt. Zur Bestimmung der energetischen Veränderung durch die Wechsel-
wirkung mit dem Hintergrund wird das Experiment mit und ohne BEC durchgeführt. Der
Hintergrund beeinflusst die Energielücke durch zwei Mechanismen: zum einen wird das BEC
durch das Fallenpotential für die Verunreinigungen ebenfalls leicht moduliert, zum anderen
durch die Wechselwirkung über Phononen. Beide Effekte werden beobachtet und quantitativ
beschrieben. Die Änderung des Abstands zwischen den Energieniveaus durch phononische
Wechselwirkung wird für fermionische Verunreinigungen (6Li) zu (6± 1) · 10−4 bestimmt.
Die Streuung von Phononen kann durch den Einsatz kondensierter bosonischer Verunreini-
gungen (7Li) verstärkt werden, was zu einer gemessenen Änderung von (4 ± 0.1) · 10−3

führt. Außerdem wird die Abhängigkeit der phononisch bewirkten Verschiebung von der
Anzahl der 7Li Atome und der relativen Besetzung der Energieniveaus dargestellt. Diese
erste Beobachtung des Fröhlich-Hamiltonoperators in externen Freiheitsgraden in einer
Mischung ultrakalter Gase erlaubt erstmals einen Zugang für zukünftige Tests von Theorien
in einer hochgradig flexiblen Umgebung.

Abstract

This thesis reports on the implementation of the Fröhlich Hamiltonian in an ultracold
atomic mixture. To this end, impurity atoms are immersed into a macroscopic Bose-Einstein
condensate (BEC). The impurities are tightly trapped in one direction by a species-selective
optical potential. In this scenario their coupling to the excitations (phonons) of the BEC
causes energy shifts of their external states that are analogues to the electronic Lamb shift
in the hydrogen atom, which originates from interaction with the vacuum. Therefore the
BEC can be denoted synthetic vacuum and the energy shift termed phonon-induced Lamb
shift. The energy gap between the lowest lying trap levels for the impurities is determined
via motional Ramsey spectroscopy. For the detection of the energetic modifications due to
interaction with the background, experiments are performed with and without BEC. The
background modifies the gap by two mechanisms: the modulation of the BEC density by
the optical trapping potential for the impurities, and the interaction with phonons. Both
effects are observed and a quantitative description is derived. The relative change of the
gap due to phononic interaction for fermionic 6Li impurities is found to be (6± 1) · 10−4.
The phonon scattering can be enhanced by the use of a Bose-Einstein condensed impurity
(7Li), where we measured (4± 0.1) · 10−3. Furthermore we present the dependence of the
phonon induced shift on the absolute atom number and the relative population of states for
7Li. This first observation of the Fröhlich Hamiltonian in motional degrees of freedom in an
ultracold gas mixture paves the way to put theory to a test in a highly flexible environment.
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1 Introduction

Although quantum mechanics makes predictions in terms of probabilities, an over-
whelming number of them can safely be observed and confirmed in the form of
expectation values. Among them are the precise measurements of the system’s
eigenenergies. If excited states are coupled to the environment, their population can
decay. The rate of this change can be estimated by, for instance, Fermi’s golden rule
[1, 2]. It is this source of decoherence which is a bridge from quantum mechanics to
classical mechanics for mesoscopic systems. In addition, the coupling to the environ-
ment manifests itself also in observable effects for the system under investigation, for
example in shifts of energy levels.
The hydrogen atom can be solved quantum-mechanically [3]. Even taking relativistic
effects and the spin degree of freedom of the electron into account, the calculation
based on the Dirac equation [4] results in degeneracy of states with the same total
angular momentum. Accordingly it was a big surprise when in 1947 Lamb and
Retherford found the 2S1/2 and the 2P3/2 state of the hydrogen atom to be split by
about 1 GHz [5]. A lot of experimental effort has been put into the investigation of
this Lamb shift in hydrogen [6, 7].
The explanation of the Lamb shift by Bethe was the groundwork of quantum elec-
trodynamics [8]. Conceptionally, vacuum fluctuations cause virtual absorption and
emission processes of photons, changing the energy of the electronic states. In a
quasiclassical picture the distance of the electron to the nucleus varies as it moves
around the nucleus, hence the effect is strongest if the electron’s probability of
presence at the location of the proton is distinct from zero. Even the mass of the
free electron is strongly affected by the vacuum fluctuations, a phenomenon known
as Bethe electron mass renormalization [9]. Both effects are non-relativistic. In its
further development, quantum electrodynamics proved to be a powerful concept, as
demonstrated by the fact that the theoretically computed value for the electron’s
Landé factor coincides with measurements up to the 11th decimal place [10].
This concept of an electron subject to fluctuations due to coupling to the electromag-
netic vacuum is very powerful and can be generally applied to a wealth of similar
scenarios, like a mobile electron in a semiconductor. In this case, non-relativistic
electrons interact with the ionic lattice via the Coulomb force. Coupling to the
collective lattice excitations (phonons) modifies the electron’s dispersion relation.
In an effective picture, this dressed electron can be described by a quasi-particle,
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1 Introduction

the polaron [11–14]. Due to phonon absorption and emission, its mass is effectively
increased [15, 16]. The field-theoretical formulation of this problem goes back to
Fröhlich and the corresponding Hamiltonian bears his name. Although it opens a
straightforward access to the problem, it is not exactly solvable by analytic calcula-
tions. Therefore the amount of suitable applications is still open. Besides describing
many important fundamental aspects of solid state materials [17, 18] it reaches to
recent material research such as high temperature superconductors [19] and organic
semiconductors [20, 21].
If the model is extended to an electron in a semiconductor bound to a defect, it is
called a bound polaron. Due to the phononic coupling, its energy levels are shifted,
which is the analogous mechanism as in the famous case of the electron in the
hydrogen atom. By reason of this analogy, the effect is referred to as phonon-induced
Lamb shift and was predicted already 50 years ago [22–24]. In the 1970s experiments
on solid state systems were performed, without clear signal of the phononic Lamb
shift [25, 26]. The main reason for this is that disorder leads to varying defect spectra
over the sample and disguises the dressing effect.
While these effects are hard to resolve in solid state materials, fortunately the Fröhlich
Hamiltonian can be realized with ultracold dilute gas mixtures of neutral atoms
[27–30], where an impurity atom is immersed into a macroscopic Bose-Einstein-
condensate (BEC). In this non-relativistic system, the low lying excitations of the
BEC (phonons) play the role of the photons in the case of the hydrogen atom.
For small momenta the phonons have a linear dispersion relation, analogous to
the photons of the electromagnetic field. The general advantage of such a model
system is the possibility to tune the coupling strength, the characteristic velocity of
excitations in the medium (sound velocity) and the confining potentials [31–33]. The
validity of the mapping onto the Fröhlich Hamiltonian relies on a finite impurity-BEC
interaction strength [29].
Ultracold atom systems have been widely employed for the study of polaronic effects.
Two different realizations are possible: in the context of an impurity in a Fermi
sea the quasi-particle is termed Fermi polaron, in case of an atom immersed into a
BEC it is named Bose polaron. Solely the Bose polaron is described by the Fröhlich
Hamiltonian, whereas the Fermi polaron is closest to Pekar’s primal concept. Here the
impurity is dressed with the localized cloud of scattered fermions. Most experiments
to date study the Fermi polaron, where e. g. the binding energy has been studied
extensively by radiofrequency spectroscopy [34–37]. Decelerated oscillation speed
in a shallow trap revealed its increased effective mass [38], see [39] for a review on
Fermi polarons.
For impurities immersed in a one-dimensional BEC indications of polaronic effects
have been observed [40, 41]. However, the Lamb shift and a unique signal of the
Bose polaron have not been observed yet. Previous experiments with ultracold
Bose-Fermi mixtures on interaction-induced energy shifts concentrated on BECs of
a few atoms with completely frozen motional degrees of freedom [42–44]. In this
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scenario the impurity distorts the whole bosonic wave function, relying on short
wavelength phonons, which have a quadratic dispersion relation. This weakens the
comparison to the electromagnetic field. Previous experiments on the Lamb shift
with thermal atoms elevated its outcome by amplifying the electromagnetic field by
cavities [45, 46]. Furthermore it has been studied in superconducting circuits [47].
In a quantum gas realization the BEC plays the role of the vacuum. As the BEC
can be vastly controlled it is declared synthetic.
In this thesis the implementation of the Fröhlich Hamiltonian with tightly confined
impurities is reported, in analogy to an electron bound to an ion in a semiconductor
or an electron bound to a proton in the hydrogen atom. The impurities are strongly
confined in one direction by an optical potential, whereas the phonon bath remains
weakly trapped in all directions. Hence only a local change of the BEC wave func-
tion takes place and Lamb shifts due to potential shapes beyond the conventional
Coulombic potential can be modeled.
We observe the phononic Lamb shift by spectroscopy of the gap between the two
lowest energy levels of the bound impurity employing motional Ramsey spectroscopy
[48, 49]. As we can remove the BEC from the system, we can directly compare the
properties of the dressed and the bare impurity. This possibility does not exist in
other systems, neither the vacuum nor the ionic lattice can be deactivated. It is
essential for the validity of the Fröhlich Hamiltonian in the impurity-BEC scenario
to remain in the weakly interacting regime. Accordingly the energy shifts are small
for fermionic impurities. Our model system permits the use of the corresponding
bosonic isotope as well. Thereby we can enhance the shifts by amplification due to
macroscopic occupation of states, as high occupation numbers increase the proba-
bility of phonon interaction. The high signal values obtained enable us to perform
a systematic study despite the weak coupling. The dependence of the shift on the
populations of the investigated states is accessible as well.
Our results are compared with a perturbative Lamb shift calculation without free
parameters. We find quantitative agreement of the measurements with the theoretical
predictions based on the Fröhlich Hamiltonian.

This thesis is structured in the following way: In chapter 2, essential modifications of
the experimental setup are detailed, which enabled the spectroscopy of the impurity
energy levels with high precision. In chapter 3, atomic mixtures in traps and their
density distributions are discussed. Further basic characteristics of a BEC, which
are essential for understanding the impurity-BEC coupling, are highlighted. In
chapter 4 the optical lattice is introduced and characterized, which is our tool to
address and detect impurity properties. Chapter 5 discusses the theory of background
induced shifts for impurities and the corresponding theoretical predictions for our
experimental setup. Chapter 6 presents the experimental observation of the phononic
Lamb shift. Concluding remarks and an outlook are given in chapter 7.

11





2 Experimental Setup

The first chapter presents a setup suitable for double species experiments with
ultracold sodium and lithium gases. Our ultracold atom machine very much follows
the standard textbook laser cooling approach, having the additional possibility of
cooling a second species. The strength of this machine is the availability of several
species-selective optical dipole traps, the corresponding knowledge of manipulation
and detection of external states in these potentials and the ability to change the
lithium isotope from a fermionic to a bosonic one. As the setup has been described
extensively before [50–52], I will only highlight the changes performed within the
last years and the aspects relevant for the experiments described in this thesis.
The first section gives a general summary of the employed strategy. In the following
sections changes to the setup enabling the measurements this thesis is based on
are highlighted. Most of the modifications aimed for an increased stability of the
experimental apparatus and the capability of performing impurity physics. These
improvements were a substantial part of this thesis work. The vacuum and laser
setup were successfully modified to reduce the down time and increase the stability
of the experiment. Further the upgrade to capture 7Li as well requires changes on
the lithium spectroscopy and MOT setup and an adaption of the spin preparation
before loading the gas into the magnetic trap. The 7Li hyperfine structure made
several approaches for evaporative cooling in the magnetic trap possible that we
tested. An alteration of the optical dipole trap loading sequence and beam shape
enables higher atom numbers and stability. Here a magnetic field maximum along
the trap beam further increases the atom numbers. Lastly, the adjustment of lithium
atom numbers and the imaging system are outlined.

2.1 Overview

All ultracold atom experiments have to be performed in ultra high vacuum, as the
atoms have to be decoupled from the environment. In our case a two species oven
is used as an atomic beam source, a Zeeman slower setup decreases the velocity of
the atoms so that they can be trapped in a double species magneto optical trap
(MOT). Subsequent optical pumping is applied to enhance the population of the
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2 Experimental Setup

trappable hyperfine states. A cloverleaf magnetic trap is used to trap the atoms
and cooling of sodium is performed via forced evaporation by a radio frequency
knife. The lithium atoms are cooled sympathetically. After evaporatively cooling
the atoms to the temperature necessary to trap them in an optical dipole trap at
given laser power, they are transferred from the magnetic trap to the optical dipole
trap. Further evaporation in the optical dipole trap by reducing the trap depth
will cause the sodium atoms to form a BEC. In the next step, experiments can be
performed, most of them using a species-selective optical dipole trap for lithium.
This potential is created using a standing light wave close to resonance for lithium,
which is far off-resonant for sodium and thus does not strongly affect the sodium
atoms. Detection is done via absorption imaging. The resonant imaging light pulse
blows the cold samples away, so a new sample of atoms is trapped and cooled. These
cycles take about half a minute with several seconds break between two subsequent
runs for data analysis and reprogramming of the devices.

2.2 Vacuum System

In comparison to the original vacuum setup described in [50], only the oven section
was changed during the course of this thesis. The general idea of this atom beam
source is to have two individually heated reservoirs, one containing sodium, the other
one lithium (see Fig. 2.1). We work at reservoir temperatures of 365 ◦C for sodium
and 380 ◦C for lithium, respectively. It is at these temperatures that the vapor
pressure of the alkali metals gets high enough to create a sufficiently intense atom
beam. The reservoirs are connected via a small tube, accounting for the different
vapor pressures of the two alkali metals. The lithium reservoir is used as a mixing
chamber as well. The atoms leave the oven through a nozzle. In order to prevent
clogging, nozzle and mixing tube should be hotter than the reservoirs. These ideas
are in analogy to the setup in the Ketterle group described in [53].
Lithium and sodium are alkali metals, which are very reactive. Therefore directly
after bringing new material into the vacuum system the surfaces of the alkali chunks
are covered with oxides. As our experiments aim at impurity physics, more sodium
than lithium is required. Therefore much more sodium (up to 40 g) than lithium
is filled into the reservoir. Heating the reservoir will evaporate at least parts of
these oxides and dirt on the surface of the oven vacuum chamber and the metal
pieces. The heating should be done thoroughly as dirt deteriorates the high vacuum
conditions. In case of lithium an oxide cage even prevents evaporation. This bake-out
is done using a turbo-molecular pump as the outgassing is enormous and would
reduce the ion-pumps’ lifetime. For lithium additionally cracking of the oxide shell at
temperatures of 550 ◦C and higher is necessary, opening the way for the pure metal
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2.2 Vacuum System

in the center of the chunk. As copper gaskets may only be heated up to 450 ◦C,
nickel gaskets have to be used at the connection between lithium reservoir and oven.
If the cracking and bake-out are done excessively, of course parts of the material will
be wasted.
Under regular operation about once a year or more often the oven has to be replaced.
In general the oven is not empty but has different issues, which will be detailed
below. At an oven output of about 1 g per week, it is reasonable to catch most of
the material that cannot reach the experiment area on purpose at a position where
it can easily be removed. These atoms have a transversal speed too high to pass the
tubes of the differential pumping stages between oven section and glass cell. Sodium
and lithium have a high probability of sticking to surfaces at room temperature.
Therefore a cold copper piece close to the oven nozzle (≈ 6 cm distance) with an
aperture in its center is a solution to this task. This copper plate is the outlet of the
oven, being water cooled at the outside. This technique works nicely, but will catch
a lot of sodium so that after some operation time the sodium pressure in the part
between nozzle and copper plate can be so high that lithium cannot pass any more
due to a short mean free path length. This is especially true as the nozzle is kept
at 450 ◦C and the external cooling cannot reach room temperature in this section.
Mounting a cleaned spare oven solves this problem, but requires a time consuming
bake-out procedure.
Another reason for oven exchanges is bad pressure. In order to save material (sodium,
lithium) during the night, the reservoirs are kept at about 100 ◦C colder temperatures
than during active operation. Our standard values are 280 ◦C for sodium and 300 ◦C
for lithium at night. This heating and cooling can cause stress to the metal parts and
flanges. Moreover we observed strong degradation of the sodium cup flanges, where
a chemical reaction causing unidentified green material at the outside occurred. The
same has been observed by other groups working with sodium [54]. After some time
of operation, the atom flux of the oven will be reduced or the pressure in the oven
section will rise, making it necessary to exchange the oven.
An additional reason to the above mentioned for an oven exchange instead of a refill
is the wear out of the lithium flange. The nickel gasket used to seal the lithium cup
is harder than copper, making it necessary to use special stainless steel (316LN-ESU)
for the flange. Nevertheless the knife edges of the flanges are blunt after single use if
they are not closed carefully and using a torque wrench. Otherwise they need to be
recut in the institute’s workshop after each refill.

In order to better protect the flanges, we redesigned the oven. In the new design, the
cups containing the metal chunks are welded onto the oven, the filling is done via
blind flanges on top of the reservoirs. Both sodium and lithium are sealed with nickel
gaskets in order to prevent chemical reactions. Getting the flanges further away from
the reservoirs reduces thermal stress when changing the reservoir’s temperature. The
very compact design reduces mechanical stress on the vacuum apparatus and reduces
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mixing
nozzle

Na Li

CF 40 CF 40

CF 63

cold
plate

oven
nozzle

50 mm heating
cooling
engineered
part

atom
beam

Figure 2.1: New design of the oven setup. The sodium and the lithium cup are heated
(365 ◦C and 380 ◦C respectively) as well as the mixing and the oven nozzle
(450 ◦C) (red area). The cone is water cooled from outside (blue area).
The flanges giving access to the metal reservoirs are as distant as possible
from the metal chunks while keeping the volume low. Technical drawings
of the green parts are given in [55].

the thermal mass. It has been successfully implemented in the experimental setup.
Its end of life was determined by an empty sodium reservoir which could easily be
refilled. No corrosion of the flanges was observed.

After passing the copper plate, the atom beam can be blocked by an atomic beam
shutter. It is a movable stainless steel metal sheet. This mechanical device is
controlled from the outside of the vacuum chamber via a magnetic feed-through.
The magnet inside the chamber is attached to a rod that can rotate due to two ball
bearings (Lesker, DS450VPS). Attached to the rod is a stainless steel plate that,
dependent on its position, either blocks the atoms, increasing the lifetime in the trap
or lets them pass, allowing the MOT to load atoms from the oven. In its original
version the shutter was mounted directly between oven and six way cross connecting
to the rest of the apparatus. It turned out that in this position its lifetime due to
sodium clogging of the bearings was short. We mounted the shutter on top of the
six way cross, increasing the distance to the oven. Since then the shutter is running
smoothly and the bearings never got stuck again.
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2.3 Laser System

2.3 Laser System

For the optical cooling of sodium yellow laser light (589 nm, D2-line transition) is
utilized which is generated by a dye laser. The concept of a dye laser is to excite dye
molecules solved in a liquid. The dye solution is squeezed through a nozzle at a very
high pressure (≈ 20 bar), forming a plane sheet. Excitation is realized with green
laser light (532 nm) at high intensity (≈ 10 W) conveniently generated by a solid
state laser system, a frequency doubled Nd:YAG laser. The dye molecules end up in
a metastable state. Stimulated emission in a ring shaped laser cavity with frequency
selective elements creates laser light with a narrow line width (<1 MHz).
For lithium, red laser light (671 nm, D-line transitions) is employed. It is created by
a diode laser seeded tapered amplifier, a reliable commercial solid state laser system.
It is frequency stabilized using another diode laser that is locked by a Doppler free
spectroscopy setup. Besides laser cooling with resonant light we deploy off-resonant
lasers for creating potentials (see chapter 3). For the species-selective optical dipole
trap close to the lithium transition, red light is generated by a dye laser. The use
of a dye laser is advantageous as the wavelength can be tuned widely, the small
line width allows to work close to atomic transitions and in principle dye lasers can
achieve high output powers and optical fiber coupling efficiencies. For the optical
dipole trap confining sodium and lithium, an industrial high power Nd:YAG laser at
1064 nm is available.

The dye laser used for laser cooling of sodium suffered low power, short dye lifetime
(less than a week) and mechanical instability. In order to increase the productivity
of the experiment, we exchanged the mechanical dye solution pump by a version
of Sirah Lasertechnik which is much more powerful than the former one. It has a
larger dye solution reservoir and delivers pressures up to 20 bar and higher. At these
high pressures a good nozzle is very important, as the surface has to be very even to
prevent the formation of ripples on the dye jet. The Sirah nozzle is fabricated from
sapphire in a stainless steel body, resulting in the required quality. Furthermore
DABCO, a quencher and antioxidant, is added to the dye solution. It improves
the dye lifetime. This way the dye solution, which degrades within days without
the quencher, lasts about three months. Moreover we exchanged the 10 W pump
laser at 532 nm by a new 14 W version of the same model (Laser Quantum Finesse).
This additional power makes it possible to increase the pump laser power instead
of realigning the laser cavity in case of drifts over the day, yielding more reliable
operating hours. In order to keep the pump laser beams free from dust particles
which cause flickering, the beam is shielded by tubes. The dye laser itself has its
reference cavity inside the housing of the laser cavity. Therefore it turned out to be
helpful to turn on the laser control at night, without pump laser and dye circulation,
as the heating of the reference cavity is controlled by the main laser control switch.
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The change in temperature inside the laser cavity over the day made the system
superfluously instable.
Due to the successfully increased stability of the yellow dye laser we bought the same
mechanical pump for the red dye laser as well. We could use the 10 W optical pump
for the species-selective optical dipole trap dye laser, replacing a Coherent Verdi V10
that was constantly dropping in power and employed our knowledge on handling dye
lasers to this system as well.

A further change of the laser setup was the replacement of all hard disk drive based
beam shutters. For readout hard disk drives have a very fast moving actuator
arm with large travel range where we attached a razor blade. As they have a high
momentum they induce vibrations to the optical table and where therefore replaced
by relays shutters. They have a smaller travel range. Therefore in the MOT and
Zeeman slower beam path we used servo motor driven beam dumps.
Furthermore the electro-optic modulator (EOM) in the sodium slower beam has
been replaced by a model with a larger aperture (Qubig EO-Na23). It obviates the
telescopes in front and behind the EOM and delivers a much better beam shape,
increasing the available cooling laser power by more than 50 mW. In addition we
learned that the acousto-optic modulators (AOM) have a strong dependence on
temperature. Due to the radio frequency power applied to their crystal they heat up.
During the period of magnetic trapping, all AOMs were turned off, letting them cool
down again. This leads to reproducible beam positions only after long periods of
continuous operation of the experiment. Therefore we changed the control sequence
of the power sensitive AOMs (Na MOT, Na slower, Na repumper) in a way that they
were turned off only for a few ms. The absolute MOT light intensity proved to be
especially critical, which is the reason why we started to control it via a computer
driven analog card to enable reliable optimization.

In the next paragraph changes of the lithium laser system are described that aim
to increase its stability and to also include the ability to cool 7Li. The lithium
setup consists of a diode laser, locked to a spectroscopy cell, and a tapered amplifier
system that is frequency stabilized via a beat lock to the spectroscopy laser. In its
original version, the spectroscopy laser was current modulated and locked onto the
6Li crossover peak. The beat lock allows for an adaption of the detuning during
the MOT sequence, e. g. for a compressed MOT at the end of the MOT loading.
The hyperfine splitting of 6Li is 228 MHz (see Fig. 2.2), resulting in a detuning of
the spectroscopy laser to the transition of 114 MHz when locking onto the crossover
peak. This is compensated e. g. for imaging by an AOM at 81 MHz and a beat lock
frequency of 34 MHz. Due to the current modulation of the spectroscopy laser the
line width of the diode laser was high and as we wanted to expand the system to 7Li
the scheme had to be changed. We implemented a lock pattern analog to the scheme
implemented for sodium. In this scheme, the spectroscopy setup is based on saturated
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2.4 Spin Preparation

Table 2.1: List of AOM and EOM frequencies of our setup. The sign is giving the
used order of diffraction.

Na Li
ν[MHz] ν[MHz]

MOT +82 - 80
Repump +113 +150
Slower - 200 - 271
Spectroscopy +70 - 120
Umpump +76 +24
Umpump Repump +80 +170
Imaging +105 - 81
Big AOM +1699
Slower EOM +1713
7Li Repump +290

absorption spectroscopy. If probe and pump beam have the same frequency, atoms
at rest are addressed. If the two beams are at different frequencies (ω0 −∆ω and
ω0 +∆ω) atoms that fly with v/c = ∆ω/ω0 are addressed by the counter propagating
beams. In our setup one beam is at the bare laser frequency whereas the other beam
is frequency shifted by an AOM in double pass configuration. Therefore if this setup
is locked to a resonance, the laser is detuned by the frequency of the AOM. In order
to change as little as possible, the spectroscopy AOM in the new setup is running at
120 MHz. In this configuration, the difference in frequency between diode laser and
tapered amplifier remains almost the same whatever locking technique is used. This
locking scheme can now be used for 7Li as well. The only further change for the MOT
that has to be done is to increase the repumper frequency. The hyperfine splitting of
7Li is 804 MHz so the repumper frequency has to be increased by 576 MHz compared
to 6Li. This is done via an AOM in double pass configuration at roughly 290 MHz.

2.4 Spin Preparation

The previous section covers the modifications of the lithium laser setup necessary
for a 7Li MOT. For further cooling in a magnetic trap additional steps are required.
Not all hyperfine states present in a MOT are magnetically trappable. Moreover in
a mixture it is important to use stable spin states that do not allow spin exchange
between atoms to hyperfine states, which are untrappable.
Fermionic 6Li can be trapped efficiently only in the upper hyperfine state (F = 3/2),
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Figure 2.2: Plot of the Breit-Rabi formula for 23Na, 6Li and 7Li [56]. The energy of
different hyperfine states depends on the magnetic offset field. Only for
small fields the linear Zeeman effect is a suitable description. For strong
fields nuclear spin and the electron’s spin decouple. Hydrogen-like atoms
at intermediate fields and total angular momentum operator J = 1/2
can be described analytically by the Breit-Rabi formula.

as the |F,mF 〉 = |1/2,−1/2〉 state bends at low magnetic fields, having its maximum
at 27 G. The energetically highest hyperfine state |3/2, 3/2〉 is perfect for trapping
6Li. In order to get a stable mixture, Na has to be prepared in the |2, 2〉 state, which
requires optical pumping for both species at the end of the MOT sequence. The high
efficiency of cooling the mixture in the upper hyperfine manifold has been reported
[57] and it has been implemented in our setup [50].
For preparing both species in pure spin states by optical pumping, laser beams with
two frequencies per species are required. Both beams have circular polarization,
shifting the magnetic quantum number into the preferred direction. One beam per
species is resonant to the cycling transition, in our lab they are called umpump beams.
In case the atoms decay into the lower hyperfine manifold, they are repumped into
the cycling transition by the second beam type, the umpump repump beams. This
process lasts about 1 ms and takes place at a magnetic field of 33 G. Fast coils are
required for this procedure, as they have to be off for the MOT phase and during
optical pumping the atoms are free. So the final field should be present on the
timescale of ms. With inclusion of the optical pumping procedure, we can achieve a
MOT to magnetic trap transfer efficiency for sodium of about 50 %.
Mixtures of the bosonic isotopes 7Li and 23Na are different from Bose-Fermi mixtures
with 6Li, as the hyperfine structure of the two species (Na and 7Li) is the same,
immediately suggesting to trap them in the same state. Two states are of interest:
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2.5 Evaporation in the Magnetic Trap

|2, 2〉 and |1,−1〉. We implemented both to compare their performance.
For 7Li the |1,−1〉 state can be prepared by turning of the repumping light at the
end of the MOT stage. For Na this step is not necessary as we use a dark SPOT
MOT [58], trapping most of the atoms in F = 1. In a subsequent step the MOT light
is turned off and the magnetic trap is ramped up. This way roughly one third of
the atoms, the ones in |1,−1〉 is magnetically trapped. It has been reported that by
optical pumping, the number of sodium atoms in |1,−1〉 can be more than doubled
[59]. As the sodium transitions are very close to each other, it is necessary to do
the pumping at high magnetic fields (at least 60 G) so that the transition lines are
well separated. For the F = 1 sodium spin polarization we used the same umpump
repump frequency as for F = 2, but a higher magnetic field. Instead of using the
umpump beam we set the MOT beams to reduced intensities. The fast magnetic
coils can only reach field strengths of 40 G. Hence for higher magnetic fields slow
coils have to be added. The empirically found best magnetic field value corresponds
to 145 G, but the actual field for the pumping process might be lower, as it probably
has not yet reached its steady state. In the end we reached the same sodium pumping
efficiency for F = 1 as for the preparation in |2, 2〉.
Due to reasons explained in the next paragraph, trapping the mixture in |2, 2〉 is
promising as well. In order to pump 7Li into F = 2 we employed the beat lock of
the lithium laser setup. It is a powerful tool to adjust frequencies dynamically. After
the compressed MOT for lithium, the MOT beams are turned off while keeping the
repump beams on, putting the 7Li atoms into F = 2. Optical pumping is done by
applying the same umpump beam as for 6Li. In a last step the MOT repumper is
turned off. All atoms are in F = 2, the ones having had enough cycles with the
umpump beam in |2, 2〉. Instead of a dedicated umpump repump beam for 7Li, we
employed the MOT repumper. The efficiency of this scheme is high and trapping
both species in |2, 2〉 has several advantages.
To sum up, we can efficiently prepare the bosonic species in the magnetic trap in the
lower or the upper hyperfine manifold and compare the specific advantages of these
states in the next steps of the experimental cycle.

2.5 Evaporation in the Magnetic Trap

After laser cooling and trapping in a MOT we transfer the atoms into a magnetic trap
and cool them evaporatively. More precisely sodium is cooled by forced microwave
evaporation and lithium is cooled sympathetically. In free space no magnetic field
maxima are possible, making it necessary to trap atoms in low field seeking states.
The challenge of constructing a magnetic trap is to find a solution on how to hinder
atoms from crossing a B = 0 area, in which Majorana losses dominate.
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Our magnetic trap is a Ioffe-Pritchard Cloverleaf trap [60], described in [50]. Its
coils are embedded in two holders made of synthetic resin. Radial confinement is
achieved by a 2D quadrupole field, generated by 4 gradient coils per holder at 400 A.
Axial confinement is provided by a pair of coils having an inhomogeneous filed, as
the distance between the coils is larger than their radius. This setup results in a
curvature of the magnetic field along the coil axis. This pair is called curvature coils.
Since an offset field at the position of the atoms will reduce the radial confinement, a
homogeneous magnetic field is subtracted using a coil pair in Helmholtz configuration,
called antibias. The curvature and the antibias coils are driven by one power supply
at 220 A, called curvature. In order to compensate for mechanical drifts, an additional
power supply, called bias, driving a current only through the curvature coils allows
regulation of the offset field at the position of the atoms. As all of these coils have
relatively high inductances, another homogeneous coil pair, called finetune, with just
four windings allows fast magnetic ramps.
Two Zeeman substates in the ground state manifolds are well suited for magnetic
trapping of a stable mixture, namely |1,−1〉 or |2, 2〉 (see Fig. 2.2). Nevertheless
several differences arise whether atoms are trapped in |1,−1〉 or |2, 2〉. In the upper
manifold trapping frequencies are twice as high. Furthermore the |2, 2〉 states do
not bend, resulting in an theoretically infinitely deep potential. However, several
aspects complicate cooling in the upper manifold. An unfavorable feature of the
upper hyperfine state for sodium is the higher three-body loss rate of one order of
magnitude [61]. As three-body loss scales with the density squared, after reaching
cold sample temperatures due to evaporation, the radial confinement of the magnetic
trap is reduced in the experiment. For 7Li the disadvantage of trapping in F = 2 is
the negative scattering length (a = −27 a0 [62]), resulting in loss at low temperatures
and high densities and an instability of the BEC phase. Hence cooling in F = 1
provides the advantage that large single species 7Li condensates (6 · 105 atoms) can
be prepared in the magnetic trap by cooling sodium to depletion, which is robust, as
the microwave-knife for sodium does not just approach the trap bottom, but crosses
it. For further studies the 7Li BECs can easily be transferred into the optical dipole
trap.
Another difference of trapping in |1,−1〉 or |2, 2〉 is the necessary frequency sweep
for the evaporation of sodium. When cooling in the upper hyperfine manifold, the
transition |2, 2〉 to |1, 1〉 is utilized. In order to cool the samples in F = 1 the
transition |1,−1〉 to |2,−2〉 is best suited. We transferred the frequencies of the
F = 2 sweep to the corresponding F = 1 transition and optimized them empirically.
As the final experiments are performed in the lowest hyperfine state, directly after
loading the atoms into the optical dipole trap a microwave transfer from |3/2, 3/2〉 to
|1/2, 1/2〉 for 6Li and |2, 2〉 to |1, 1〉 for 7Li and 23Na is performed. The final states of
this transfer are not magnetically trappable, making it necessary to do the transfer
into a purely optical confinement. If the magnetic trapping is done in the lower
hyperfine manifold, a rapid adiabatic passage at a low magnetic field and 16.9 MHz
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is performed. Its former version is described in [51] and has been slightly modified,
as frequency ramps proved to be more robust than magnetic field ramps.
We learned that the radio frequency antennas built in the magnetic coil holders and
described in [50] are not perfect to achieve good coupling to the atoms. We used
copper wires to build antennas with a few windings and a diameter of about 32 mm.
They were put as close to the atoms as possible. Therefore they were mounted
between the magnetic coil holders parallel to the glass cell, letting the imaging light
pass through their aperture. They strongly increased the Rabi frequency to above
2π · 10 kHz.
Nevertheless in our setup cooling in F = 1 and F = 2 resulted in the same atom
numbers for sodium at the end of the magnetic trap and we got better atom numbers
for 7Li in F = 2, probably due to the increased trapping frequencies and trap depth.
The overlap of the clouds and therefore sympathetic cooling of lithium works better
in case of high trap frequencies. The gravitational sag scales with ω−2 , see Eq. (3.41).
For this reason, the experiment is mounted on a vertical breadboard as the radial
trap frequencies of the magnetic trap trap are higher than the axial ones, hence it is
beneficial to build the setup in a way that gravitation is along the radial direction.
Eventually we employed magnetic trapping of all species in the upper hyperfine
manifold, which poses many challenges but results in higher atom numbers.

2.6 High Magnetic Field Hybrid Trap

Our experiments take place in a crossed beam optical dipole trap. Due to three-body
loss and relative displacements of the magnetic trap minimum at different trap depths
due to the cloverleaf configuration, the transfer from magnetic trap to the optical
dipole trap can be improved by a smart loading procedure.
Three-body loss strongly depends on the density of the gas. In our experiment there
are two situations in which the three-body loss rate for sodium is especially high: in
the upper hyperfine manifold and in the vicinity of Feshbach resonances. In these
situations the atomic density should be as low as possible. Furthermore we observed
that the fluctuating magnetic field at the position of the atoms in the magnetic trap
resulted in a high scatter of the sodium atom number and temperature, especially
strong at very low temperatures. We decided to build a deep optical trap to transfer
the atoms before the microwave knife gets close to the trap bottom.
In the magnetic trap sodium is in F = 2, causing high three-body loss. In order to
reduce the density, low trap frequencies are required. Combined with a deep trap
depth, this necessitates the use of a large beam waist for optical trapping. As the
trap depth is proportional to the peak intensity (see Eq. (3.1)), these traps require
high laser powers. In our setup, an one-beam trap with a largely elongated potential
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is employed for this reason. This configuration circumvents this problem, as it can
have a rather small waist, resulting in a deep potential, but the density will not be
high, as in one direction atoms are almost free (ω ≈ 2π(700, 700, 1)Hz for sodium,
twice as high for lithium).
In order to avoid heating when reloading the atoms from the magnetic into the optical
potential, all trap changes are supposed to be adiabatic, resulting in long timescales.
In order to prevent high densities in the experiment, in a first step of the loading
procedure the magnetic confinement is reduced in 700 ms. In a subsequent step, the
horizontal optical dipole trap beam is ramped up to full power (9 W) in 150 ms. In a
further step the radial magnetic confinement can be turned off completely in 400 ms
and the axial magnetic confinement is set only by the curvature coils and the bias
power supply. Next, the magnetic confinement is turned off completely in 250 ms and
the atoms expand along the optical dipole trap beam. The purely optical trapping
enables us to perform the microwave transfer to the lower manifold. The transfers
are performed by rapid adiabatic passages where the initial and the final state are
coupled via microwave radiation. Either the magnetic field or the radio frequency can
be sweeped. Lithium is transferred first by a frequency sweep in 35 ms at a constant
magnetic field. Afterwards sodium is transferred using a constant frequency but a
magnetic field ramp of 35 ms. Having sodium prepared in F = 1, the three-body loss
coefficient is one order of magnitude smaller and a second optical dipole trap beam
can be applied to increase the density. The atomic cloud has a size of several mm,
making it difficult and slow to cool them in this dimple. For this cooling process the
intensity of the horizontal beam is linearly reduced in time.
The effectivity of cooling into this dimple can be increased if an additional magnetic
confinement in axial direction is applied. The |1, 1〉 and |1/2, 1/2〉 hyperfine states,
which are the possible final states of the rapid adiabatic passage, are high magnetic
field seeking. The curvature coils produce a magnetic field minimum, which can be
a local field maximum if a homogeneous field is subtracted. In order to do so we
used the curvature coils and the bias power supply plus the homogeneous field of the
finetune coils. This can only create a field maximum in axial direction at the position
of the dimple if one of the fields is inverted to its standard orientation. In order
to reverse the current direction of the bias power supply, the institute’s electronic
department built an H bridge consisting of two contactors suited for currents up
to 50 A. The mechanical switching takes some time (about 50 ms). Therefore after
the microwave transfer a hold time of 250 ms is included. A simultaneous ramp of
the finetune and curvature coils in 100 ms to 40 G and −32 G results in an axial
trapping frequency of a few Hz. In a next step the second optical dipole trap beam
is ramped up in 100 ms to 2 W and the intensity of both beams is slowly reduced
in 5 s to 1 W for the horizontal and 0.4 W for the vertical beam. In the last 100 ms
of the optical cooling ramp the magnetic fields are turned off, which is slow and
not perfectly controlled. This proved to be disadvantageous for accurate and stable
magnetic field in the optical dipole trap, which made waiting times and additional
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transfers for magnetically sensitive measurements necessary. The trap frequencies of
the final optical dipole trap are ω = 2π · (155, 102, 220) Hz and the corresponding
measurements are presented in subsection 3.2.2.
Sodium condensates of 4 · 106 atoms have been achieved using this technique. Fur-
thermore we could store the sodium atoms in this configuration while ramping up
a strong homogeneous magnetic field in order to approach the well-known sodium
Feshbach resonance at 905 G [63] from high values in order to tune aBB to zero.
Atom numbers of about 2 · 106 at these high magnetic fields could be realized this
way, whereas crossing the resonance with BECs by magnetic field jumps resulted in
strongly enhanced loss.

2.7 Adjusting the Atom Number

All experiments in this theses aim at impurity physics. Therefore we used the
maximum possible sodium atom number at varying lithium atom numbers. The
sodium MOT is loaded starting from the end of the sequence. The typical loading
time constant for a sodium MOT is less than a second, resulting in a saturated MOT
after the time the computer control needs to calculate the images, send the control
voltages and to program the microwave generator, a time span that is not very well
controlled. The lithium MOT has a loading time constant of many seconds. In
order to control the lithium atom number, the lithium MOT light is turned off at
the beginning of the sequence and reloaded for a defined time, whereas the sodium
MOT is loaded without interruption. This well defined lithium MOT loading time
correlates with the lithium atom number in the optical dipole trap and allows for
its control. Due to the small lithium numbers required for our experiments, the
employed loading time is on the order of a second.

2.8 Imaging

We use absorption imaging to detect the atomic clouds. In absorption imaging the
atomic cloud is exposed to a pulse of resonant laser light. The atoms scatter photons
of the probe light, resulting in reduced intensity at the position of the atoms. For
imaging a cycling transition is used. As atoms might end up in the lower manifold,
repump light is applied perpendicularly to the imaging direction. The imaging pulse
heats the sample up and blows it away. After the camera is read out, the procedure
is repeated for a reference image. As the atoms have been removed from the imaging
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plane by the first pulse, this time no atoms are in the imaging plane and no light
is scattered. If no saturation occurs the intensity of the imaging beam is reduced
exponentially (Beer–Lambert law). Therefore the number of atoms can be calculated
using the natural logarithm of the two pictures. Using this technique, the spatial
information along the imaging beam is lost, as it is integrated out. A commercial
objective (Plan-Apochromat S 1,0x, Zeiss) with an effective focal length of 100 mm
is used to image the shadow of the cloud onto the chip of an interline CCD camera
(RETIGA EXi, Qimaging). In order to have the possibility of imaging sodium and
lithium at the same time, the imaging beam is separated by a dichroic mirror after
passing the atomic clouds and imaged onto two identically constructed cameras.
The magnification of the imaging setup is 2.3, the pixel size of the imaging chip is
6.45 µm. Most information we are interested in is deduced from time-of-flight (TOF)
pictures. In this procedure, atoms are released from the trap, letting them fall for
the time TTOF. After long times TTOF, the in-situ distribution of the atoms can be
neglected and their shape is governed by their momentum. In our system the imaging
beam propagates along gravity, making long TTOF possible without compensation of
gravitation.
In addition to these high-resolution measurements, for imaging the vertical direction
a second imaging setup is implemented. A horizontal laser beam is sent through
the bore of the magnetic field coils and imaged by a lens onto a small CCD camera
(Guppy, Allied Vision Technologies). It can be used for detection of the atoms
at early stages of the cooling process as well as for fluorescence measurements of
the MOT. This way the lithium MOT loading rate can be optimized. Exemplary
absorption images of our atomic clouds are shown in Fig. 3.3.
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When atoms are exposed to an electric field of high intensity, e. g. a laser beam, a
dipole moment will be induced, as electrons and protons experience forces in opposed
directions. If these fields are inhomogeneous the dipole moment will be pulled in or
pushed out of the high intensity regions, depending on its orientation. The dipole
potential depends on the optical properties of the two level atom [64]:

Vdip(~r) =
3πc2

2ω3
0

(
Γ

ω − ω0

+
Γ

ω + ω0

)
I(~r), (3.1)

where c is the speed of light, ω0 is the resonance frequency of the atom’s optical
transition, Γ is the decay rate of the excited state, ω is the laser frequency and I(~r)
the intensity distribution of the laser beam. The sign of the potential depends on
the sign of the detuning (ω − ω0). For real atoms approximations are made as not
all transitions are taken into account. In our experiments optical potentials are used
for trapping atoms and for creating periodic potentials, referred to as lattice.

3.1 Theory: Atoms in Traps

If the intensity in Eq. (3.1) is given by two crossed Gaussian beams, the resulting
potential can be well approximated by a 3D harmonic oscillator potential if the
distance to the beam center is small:

V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (3.2)

with the trapping frequencies ωi and the massm. A hot (far from degeneracy) thermal
gas in the trap will be well described by the Maxwell–Boltzmann statistics:

〈Ni〉 =
1

e(Ei−µ)/kBT
, (3.3)

where Ei is the energy of the i-th state, kB is the Boltzmann constant, T the
temperature of the sample and µ the chemical potential. For hot gases we can
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neglect µ. The virial theorem states that on average over time in a harmonic
potential half of the total energy is potential, the other half kinetic energy. As we
are interested in the density of the cloud, we will focus on the potential energy. We
can now see that the energy distribution ∝ exp(−E/kBT ) leads to a spatial shape
∝ exp(−1/2mω2x2/kBT ). Taking the normalization into account (

∫
n · dV = N),

where N is total particle number of the gas, we know that the density of the gas is
given by:

nth(x, y, z) =
Nth

π3/2rth,xrth,yrth,z
e
− x2

r2th,x
− y2

r2th,y
− z2

r2th,z . (3.4)

Here the width of the Gaussian distribution is not described by σ = r/
√

2, but by
the most probable distance of an atom to the potential minimum:

rth,i =

√
2kBT

mω2
i

. (3.5)

This can be related to the most probable speed of an atom: vp =
√

2kBT/m. This
classical result has to be modified when temperatures are very low and quantum
effects cannot be neglected any more. The following description can be found in
many textbooks, see e. g. [65, 66] and is based on the chapter ‘Quantitative analysis of
density distributions’ in [67]. We will now take the particle statistics into account:

〈Ni〉 =
1

e(Ei−µ)/kBT ∓ 1
. (3.6)

Here the minus sign is for bosons and the plus sign represents fermions. We can use
a description via the grand canonical ensemble if we choose µ yielding the correct
total particle number:

∑
i

〈Ni〉 = 〈N〉 = N. (3.7)

We can simplify the problem, assuming that the thermal energy kBT is large compared
to the harmonic oscillator spacing ~ω. In other words, the de Broglie wavelengths of
particles has to be small compared to the length scale of changes of the potential
V . In this case a local description of the gas as a bulk gas is possible. The gas can
then be described by a semi-classical distribution function fp(x, y, z). Integration
over d3pd3x gives the number of atoms in the corresponding phase space cell times
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(2π~)3. Hence the density distribution of a thermal gas is given by:

nth(x, y, z) =

∫
1
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=

∫
1
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where λdB is the de Broglie wavelength and Li3/2 is the polylogarithm of order 3/2,

Lis(z)
s 6=0
=

1

Γ(s)

∫ ∞
0

dq
qs−1

eq/z − 1
. (3.9)

It is defined for values of z smaller than 1 ans is depicted in Fig. 3.1. If we assume a
harmonic confinement, the spatial integral over the thermal density distribution can
be evaluated, giving the number of thermal atoms in the trap:

Nth =

∫
nth(x, y, z)dV = ±

(
kBT

~ω̄

)3

Li3(±eµ/kBT ) , (3.10)

where ω̄ = (ωxωyωz)
1/3. We will now focus on bosons. When the temperature of a

thermal bosonic gas is reduced, the occupation value 〈N0〉 of the lowest state will
grow. Therefore µ has to approach 0 from below (see Eq. (3.6) for E0 = 0). Thus,
the highest possible density of a thermal bosonic cloud at a given trap potential V
and temperature T is obtained at µ = 0 and it has a finite value. If there are more
atoms in a trap than a thermal cloud can contain (at a certain temperature), this
part of the atoms has to be in the BEC phase. Therefore the critical temperature
TC, below which a fraction ηCF of the atoms is in the BEC phase, has to depend on
the trapping potential and the atom number. We calculated the number of thermal
atoms in a harmonic trap in Eq. (3.10). If we set µ = 0 and use Li3(1) = 1.2, we get
Nth, max = (kBT/~ω̄)3 · 1.2. By introducing the critical temperature

TC = 0.94 · ~ω̄N1/3/kB, (3.11)

the highest possible number of thermal bosons in a trap can be expressed as Nth, max =
N · T 3/T 3

C. We can now express the relative fraction of atoms in the condensate
ηCF = (N −Nth)/N depending on the temperature of the sample by:

ηCF = 1−
(
T

TC

)3

(3.12)
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Figure 3.1: a): The polylogarithm of order 1, 3/2 and 3. The first case is useful
to calculate 2D densities, the second function is proportional to atomic
3D densities, see Eq. (3.8). Bosons are described by positive input
values, fermions by negative values. The polylogarithm of order 3 can
be used to calculate the total number of thermal atoms in a harmonic
trap, see Eq. (3.10). b): The fraction of condensed atoms ηCF over
the temperature. A strong dependence on temperature and thus high
sensitivity for thermometry is given close to TC .

Its functional dependence is depicted in Fig. 3.1 b. Note that ηCF quickly rises below
TC and saturates, resulting in a reduced sensitivity when used for thermometry below
≈ 0.7TC [68].

For decreasing temperature or increasing density of the gas the interparticle distance
will get about equal to the de Broglie wavelength of the atoms and bosons will
start to macroscopically populate the ground state, forming a BEC. In case of a
non-interacting gas, the condensate wave function will be the ground state of the
harmonic oscillator:

nBEC(x, y, z) =
N

axayazπ3/2
e
− x

2

a2x
− y

2

a2y
− z

2

a2z ; ai =

√
~
mωi

(3.13)

This expression is used in subsection 5.1.1 to describe single lithium atoms and 7Li
BECs, as its interspecies interaction is very weak (aLi, Li = 7 a0 [69]). If the BEC
is interacting, its interaction energy gets easily dominant compared to its kinetic
energy. Hence the kinetic term is often neglected. This is called Thomas-Fermi
approximation.
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Let us now discuss fermionic atoms. Due to the Pauli exclusion principle, at maximum
one atom will populate each quantum state. Therefore the energetically lowest state
of N fermions in a trap (T = 0) is the occupation of the N lowest trap levels. The
energy of the highest occupied state is called Fermi energy EF. One can determine
a Fermi temperature as TF = EF/kB. Cooling a fermionic sample will result in a
change of the particle statistics from Maxwell-Boltzmann shape (exponential) to a
step function. As this is a smooth process, it is very challenging to use fermions for
thermometry in the experiment. On the other hand, even if the precise temperature
is unknown, a good estimate for the density distribution can be found. By counting
the number of energy levels we can find the Fermi energy for N atoms in a harmonic
trap: EF = ~ω̄(6N)1/3. In a 2D situation like our species-selective optical dipole
trap, this changes to: EF = ~ω̄(2N)1/2 with ω̄ =

√
ωx · ωy. The chemical potential µ,

which has the value EF at T = 0, can be calculated using the Sommerfeld expansion
at temperatures T > 0 but T � 1 [70]:

µ(T ) = EF

(
1− π2

3

(
T

TF

)2
)
. (3.14)

As the occupation of states is known at T = 0, the density can be given as well:

nF(x, y, z) =
1

6π2

(
2m

~2

)3/2

(µ− V )3/2. (3.15)

In a harmonic trap this simplifies to:

nF(x, y, z) =
8

π2

N

rF,xrF,yrF,z

(
1− x2

r2
F,x
− y2

r2
F,y
− z2

r2
F,z

)3/2

(3.16)

rF,i =

√
2EF

mω2
i

(3.17)

where only positive densities are of physical relevance. Please remember that for the
validity of the above expressions we assumed that the typical energy is larger than
the trap level spacing. At asymmetric traps this assumption can be violated.
Our experiments take place using a species-selective optical dipole potential. It
imposes a strong confinement for lithium in one direction, which we will denote
as the x-axis. Thermal atoms in 2D can be described semiclassically by a slight
modification of Eq. (3.8) [71]:

nth(x, y) = ± 1

λ2
dB

Li1
(
±e(µ−V (x,y))/kBT

)
= ±

(
mkBT

2π~2

)
· Li1

(
±e

µ
kBT e−

V (x,y)
kBT

)
(3.18)
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The polylogarithm of order 1 can be derived from the natural logarithm:

Li1(z) = − ln(1− z) (3.19)

At this point we are able to describe fermions and thermal bosons in arbitrary
potentials if the temperature is known. The only unknown variable we have to
approximate and optimize numerically is the chemical potential. This is possible as
we have the constraint that the total atom number is fixed. In the net section, we
will extend this discussion to interacting bosons.

3.1.1 Weakly Interacting Bosons

The next sections highlight the effects of interaction for clouds of ultracold atoms.
In order to understand the interaction properties of cold gases, we should think
about typical length scales. In our setup, a typical sodium BEC density is about
5× 1019 m−3. This results in an interparticle distance of 270 nm. The corresponding
characteristic length scale for the interaction, the scattering length a of the sodium-
sodium interaction is 55 a0, corresponding to 3 nm. Therefore such ultracold quantum
gases are called dilute and due to low temperatures they are characterized by low-
energetic (s-wave) two-body scattering [65]. By reason of the symmetry of the
wave functions, for identical bosons the s-wave scattering cross section is σ = 8πa2,
whereas for fermions it vanishes. In case of distinguishable particles, it is σ = 4πa2.
In an effective picture, the van der Waals potential can be described by a contact
interaction potential:

V = δ(~r − ~r ′) · g, (3.20)

where ~r, ~r ′ is the position of the atoms and g = 4π~2a/m for identical bosons and
2π~2a/mr for distinguishable atoms. The parameter mr describes the reduced mass
of the two-body problem.

3.1.2 Gross-Pitaevskii Equation

The time-independent Gross-Pitaevskii equation [72, 73] has the form of a Schrödinger
equation with an additional term g|Ψ(~r)|2, describing the potential of the bosons on
themselves.

µΨ(~r) = − ~2

2m
∇2Ψ(~r) + V (~r)Ψ(~r) + g|Ψ(~r)|2Ψ(~r). (3.21)
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Therefore this equation is non-linear. The Eigenvalues of this equation are called
µ, which is not the energy per particle but the total energy of Ψ. In case of no
interaction it reduces to the known Schrödinger equation.

In a harmonic trap, kinetic energy increases the size of the cloud whereas potential
energy reduces its size, resulting in the characteristic length scale of the harmonic
oscillator length a =

√
~/(mω). If (repulsive) interaction is taken into account,

it will increase the size of the cloud as well. For realistic experimental conditions
it will be dominant compared to the kinetic energy. Therefore the kinetic energy
can be neglected at high atom numbers and strong interactions, which is called the
Thomas-Fermi approximation [65]. Without the kinetic term the time independent
Gross-Pitaevskii equation simplifies to:

µΨ(~r) = V (~r)Ψ(~r) + g|Ψ(~r)|2Ψ(~r). (3.22)

The solution of this equation for the density is:

n(~r) = |Ψ(~r)|2 =
µ− V (~r)

g
. (3.23)

The physical meaning of this expression is that the external potential is filled with
density up to the value of the chemical potential, which is the same situation we
found for fermions at T = 0. In case of a harmonic trap, this results in a parabola

nTF(x, y, z) =
15

8πrTF,xrTF,yrTF,z

(
1− x2

r2
TF,x
− y2

r2
TF,y
− z2

r2
TF,z

)
, (3.24)

with Thomas-Fermi radii

rTF,i =

√
2µ

mω2
i

, (3.25)

and chemical potential

µ = (15~2
√
mNηCFω̄

3aBB)2/5/2. (3.26)

In case of an arbitrary potential the density distribution can easily be found by
the use of Eq. (3.23). At the edge of the BEC the Thomas-Fermi approximation
breaks down as the curvature of the density is strong. In this thesis the effect will be
neglected.
In order to apply the Thomas-Fermi description Eq. (3.23) in case of the 2D lattice
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situation, we integrate the x-direction out:

n2D =

∫
n3Ddx =

∫
µ− V (x, y, z)

g
dx

≈
∫ √

2(µ−V (y,z))

mω2x

−
√

2(µ−V (y,z))

mω2x

µ− (1/2mω2
xx

2 + V (y, z))

g
dx

=
4

3g
(µ− V )3/2

√
2

mω2
x

(3.27)

Here we assume the external potential ωx to be dominant and neglect the effect of
the sodium potential in lattice direction.
The observation of border effects raises the question of the length scale on which a
BEC in a box can reach its constant value. This length scale ξ is called healing length,
as it is the scale on which the BEC can react, can heal in case of a perturbation. Its
value is found to be:

ξ =
1√

8πna
, (3.28)

where n is the BEC density.

3.1.3 Elementary Excitations

Up to now we treated the BEC like a static matter wave field Ψ(~r) =
√
n(~r).

However, in this thesis, we are interested in the interaction of impurity atoms with a
BEC. Such a field changes the energy of the impurity atom, but there are further
effects the condensate causes by this interaction. In order to understand them, we
will now study fluctuations of the BEC. We assume that we can still describe the
BEC by Ψ0 =

√
n(~r) exp (−iµt/~) with a small correction Ψ̂ = Ψ0 + δΨ̂. This topic

is discussed in the framework of [65, 74]. We expect solutions to be periodic in time
and choose the following form:

δΨ̂(~r, t) =
∑
q

[
uq(~r)b̂qe

−iωqt + v∗q(~r)b̂†qe
−iωqt

]
e−iµt/~. (3.29)

Here b̂q and b̂†q denote the quasiparticle creation and annihilation operators with
momentum q and energy ~ωq. We use this ansatz in the time-dependent Gross-
Pitaevskii equation

− ~2

2m
∇2Ψ(~r, t) + V (~r)Ψ(~r, t) + g|Ψ(~r, t)|2Ψ(~r, t) = i~

∂Ψ(~r, t)

∂t
, (3.30)
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and linearize the result. We neglect terms in higher orders than linear. If we assume
a uniform gas (V (~r) = 0, n(~r) = n), we can choose plane waves as a solution for uq
and vq:

uq(~r) = uq
eiq~r√
V

and vq(~r) = vq
eiq~r√
V
, (3.31)

where V is the volume of the system. We get the Bogoliubov equations(
~2q2

2m
+ ng − ~ω

)
uq − ngvq = 0, (3.32)(

~2q2

2m
+ ng + ~ω

)
vq − nguq = 0. (3.33)

Introducing the free particle energy εq = ~2q2
2m

and summarizing the two conditions
we get

~ω =
√
ε2q + 2ngεq. (3.34)

For small momenta q the linear part is dominant, ~ω ≈
√
ng/m~q. Its slope

c =
√
ng/m is the sound velocity. This phonon like spectrum has no curvature,

showing a massless character. In this regime a BEC is superfluid. At about q = 1/ξ
the dispersion relation starts to bend. For high momenta q the energy is the well
know free particle energy plus a mean field energy shift ng. The curvature is the
mass of the free particle. So for small momenta the behavior is collective whereas for
large momenta single particle effects dominate.

3.1.4 Two Atomic Species Mixtures

In case of a mixture of two BECs, the stationary Gross-Pitaevskii equations of the
two clouds get coupled by their density-density interaction. As in this thesis one
component is treated as impurity and the other one as bosonic background bath, their
densities are denoted by nI = |Φ|2 and nB = |Ψ|2, respectively. Their interaction is
characterized by gIB. In general the external potential for the two components is
not the same due to different atomic properties (see Eq. (3.1)), therefore they are
called VI and VB. For this two-component case, the system can be described by two
coupled Gross-Pitaevskii equations

µΨ(~r) = − ~2

2mB
∇2Ψ(~r) + VB(~r)Ψ(~r) + gBB|Ψ(~r)|2Ψ(~r) + gIB|Φ(~r)|2Ψ(~r)

µΦ(~r) = − ~2

2mI
∇2Φ(~r) + VI(~r)Φ(~r) + gII|Φ(~r)|2Φ(~r) + gIB|Ψ(~r)|2Φ(~r). (3.35)
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With certain assumptions, the system of coupled equations can be simplified. This
is discussed in detail in subsection 5.1.1. Depending on the sign and magnitude of
gBB, gIB and gII a mixture can even get instable due to strong attractive interaction
[65].

3.2 Optical Dipole Trap

As described in Eq. (3.1), red-detuned light i. e.ω < ω0 can be used for trapping of
atoms. For trapping with blue detuning it would be necessary to build a container
of light intensity. As the potential depth is proportional to the intensity, in practical
applications laser beams with high power and small beam waists are used. For the
cold temperatures achievable with laser-cooled and magnetically trapped atoms, even
such optical traps can confine atoms despite their finite potential depths. In our
experiment the atoms are cooled in the magnetic trap before they are loaded into
the optical trap. As intensity gradients exert a force on the atoms, either several
beams are used for trapping or one focused beam with small waist and therefore
short Rayleigh length is suited for trapping. One of the advantages of trapping in
one beam is its simplicity, the reliable and precise intersection of laser beams of
small size is challenging. In general the disadvantage of a one beam trap is the weak
potential along the beam direction.

3.2.1 Setup

In our lab the optical trapping is realized by two crossed laser beams at λ = 1064 nm.
One beam is horizontal and has a waist of about w = 60 µm. The second beam is
perpendicular to the first one and has an orientation of 49◦ to gravity. Its waist is
about w = 80 µm. The power of the horizontal beam is about 9 W, the power of
the vertical one about 2 W. The last mirror of the optical dipole trap laser beams
have piezo actuators, allowing for the computer-controlled positioning of the optical
dipole trap. As the Nd:YAG laser is sent to the atoms without fibers, drifts of laser
beam pointing or mechanical drift of optics close to the laser will change the optical
dipole trap position. We observed that during a work day the overlap of the beams
has to be realigned several times. We scan the vertical position of the vertical beam
by the piezo mirror, optimizing the atom number.
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3.2 Optical Dipole Trap

3.2.2 Trapping Frequencies

The potential of a Gaussian laser beam can be approximated by a harmonic potential,
which is a very good approximation for small displacements of the atoms from the
center of the beam. By a sudden shift of the confining potential, oscillations in
this optical potential can be induced. In order to probe the harmonic part, small
oscillation amplitudes are desirable. Therefore they are difficult to observe in-situ,
but the momentum of these oscillations can be detected by taking time-of-flight
pictures. As it is much easier for us to detect sodium samples after long time of
flight (BEC phase and high atom numbers), the lithium values can be calculated
from the sodium numbers by Eq. (3.1), taking only for the D-line transitions into
account. We are interested in the initial trap, defined by two intersecting laser beams.
Therefore one of the beams is slowly deflected and suddenly set back to its original
position. This way we can induce oscillations in the combined optical dipole trap.
The confinement is described by a 3D harmonic oscillator with three orthogonal
axes. The first axis, called x-direction, is orientated along the horizontal optical
dipole trap beam and the trapping potential is given by the vertical optical dipole
trap beam. The second axis, called y-axis, is pointing along the vertical beam and
determined by the potential of the horizontal beam. The third direction (z-axis) is
perpendicular to the x- and y-axes. As the vertical beam has an angle of 49◦ to
gravity, y and z have a component along gravity. A typical oscillation measurement
is shown in Fig. 3.2. Only the measurement of the x-direction is performed using
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Figure 3.2: A sudden shift of the optical dipole trap position causes the sodium
cloud to oscillate. This oscillation is detected by absorption images after
time-of-flight. In y-direction inharmonic parts of the potential are probed
and damping can be observed. The uncertainties correspond to the 68 %
confidence levels of the fit.
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the usual imaging. For the y- and z-axis the vertical imaging is used. The y- and
z-oscillation can be excited separately or in a combined fashion. For a pure y(z)
oscillation the horizontal (vertical) beam has to be deflected along the vertical beam
(in vertical direction). For a combined y-z oscillation the horizontal beam can be
deflected in horizontal direction. As the orientation of the vertical beam is almost
45◦, either the images can be rotated by 49◦ or the coordinate transformation can be
done by adding the center of mass coordinate in the two image directions and by
subtracting it. All methods lead to the same results.
The potential of a Gaussian beam is expected to be invariant under rotation. In that
case, the trap frequency in z-direction should be

√
(155 Hz)2 + (102 Hz)2 = 186 Hz,

which is not even close to the measured 220 Hz. The reason is the orientation-
dependent divergence of the trapping laser beam. The focus of the beam behind the
spherical lens is displaced by several mm in horizontal compared to vertical direction.
Further the waist in horizontal and vertical direction is not the same. When the
trapping frequencies for sodium are known, the ones for lithium can be calculated
using Eq. (3.1). For 6Li the ratio is 2.25, for 7Li it is 2.08. The relevant atomic
properties can be found in [75–77].

3.2.3 Temperature Measurements

The free expansion of fermionic clouds below the Fermi temperature only weakly
depends on temperature. Therefore we will focus on the bosonic species in this
subsection. At temperatures below TC a bosonic sample will be bimodal, having a
thermal part and a part in BEC phase (see section 3.1). In time-of-flight pictures,
which are taken after a free expansion time of TTOF, a BEC has the shape of a
3D-parabola, whereas the thermal sample has a Gaussian shape. All statements
on BECs in this paragraph are based on the Thomas-Fermi approximation. The
free expansion of a thermal cloud is given by its momenta due to their thermal
energy, making the size of the cloud dependent on the temperature. Furthermore
the fraction of atoms in the BEC ηCF depends on the temperature (see section 3.1).
Therefore one can measure temperature by taking time-of-flight pictures of bimodal
distributions. The pictures are summed up in one direction, resulting in profiles.
The wings of these profiles are fitted by a Gaussian line. The width of the Gaussian
distribution is characterized by σ. In order to prevent confusion, I would like to
mention that FWHM = σ · 2

√
2ln(2) ≈ 2.4σ. If the magnification of the imaging

system is known, this can be used to calculate the absolute temperature:

T =
mσ2

kBT 2
TOF

(3.36)
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Figure 3.3: Exemplary absorption images for temperature determination. The upper
row shows a sodium time-of-flight picture, the lower one a picture of 7Li,
taken in the same experimental run. The vertical optical dipole trap
beam causes some distortion of the sodium BEC, thus the images are
evaluated along the horizontal optical dipole trap beam. In order to do
so they are integrated, yielding the profiles in blue. The outer parts are
fitted by a Gaussian (red) and correspond to the thermal atoms. The
difference of the measured profile to the thermal distribution is the BEC
and can be fitted by a parabola. The sum of thermal fit and BEC fit are
shown in cyan. For sodium it is very challenging to fit the thermal wing
as it is vanishingly low, causing strong dependence on the part of the
profile that is used for the fit. All numbers of interest are given on the
right.

The difference of the fit and the absorption profile is calculated and should yield a
parabola. It is fitted as well and the integral is calculated. The two fit functions can
be used to calculate the relative fraction of atoms in the BEC ηCF. This can be used
to calculate the absolute temperature (see Eq. (3.12)):

T =
0.94~ω̄N1/3

kB
(1− ηCF)1/3 . (3.37)

Here it is necessary to know the corresponding trap frequencies. In our case this is
especially challenging, as the sodium cloud strongly modifies the lithium potential.
Numerical tests of the situation revealed that the above formula is nevertheless a
very good approximation. This can be improved if sodium is removed from the trap
after the final cooling step. The momentum distribution of the BEC atoms is given
by the chemical potential µ. Therefore the size of the BEC can be used to deduce its
value. In general, the sensitivity is highest slightly below the critical temperature. In

39



3 Optical Traps

Li atom number ×10
4

0 1 2 3 4 5 6 7 8

T
 [

n
K

]

100

200

300

400

500

600
T

ther
 Li

T
BEC

 Li

T Na

7
Li ther ODT

7
Li cond ODT

6
Li

Figure 3.4: Summary of temperature measurements. Three situations are especially
interesting for us: fermionic impurities (green), bosonic clouds with
and without curved magnetic field to enhance cooling (blue and red).
The temperatures deduced from the 7Li image by ηCF, thermal size and
from the sodium profile are plotted. Vertical bars on the x-axis indicate
typical experimental atom numbers. The crossed lines show mean values
where the length of the lines display the parameter range taken into
consideration.

our case a temperature measurement using time-of-flight is challenging as the critical
temperature for sodium is about 730 nK, the actual temperature is roughly 350 nK,
resulting in ηCF = 0.9. In this case after long TTOF it is difficult to differentiate
between a fringe due to imperfect imaging and some thermal background. Long
TTOF are required to resolve the sodium atom number in the BEC, as in-situ or after
short time of flight the clouds have a high optical density. For this reason 7Li is a
perfect thermometer. The critical temperature TC depends on the atom number (see
Eq. (3.11)). As we can choose the lithium atom number we want to work with, the
critical temperature can be set to an optimal value. The error in T is dominated by
the contribution of the uncertainty of the Gaussian fit. For the temperature deduced
from the thermal cloud only the width of the distribution σ is relevant. For the
calculation of ηCF, σ and the amplitude of the fit have to be taken into account. The
uncertainty of ω̄ is small compared to it.

In Fig. 3.4 all thermometry measurements are displayed. No individual error bars
are shown, as the huge stray of temperature values gives an impression about the
confidence level of this approach. In case of 6Li only sodium is used to deduce the
temperature, which is not very precise. Therefore it is plausible to assume it has the
same temperature as in the cold bosonic case. For 7Li and the curved magnetic field
applied during cooling in the optical dipole trap (blue) the three approaches converge
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to 350 nK. Extreme temperature values and lithium atom numbers are not taken
into account. The trusted area is visualized by the extent of the lines. The position
of the lines indicate the mean values. For the case without magnetically enhanced
trapping the values calculated by the condensate fraction differ from the ones for
sodium and the ones derived from the size of the thermal cloud (red). The mean
value is 500 nK. For high lithium atom numbers the temperature values from the
condensate fraction increase, an effect not observed on sodium or on the temperature
derived from thermal expansion.

3.3 Density Distribution of a Two-Species Mixture

The experiments this thesis aims at are based on density-density interaction. In our
setup it is crucial to understand the density distribution of the two species, which we
cannot observe directly due to the high densities and the small spatial length scales.
When the distributions are known, all relevant parameters can be extracted.

3.3.1 Key Parameters

The impurity-BEC coupling we are interested in is density dependent. In our case
the BEC density is strongly non-uniform. Therefore we describe the BEC density
by the concept of the effective density [48, 52]. It is the mean value of the sodium
density the lithium atoms probe:

n̄Na =
1

NLi

∫
nNanLidV (3.38)

It can be applied to the sodium density using nNa and the BEC density integrating
over nNa, BEC. In case of 7Li we will be interested in the effective sodium BEC density
which the lithium BEC probes, so one could replace nLi by nLi, BEC. In order to
prevent confusion, all given effective densities in this document refer to the above
given definition.
Another helpful estimate of the geometrical distribution is the immersed fraction.
Its value gives the fraction of lithium atoms that are inside the sodium BEC:

ηim =
1

NLi

∫
nLi(µNa > VNa)dV (3.39)

In Thomas-Fermi approximation all voxel with µNa > VNa have a finite sodium BEC
density. Therefore this condition can be used to calculate the immersed fraction. In
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case of 7Li we will see that we need to know the 2D density of condensed impurity
atoms. Again we need to average over the sample. This can be expressed in the
following way:

n̄2DLi, BEC =
1

NLi

∫
(nLi, BEC)2 dA (3.40)

3.3.2 Differential Gravitational Sag

Up to now we have not discussed effects of gravity. Its linear contribution to the
harmonic potential will cause a spatial shift of the minimum by ∆GS = g0/ω

2 where
g0 is the gravitational acceleration constant and ω the trap frequency in direction of
gravity. In general a shift can be neglected if the harmonic approximation is still
valid at the displacement ∆GS from the trap center, but due to different masses and
trap frequencies, in our setup a differential shift occurs. It can be easily calculated
projecting gravity onto the effective trapping potential along gravity. As introduced
in subsection 3.2.2 the x-axis points along the horizontal beam, y-axis along the
vertical beam and z-axis is perpendicular and therefore y and z-axes are orientated
opposite to gravity. The angle α between gravity and the vertical beam is 49◦.
Effectively, this shift is given by

∆DGS(x, y, z) =
(
0, g cos(α)(1/ω2

Na,y − 1/ω2
Li,y), g sin(α)(1/ω2

Na,z,−1/ω2
Li,z)

)
. (3.41)

The displacement of the lithium cloud compared to the sodium cloud is about
∆DGS(x, y, z) ≈ (0, 13, 3) µm, which is a shift uphill.

3.3.3 Density Distribution in the Optical Dipole Trap

Now we can address the question of how the density distribution of the two-component
mixture looks like in the optical dipole trap. In summary the relevant parameters
are: the atom numbers NNa and NLi which are determined by absorption imag-
ing, the trapping potential of the optical dipole trap and the temperature T (see
subsection 3.2.3). We can calculate the full external potential for sodium V ext

Na (~r)
and lithium V ext

Li (~r). It is not the same for the two species due to different atomic
properties. We will take the effect of sodium on lithium into account, neglecting the
effect of lithium on the sodium distribution. This is sensible as the interaction is
density mediated and the sodium density is much higher than the lithium one.
So our calculation starts with the sodium distribution. Our experiments take place
below TC for sodium, so a part of the atoms is condensed, a part is thermal. For
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a harmonic trap all relevant analytic expressions are given in section 3.1. Here the
numerical method is explained which has the same physical basis but can be used
for arbitrary potentials. This is useful, as the potential V ext

Na (~r) is not harmonic in
the presence of the periodic species selective potential (lattice). We will discuss its
impact on the density distribution in the following section and its application in
chapter 4. For the numerics we use a grid of 1000 · 100 · 100 voxel. The increased
sampling is used in direction of the lattice, which slices the lithium cloud along the
horizontal dipole trap beam.
We get the thermal sodium density distribution using the polylogarithm, see Eq. (3.8)
and setting µ = 0. For vanishing µ the highest thermal bosonic densities are obtained
(see Fig. 3.1). In a next step, this density distribution is integrated over space and
the number of thermal atoms is determined. The missing atoms N − Nth are in
the BEC phase. They are distributed over the numerical grid using Thomas-Fermi
approximation (see Eq. (3.23)). In this case we need to know µ, which we determine
numerically by testing if the applied chemical potential results in the correct atom
number in the BEC. The sodium-sodium scattering length is set to 54.54 a0 [78]. As
a result of this procedure, we obtain the sodium density of all grid points, describing
our system.
For lithium, we will add the interspecies interaction potential to the external

potential V ext
Li (~r). In case of fermionic 6Li it is attractive (aNa Li = −75 a0), in

case of bosonic 7Li it is weakly repulsive (aNa Li = 21 a0) [79]. All experiments are
performed in the energetically lowest hyperfine state. The potential for lithium is
V eff
Li = V ext

Li +gIBnNa. For thermal 7Li and for 6Li we get the density distribution using
the polylogarithm. For fermions the starting value for µ is based on the Sommerfeld
expansion. For bosons the thermal distribution for µ = 0 is calculated and the
resulting atom number is obtained. If this test distribution has too many atoms,
there is no BEC and the correct value for µ is searched iteratively. If an additional
BEC is necessary, it is calculated using Thomas-Fermi approximation and searching
the corresponding µ numerically. The lithium intra-species scattering length is set
to 7 a0 [69]. This way the lithium density can be calculated.

Fig. 3.5 shows the obtained density distribution for 6Li. In the upper row images with
the same perspective as in the lab are shown. Here gravity is integrated out. The left
side displays the sodium cloud, the right side the lithium distribution. Both pictures
show the same volume. On the right side the profiles in lattice direction are shown.
A small thermal part of sodium can be seen. The sodium BEC is well described
by a parabola. 6Li is pulled into the sodium cloud, but the effective potential is
not deep enough to store all fermions, although the bosonic peak column density
is about 250 times higher than the fermionic one. The lower row shows images
corresponding an acquisition through the bore of the magnetic coils (~g is pointing
downwards). Lithium is shifted upwards and exploring the vertical optical dipole trap
beam in uphill direction. The fraction of lithium atoms within the BEC ηim is about
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Figure 3.5: The calculated sodium and 6Li density in the optical dipole trap for
typical experimental parameters. The upper row integrates along gravity,
the lower one in horizontal direction. The crossed lines indicate the center
of the sodium BEC. The lithium profile (red) in the right-hand panel is
normalized to 1 and the sodium (blue) profile is given in relative units to
the lithium profile. The field of view has a size of 60 µm× 60 µm× 60 µm.

0.6. This has to be regarded as a great progress compared to former experiments
(NNa = 5 · 105,NLi = 2 · 105,T = 600 nK,ηCF = 0.6, [48]). The fundamental difference
of fermions to bosons is noticeable. A few thousand fermions form a larger cloud
than a million bosons in a BEC.

Fig. 3.6 shows the density calculations plotted the same way for 7Li. Two typical
scenarios are plotted, which differ in atom numbers and temperature. For one
scenario, the the High Field Hybrid Trap technique is used (see section 2.6) is used,
whereas in the other case the cooling into the dimple is not enhanced by a magnetic
field. We used this technique as a knob to generate either a condensed or a purely
thermal 7Li cloud in the optical dipole trap. The upper part of the figure shows the
thermal case. As the 7Li cloud is not attracted by sodium, it is rather large and
pushed out of the BEC. Therefore the immersed fraction ηim is only about 20 % and
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Figure 3.6: The calculated sodium and 7Li density in the optical dipole trap for two
sets of typical experimental parameters. Plotting is analogous to the
fermionic case. For the upper scenario 7Li is purely thermal. In the lower
one the atom numbers are increased, temperature is decreased, causing
the formation of a lithium BEC.
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the effective density is about a factor of 5 lower than in the fermionic case shown
before.
In case of lithium condensation, the density distribution is very different. The lithium
atom number is higher, resulting in condensation of about half the lithium atoms. As
a BEC is very compact, especially in Thomas-Fermi approximation at low interaction
strength, the lithium column density increases dramatically and is just 40 times lower
than the sodium one. The use of the High Field Hybrid Trap technique increases the
number of sodium atoms by a factor of 1.6, which causes only slight changes in the
sodium BEC size. The effective density is rather constant, as the lithium BEC forms
at the border of the sodium BEC. In the profile in lattice direction this displacement
cannot be observed. Only the transversal image shows the shift of lithium to the
border of the sodium BEC, resulting in a reduction of n̄ compared to the fermionic
case. As the lithium BEC is floating on the sodium BEC, the immersed fraction
rises to 0.5. The lithium profile nicely shows the bimodal distribution.

3.3.4 Density Distribution with Additional Species-Selective
Potential

So far, we have only calculated the density distribution in the presence of an almost
species independent optical trapping potential. However, for our experiments we use
a standing light wave potential which is much stronger for lithium than for sodium.
It will be described in more detail in chapter 4 and creates a sine potential along the
x-direction of our experimental system

VSSODT = V0 · sin
(

2π

3.3 µm
x

)2

. (3.42)

We know very precisely the energy gap of ground to first excited state for lithium in
the lattice (see subsection 4.4.2), and the wavelength of the generating laser (670 nm
to 672 nm). The first information allows for a determination of V0 for lithium and
using Eq. (3.1) its corresponding value for sodium can be calculated. Due to the
about 100 times stronger confinement for lithium along the standing wave potential,
the lattice will cause the formation of an array of independent pancakes and higher
peak densities compared to the optical dipole trap density distribution. For fermions
this will result in slightly larger radii and for bosons this can cause Bose-Einstein
condensation. Therefore the lattice can dramatically change the density distribution
and should be taken into account. Please note that for lithium the lattice can be
attractive and repulsive (λ0 = 671 nm), whereas it is always attractive for sodium
(λ0 = 589 nm). Lithium pancakes can be located in sodium density minima or
maxima (see section 5.4). Hence the key parameters n̄ and ηim depend on the
wavelength of the lattice.
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Figure 3.7: Comparison of the two methods to obtain the density distributions of
the Na 7Li mixture in the combined potential of dipole trap and standing
light wave in the thermal scenario of Fig. 3.6. The lithium profiles
are plotted with the normalized sodium profile (blue) for comparison
and are displaced to each other for better visualization. The red line
corresponds to the technique which distributes the optical dipole trap
density over the lattice sites and the green line is the result for an overall
chemical potential. The images on the left show the transversal view
of the distributions resulting from the two techniques. Here sodium is
shown in blue and lithium in red. On the right side the calculated key
parameters are denoted.

Up to now we could describe the atomic systems by one chemical potential, implying
a connection of different parts of the density distribution. An array of independent
lithium clouds does not necessarily have one overall chemical potential. It is possible
to calculate the lithium density distribution using a global chemical potential, which
corresponds to the ground state of the system. Another possibility is to freeze the
optical dipole trap density, allocate lithium atoms to lattice sites and calculate the
lithium density for each pancake separately, applying the 2D expressions. This is
the other extreme case, assuming that during the adiabatic lattice ramp up, the
lithium motion is frozen out. The correct description must be between these two
scenarios, while indirect measurements support the second approach. Analyzing our
experimental findings (see chapter 6) we observe a strong variation in the signal,
whether the bosonic cloud is condensed in the optical dipole trap (before loading the
lattice) or not. This can be easily interpreted: a thermal cloud is much larger than a
condensed one, so if a BEC is loaded into the lattice, less lattice sites are populated.
If we calculate the lithium density distribution using one global chemical potential,
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such dynamical effects are not taken into account. Therefore the best way seems to
be an initial calculation of the lithium density distribution in the optical dipole trap,
the subsequent calculation of the lithium density for every lattice site, taking the
full 2D potential into account. In Fig. 6.10 the topic is addressed again.
In Fig. 3.7 the results for both methods are shown. The parameters correspond to
the results shown in the upper part of Fig. 3.6, the thermal case. Here the lattice
wavelength is set to λ = 670.5 nm, corresponding to a lithium trap frequency of
ω = 2π · 27.25 kHz in lattice direction. The weak sine potential for sodium causes
a periodic modulation also for this species. At this wavelength the potential is
attractive for sodium and repulsive for lithium. Hence the lithium pancakes are
located in sodium density minima. In the total ground state scenario condensation
starts due to the increased confinement for lithium. The distribution over the lattices
sites varies strongly between the two methods. In the transversal picture for the total
µ calculation a lithium BEC is visible. Due to its low relative density, the thermal
fraction is invisible in this representation. The sodium peak column density is more
than ten times higher than the lithium peak density calculated by method that
allocates the lithium density in the optical dipole to lattice sites. The other method
results in a doubled lithium peak density. Due to the experimentally observed strong
difference between the two discussed typical 7Li settings in the following graph the
optical dipole trap scenario (red line) will be applied.

In subsection 3.3.3 the mixture’s density distribution in the optical dipole trap is
given for typical experimental parameters. We will now discuss these scenarios, this
time in case of the standing light wave potential. In Fig. 3.8 the calculated profiles
in lattice direction for the three different scenarios are depicted. The left side gives
the key parameter values, the center shows the lithium (sodium) profile in lattice
direction in red (blue) and the right side shows the transversal density distribution
which is obtained by integrating out the lattice direction.
The first row shows 6Li, for which the envelope of the distribution is only slightly
changed compared to the case without the lattice potential (see Fig. 3.5). The
sodium column density is more than 15 times higher than the lithium one. The
transversal picture shows good penetration of the BEC by the lithium cloud. Many
lattice sites are occupied, the outer ones without contact to the sodium BEC.
The second row shows 7Li for small atom numbers. It is the same data as shown in
Fig. 3.7 and its optical dipole trap density distribution is shown in the upper part of
Fig. 3.6. Although the confinement is increased it remains purely thermal. Due to
its compression the sodium and lithium column densities assimilate. The value of
the immersed fraction ηim and the effective density n̄Na remain the same. In case of
increasing lithium atom numbers and condensation they will grow.
In the lower part the density profiles for high 7Li numbers are depicted. The
distribution over the lattice sites shows a clear bimodal distribution that originates
from the density distribution in the optical dipole trap. The condensate fraction ηCF

48



3.3 Density Distribution of a Two-Species Mixture

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

0.5

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

0.5

1

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

0.5

1

0

5

10

15

0

5

10

0

1

2

3

fermions:
   n

eff
:  1.1e+20 1/m³

   η
im

:  0.54

bosons thermal:
   η

CF
:  0

   n
eff

:  2.6e+19 1/m³

   η
im

:  0.2

bosons condensed:
   η

CF
:  0.56

   n
eff

:  3.9e+19 1/m³

   η
im

:  0.47

position [µm]

Figure 3.8: Comparison of the density profiles in the three typical scenarios. In all
cases the lattice wavelength is 670.5 nm and the lattice frequency for
lithium is ω = 2π · 27.25 kHz. The right panel shows transversal pictures
by integration over the lattice direction. Sodium is shown in blue, lithium
in red.

increases slightly from 0.53 to 0.56 due to the increased confinement. The values for
n̄Na and ηim remain almost unaltered. The maximum of the lithium column density
is about half the value of the sodium peak value. Therefore the approximation of no
influence on sodium by the lithium density has to be questioned. Still the sodium
intra-species scattering length is about three times higher than the interspecies one.

In Fig. 3.9 the relative effect of the wavelength, atom numbers and temperature on
the key parameters describing the density distribution for condensed bosonic and
fermionic impurities is shown. The upper row depicts the condensed 7Li case, the
lower row the 6Li scenario. As we will see in the theory section, 7Li is interesting to
us only in case of condensation. Therefore in the next paragraph the thermal case is
not discussed.
In the left column the impact of the wavelength on the clouds is addressed. If
the lattice is red detuned for lithium, the pancakes are located in sodium BEC
density maxima, for blue detuning they are situated in sodium density minima.
Our experiments take place at four different wavelengths symmetric to the lithium

49



3 Optical Traps

λ [nm]
670 671 672

re
l 

ch
an

g
e

0.6

0.8

1

1.2

fe
r
m

io
n

s

λ [nm]
670 671 672

re
l 

ch
an

g
e

0.5

1

1.5

b
o

s
o

n
s

η
CF, Na

n
eff

η
im

η
CF, Li n

2D

Li, BEC

# Na [10
6
]

1.5 2 2.5
0.6

0.8

1

1.2

# Na [10
6
]

1.8 2 2.2 2.4 2.6
0.5

1

1.5

# Li [10
3
]

4 6 8 10 12
0.6

0.8

1

1.2

# Li [10
3
]

30 35 40
0.5

1

1.5

T [nK]

250 300 350 400 450
0.6

0.8

1

1.2

T [nK]

250 300 350 400 450
0.5

1

1.5

Figure 3.9: The dependence of the overlap characterizing key parameters on the
wavelength of the trapping light, the sodium atom number, the lithium
atom number and the temperature. The key parameters are the sodium
condensate fraction ηCF, the effective sodium density n̄Na, the immersed
fraction of lithium atoms in the sodium BEC ηim, for 7Li BECs the
condensate fraction ηCF and the 2D BEC density n2DLi, BEC. Shown are the
two typical experimental scenarios of interest for phononic effects.

transition and we are interested in a theoretical 5th wavelength, the resonant case
for lithium, at which sodium is not affected by the lattice. The reason is that the
lithium potential is kept constant, so on resonance the potential impact on sodium
is negligible. In order to understand the corresponding behavior a lattice potential
of ω = 2π · 27.25 kHz is assumed for lithium and the wavelength is scanned, altering
the effect for sodium. Red detuning increases lithium immersion ηim and effective
sodium density n̄Na. The values change up to 20 %. The absolute lithium density
distribution is hardly affected, leaving n2DLi, BEC and the condensed fraction flat. The
same is observable for sodium, so the change of the wavelength just displaces the
clouds with respect to each other.
All experimental parameters are known with limited precision and to a certain extent
target values for atom numbers, temperature and trapping potential can be chosen
freely. Therefore the influence of the main parameters on the key values describing the
overlap of the two clouds is studied here. Due to the influence of the lattice parameters
on the key values, for the data of the following plots a lattice of ω = 2π · 27.25 kHz
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is assumed for lithium but sodium remains unaffected, corresponding to a resonant
lattice for lithium. Again the two relevant experimental situations are studied and
changes are given relative to the standard value.
In all changes the condensed fraction ηCF for sodium is robust, due to the small
T/TC values we work at. The sodium distribution does not depend on the impurity
species. For clarity the sodium value for ηCF it is not plotted in the graphs about
the mixtures including 7Li. The lower row shows the fermions. Here we see that
higher sodium numbers increase the overlap values. In good approximation n̄Na
is linear in the sodium atom number. Growing temperature decreases the overlap.
Temperature is not very critical for fermions, as no sudden transition takes place.
Rising lithium numbers cause larger clouds and thereby reduce the key parameters,
which are related to the whole clouds, considering the lithium atoms outside the
sodium BEC as well.
Bosons are depicted in the upper row. Here a gain in lithium atom number increases
the impurity BEC size and density and thereby all overlap values. Especially critically
dependent on the lithium atom number is the value for n2DLi, BEC, as it is based on
the number of condensed lithium atoms. For bosonic impurities the temperature
is more critical than for fermions, as condensation strongly influences the density
distribution. On the other hand having this phenomena at hand it is much easier
to measure the temperature, see subsection 3.2.3. On a change in temperature of
100 nK the 7Li condensate fraction ηCF changes by 50 %.
In the same way as the calculations for Fig. 3.9 error estimations of the theory
predictions based on overlap values can be done. The response of infinitesimal
changes of the input parameter to the key parameters can be calculated. All input
parameter to the simulation have been tested and the above shown prove to be the
most significant. This obviously depends as well on the uncertainty to which the
experimental parameters are known.
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4 Species-Selective Optical Lattice for
Lithium

In our setup, we superimpose a periodic optical dipole trap potential, referred to as
lattice, onto the optical dipole trap potential retaining the sodium and lithium clouds.
It is generated by two interfering laser beams, resulting in good approximation in
an array of two-dimensional planes of equal intensity at the location of the atomic
cloud. As the frequency of the laser beams creating this lattice is close to resonance
for lithium, its strength is much higher for lithium than for sodium. Therefore it is
called species-selective or species-specific [80]. The lattice is our main tool to study
the impurity-BEC interaction. In this chapter its fundamental characteristics are
presented.
First we describe the implementation of the lattice in the experimental setup. Next
we summarize the properties of atoms in periodic potentials. Our experiments
use the lowest external levels of the lattice. The occupation of the states can be
detected using band mapping. By a periodic modulation of the lattice position
(shaking), external states can be coupled, resulting in Rabi oscillations. Having the
detection and manipulation techniques at hand, we can perform measurements of the
energy spacing between the lowest levels by spectroscopy. The achievable precision
of the spectroscopic measurements is limited by decoherence due to lithium-sodium
collisions and intra-species collisions for 7Li.

4.1 Species-Selective Optical Lattice Setup

Based on the insight we gained on species-selective potentials [48, 52], we implemented
a new lattice with slightly altered parameters compared to the former realizations.
The lattice is created by two intersecting laser-beams with a waist of about 800 µm.
The light is provided by a dye laser, resulting in a small line width and high wavelength
tunability. The relative angle of the two intersecting beams (≈ 23◦) results in a
lattice spacing of about 1.65 µm. The lattice is oriented parallel to the horizontal
optical dipole trap beam, allowing for band mapping into this beam with high optical
density even after long evolution times. Hence relatively low lithium atom numbers
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Figure 4.1: The species-selective optical dipole trap setup used as a tool to probe
impurity-BEC physics. Gravity trends to the left and into the drawing
plane (see side view). All optical elements are mounted on one bread
board (gray plane). The laser light is split by a non-polarizing beam
splitter cube (nPBSC). The beams interfere at the position of the atoms
(inside the glass cell). An electro-optic modulator (EOM) in one of the
beam paths allows for a change of the relative phase of the two paths,
moving the interference pattern. A fraction of one beam is employed to
control the light intensity.

can be used, approaching the impurity physics we aim for. The setup is shown in
Fig. 4.1. The fiber collimator delivers a collimated beam, a polarizing beam splitter
cube cleans the polarization. It is oriented perpendicular to the drawing plane. A
non-polarizing beam splitter cube divides the intensity into two equal parts. The
use of a polarization independent element at this position has resulted in an increase
of stability in the old setup, as the power stabilization is done on the intensity
in one beam, so changes in the power splitting due to polarization fluctuations
influence the potential depth at the position of the atoms. In the reflected port
of the cube an electro-optic modulator is mounted (EM200T-PM-AR671, Leysop
Ltd.). When applying a voltage, it changes the relative phase of the two beams.
The electrodes enclose a lithium tantalate crystal which exhibits the Pockels effect
when an electric field is applied. The voltage necessary for a phase shift of 2π is
about 150 V. Such voltages can be obtained with a high-voltage amplifier, but due
to the small amplitudes used for coherent coupling of external states, all experiments
presented in chapter 6 are performed with the arbitrary wave function generator
directly connected to the electro-optic modulator. The two beams are reflected by two
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mirrors, allowing for spatial adjustment onto the position of the atoms. Alignment is
done using resonant light and by imaging the beams onto a CCD camera. This way
the position of the beams can be compared to the position of the atoms. Behind
the glass cell a part of the electro-optic modulator beam is reflected onto a photo
diode for power regulation. A calibration yields 44 mW V−1 transmitted through
the glass cell per beam. The standard working intensity used for our experiments
is about 1 V control voltage. All the optomechanical devices are mounted on fixed
height posts to a breadboard (20 × 25 cm) that is attached via a rotatable large
angle bracket to the vertical breadboard on our experimental table. No stability
problems e. g. due to vibrations have been observed. The wavelength of the dye laser
is measured via a commercial wavemeter and registered. A microcontroller reads out
the serial port of the wavemeter, shows the value on several displays within the lab
and sends the values to the experiment control PC that saves the values along with
all other sequence parameters and the images. The photodiode voltage is recorded
as well using an analogue input port of the experiment control system. The value is
registered at the end of the lattice loading sequence. As wavelength and intensity
are known, the potential depth can be calculated in the data analysis.
The starting condition for all experiments is an as pure as possible ground state
occupation, which yields the highest visibility. Therefore the laser light intensity is
ramped up adiabatically. Nevertheless some optical dipole trap states are connected
to excited states of the lattice [52]. Hence after the lattice ramp-up a waiting period
is inserted to let the atoms in the excited state relax to the ground state. The
employed lattice loading sequence is the following: within 40 ms the lattice is turned
on exponentially with a time constant of 10 ms. Subsequently the atoms are held
20 ms to increase the ground state population. Following this, the experiments are
performed.

4.2 Atoms in Periodic Potentials

The periodic potential we apply originates from the interference of two laser beams
(wavelength λ, angle α between the beams) and as a result follows a sinusoidal
oscillation, see Eq. (3.42). The lattice spacing dlat is related to the lattice vector ~klat
by:

dlat =
λ

2 sin(α/2)
=

π

|~klat|
, (4.1)

and is 1.65 µm for our lattice. Often the lattice potential depth V0 is indicated in
units of the lattice recoil energy: Erec = ~2k2

lat/(2m).
This periodic arrangement is similar to the one of electrons in solid state materials.
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Figure 4.2: The band structure for 6Li at the typical experimental lattice depth.
Four bands fit into the lattice potential depth. The lower ones exhibit
almost no curvature, similar to a harmonic oscillator. The minimum of
the lowest band is set to zero. In the right panel characteristic values for
gaps and widths are listed for both lithium isotopes.

The corresponding Hamiltonian can be solved assuming an infinite, homogeneous
and non-interacting system. The periodicity sets conditions to the wave function.
Bloch waves, which are the product of a plain wave and a lattice periodic function,
are a solution to this problem [81]. It turns out that the energy spectrum is gapped.
The allowed energy ranges are called bands. The calculation is well described in
[52]. In Fig. 4.2 the band structure for 6Li at a typical experimental lattice height is
displayed, as calculated in a numerical solution of the problem. The lower states are
flat, building a conceptual bridge from the deep periodic potential to the harmonic
oscillator. In this regime the gap is ~ω0 ∝

√
V0/m/d. Although the potential is in

good approximation harmonic for the lowest two states with respect to the bandwidth,
only 4 bands fit into the lattice potential. The tunneling rate between neighboring
lattice sites is 4 times less than the bandwidth for the first Bloch band.
Taking Eq. (3.1) (V0 ∝ I/∆λ) and the relation ω0 ∝

√
V0/m into account, we

realize that the expression
√
I/(∆λmω2

0) should be constant. In order to test if our
experiments are well controlled and the lattice intensity controlling photo-diode is
linear we calculate this ratio for our experimental data. The corresponding results are
displayed in Fig. 4.3. The precise measurement of ω0 is described in subsection 4.4.2.
For a better representation the numbers are divided by their mean value. A slight
difference between 6Li and 7Li is visible, but no systematic deviations from the
expectation are perceivable.
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Figure 4.3: Test of the scaling of the lithium potential with the lattice light intensity.
For all Ramsey scans the ratio

√
UPD/∆λmLi/ν is calculated. The results

are divided by their mean value. The lithium isotope changes after
scan 27. HV values denote scans with 1.4 V control voltage, LV with
0.7 V respectively. The changes over the course of the measurements are
smaller than 2 %.

In our realization of a species specific potential we encounter the challenge that high
light intensities influences sodium significantly, so the potential cannot be regarded
species selective. For small powers we have to use a small detuning, as we need a
sufficient potential depth to suppress tunneling. A small detuning causes high photon
scattering and thereby reduces the lifetime of the lithium sample in the lattice. Thus,
the species specific lattice as we employ it is a trade-off between these constraints.

4.3 Brillouin Zone Mapping

For a deep potential, the dispersion relation resembles that of a harmonic oscillator.
For a vanishing potential it devolves into the dispersion relation of a free particle, a
parabola. This can be seen best when the reduced scheme is unfolded, see Fig. 4.4
left panel. It allows for a mapping of the quasimomentum onto the real momentum
of the atom when the lattice potential depth is slowly reduced [82, 83]. In order
to obtain a high optical density, the horizontal optical dipole trap beam is left on
during the expansion. The exponential ramping down of the lattice intensity takes
3 ms with a time constant τ = 0.75 ms. The vertical dipole trap beam is switched off
at the beginning of the ramp-down sequence. 10 ms after the start of this sequence
an absorption image is taken.
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Figure 4.4: For a vanishing potential depth V0, the dispersion relation approaches
the parabola of a free particle (left panel). This can be used for state
detection: the potential is adiabatically turned off and the atoms expand
along the optical dipole trap beam. Two typical experimental profiles
showing low (bottom) and high excitation probabilities (top) are shown
in the right panel.

The right panel displays two typical experimental profiles obtained by integrating
absorption images perpendicular to the lattice direction. They show low and high
occupation of the excited state for a scan with 8000 6Li atoms. These profiles reveal
some detection challenges: due to finite sample size and possibly out of focus imaging
the slope of the edges is finite and atoms in the second and third band cannot
be unambiguously distinguished. This false assignment reduces the amplitude of
the Ramsey fringes and complicates the quantitative comparison of amplitudes to
theory. Therefore in the image analysis only the central 50 % of the zones have
been considered, which mitigates the erroneous attribution. The other feature is
that, although the atoms have been trapped within one beam at the moment of the
absorption image and two directions have been integrated out, the profiles are noisy.
Still we can derive reliable information from samples with a few thousand atoms.
This is a great progress compared to former experiments, where 2 · 105 6Li atoms
have been deployed in order to get a trustworthy signal.
If the experiments are performed with the sodium BEC present, the condensate is
removed by in-situ imaging before the mapping of the lithium cloud, as this allows
for a better comparison of the procedures and values. Therefore sodium images
are in-situ and underestimate the actual atom number because of the large atomic
density.
Due to the deep potential, the lattice sites can be assumed to be independent.
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4.4 Coupling of External States

Several lattice sites are occupied, resulting in multiple independent realizations of
the experiment. Due to the detection method, the measured band population is an
average over all sites.

4.4 Coupling of External States

The deeper the periodic potential is, the stronger tunneling is suppressed and the
better the lattice is approximated by independent harmonic oscillators. Our goal
is the experimental realization of a two level system, but if the potential is close to
harmonic, the coupling to the 3rd state becomes resonant as well and the population
of the 3rd state rises. Therefore the optimized lattice depth is a compromise between
tunneling to adjacent lattice sites and excitation into higher states. Further the
splitting between the lowest states has to be large enough to prepare the ground
state. If the chemical potential of the sodium BEC is higher than the energy of the
excited lattice state, no efficient cooling of lithium to the ground state takes place.
A pure as possible ground state preparation yields a high fringe contrast which is
necessary for precise spectroscopy.

4.4.1 Rabi Oscillations

The sinusoidal modulation of the lattice position on a small spatial scale (≈ 0.01dlat)
couples different trap levels at individual lattice sites. This process is analogous to
the coupling of electronic states in an atom by an oscillating electric field. This dipole
type mechanism couples states of different parity. The Rabi frequency is proportional
to the amplitude of the oscillation. For high amplitudes atoms are excited into
higher bands than the second due to off-resonant coupling. For further reading see
[52]. In Fig. 4.5 an exemplary Rabi cycle is depicted. The relative occupation of
first and second excited state is shown. It is difficult to specify the contribution of
erroneous assignment to the 3rd state. Numerical simulations of a three level system
as quantified in the right panel of Fig. 4.4 with additional Rabi coupling show a
population oscillation between ground and excited state with non-zero amplitude for
the third band. Coupling to the 3rd state is undeniable but hard to quantify, just as
the ground state preparation. Here assignment of atoms in the ground state to the
first excited state complicate quantitative statements. Our measurements are based
on Ramsey spectroscopy, hence the inaccurate mapping reduces the visibility but
does not change the position of the fringe, which contains the frequency information.
The employed frequency for the Ramsey sequence is set to fit the gap of ground to
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Figure 4.5: Shaking the lattice couples the motional states, resulting in Rabi oscilla-
tions as reflected in the relative populations of the different external states.
The occupation of the first excited state (circles) reaches about 75 %, the
second excited state (triangles) ranges to ∼ 11 % at the maximum. One
Rabi cycle lasts ∼ 20 oscillation periods.

first excited state.
Besides the amplitude of the Rabi cycle, its frequency is notable as well. Within 20
oscillation periods of the driving the population has carried out one oscillation. This
yields a Rabi frequency of 1.35 kHz or 5 % of the fundamental frequency.

4.4.2 Ramsey Spectroscopy

For a rough measurement of the gap between ground and first excited state, we
perform spectroscopy, i. e. Rabi oscillations of low amplitude for a fixed duration
at different frequencies. The employed amplitude and duration should be chosen
such that the highest relative population of the excited state is well below one.
After this rough scan we perform Ramsey spectroscopy to obtain a higher sensitivity
[48, 49]. The basic idea is to apply a first pulse that creates a superposition of ground
and excited state. For the most part we use a symmetric superposition, which is
created by shaking for 5 oscillation periods. Next the system can evolve freely. After
some time another coupling pulse is applied (duration 5 oscillation periods, with
the same phase). Note that the duration of the coupling pulses also contributes to
the phase evolution and thus has to be accounted for in the interpretation of the
results. The effect of this pulse depends on the relative phase of the superposition
state to the pulse. We observed experimentally and calculated numerically with
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Figure 4.6: Ramsey fringes for a cloud of 8000 6Li atoms. The excited state population
(circles) exhibits a sinusoidal fringe. They are fitted and their 68 %
confidence interval is indicated by lines as well. The curve for experiments
with background BEC (red) shows a smaller amplitude and a different
phase than the scans without BEC (blue). The second excited state is
displayed by triangles.

a split-step Fourier simulation that a sudden shift of the lattice causes excitation
into higher states. To avoid sudden changes of the lattice position, the second pulse
sequence has the identical shape as the first, but it is displaced within one oscillation
period, such that the effective phase is changed. In order to sample the interference
pattern, 10 different effective phases of the second pulse are employed subsequently.
As a result we obtain fringes in the population of the excited state, see Fig. 4.6,
whose phase depends on the evolution time and the mismatch between coupling
frequency and the energy gap. This way a frequency difference manifests itself as
a measurable shift of fringes in the state population. In this case (Fig. 4.6) the
background causes a shift of the fringe to the right, which corresponds to a reduction
of the energy gap. The next chapter explains background induced effects and in
chapter 6 the result of many of such scans are presented. The values displayed there
are obtained by an automatic evaluation routine that discards shots with abnormal
atom number or lattice potential and performs the fitting. Most of the scans consist
of three subsequent repetitions, each of them is constituted by 10 different effective
phases. They are measured alternately with and without background BEC to be
robust against drifts of the potential. As such drifts actually occur and slowly shift
the fringe pattern, every single repetition is fitted by two sine functions (one for
measurements with, one for measurements without sodium). We are interested in
the background-induced effect on the level splitting. Thus the value of interest is the
phase difference between the two sine fringes. For each scan, the confidence weighted
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mean of the repetitions is calculated. Expressing the evolution time in oscillation
periods and the fringe shift by the relative phase φ turns out to be very handy for
accessing the relative frequency shifts. If we measure a phase φ = 0.1 · 2π after 20
cycles of evolution time, we can easily calculate the corresponding relative frequency
shift:

δ =
∆ω

ω0

=
(ω − ω0)t

ω0t
=

φ

ω0t
=

φ

2πνt
=

φ

2π

ν

#Cycles · ν
=

φ

2π ·#Cycles
. (4.2)

In this example δ = 0.005. It turns out that the frequency and absolute time drop
out, which is the reason why for most measurements the number of cycles is specified,
not the absolute time.

4.5 Decoherence

Lithium atoms interact with the sodium BEC via collisions. If they are in the excited
state or in a superposition of ground and excited state, this dissipative process
reduces the population of the excited state and the fringe amplitude of the Ramsey
sequence. Furthermore dephasing due to an inhomogeneous frequency distribution
over the sample can reduce the amplitude of the Ramsey fringes as well. Our previous
project with this sodium-lithium experiment studied these phenomena extensively
[48, 52]. Therefore only a short summary is given here.
The decay rate of the excited state due to interaction with sodium is called Γ1,
referring to nuclear magnetic resonance. The rate describing the reduction of the
superposition amplitude due to collisions with sodium is called Γ2. The first process is
called population decay, the latter decoherence. For a pure two-level system coupled
to a continuum, the relation between the two quantities is given by Γ2 = Γ1/2. This
situation can be addressed by Fermi’s golden rule [1, 2].
Dephasing can occur when the different lattice sites exhibit different potential depths
e. g. due to the Gaussian lattice beam profile. By a refocusing spin echo pulse, this
effect can be compensated for, a technique widely employed in nuclear magnetic
resonance [84]. In this thesis no spin echo sequences have been employed as they
require longer total evolution times. In fact, besides the amplitude reduction, the
reason why we are interested in decoherence is that it renders the measured frequency
shift of an inhomogeneous cloud time dependent, see section 5.5.
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4.5 Decoherence

4.5.1 Population decay due to Na-Li Scattering

As mentioned before, a spin echo technique is necessary to determine the decoherence
rate we are interested in. For simplicity we derive the decoherence rate from
the population decay rate, which is easier to obtain experimentally. Previous
measurements have shown that in our system the ratio is close to the ideal value
Γ2 = Γ1/2. The population decay rate is, besides some constants, only dependent
on the overlap of the clouds. This can be illustrated by a simple collision model.
The scattering rate of the lithium atom depends on the scattering cross section
with sodium, its velocity and the sodium density Γ = nNaσv̄. For an estimate of
the velocity we can derive the maximum oscillation speed of a superposition of the
two lowest harmonic oscillator states vmax =

√
~ω0

2mLi
. The mean velocity in average

over time is v̄ = vmax/
√

2. The resulting collision rate is Γ = nNa4πa
2
IB

√
~ω0

4mLi
,

specified in Eq. (5.61). The sodium density can be assessed by the effective density
n̄Na = 1/NLi

∫
nNanLidV , which is the lithium density weighted mean of the sodium

density, see Eq. (3.38). This approach has been presented in our previous publication
[48].

In Fig. 4.7 the time evolution of the first excited state of the lattice (after a population
inverting pulse) is shown for thermal 7Li and 6Li. It strongly depends on the presence
of the sodium BEC. Without it, the excited state is long lived. In the presence of
the condensate, however, the lithium atoms collide with the background and decay
to the ground state. Due to the stronger interspecies interaction this process is faster
for 6Li. The exponential fits have an offset of 0.2. Still, in the long-time limit all
lithium atoms that have not been scattered out of the trap end up in the ground
state, contradicting the fit for short times. Especially in the case of fermionic lithium,
a further, much slower decay is visible. The complete details of the decay process
cannot be completely captured by a single exponential function. This is evident, as
some of the populated lattice sites are located outside of the sodium BEC and thus
have a much lower collision rate, corresponding to the thermal sodium density, which
is much lower than the BEC density.
Nevertheless, for a simple theoretical description, the situation is well approximated
if we deploy the simple collision model described above and capture the atomic
density distributions by the effective sodium density. It yields a collision rate for
the decoherence process which can be translated into decay time constants. For
the plotted 7Li curve we obtain ∼ 31 ms, close to the fitted result of ∼ 25 ms. The
fermionic situation shows less agreement. The calculation results in ∼ 1.2 ms, a factor
of three faster than the fitted value. The search for the reason for this discrepancy is
an involved discussion. Several factors contain possible defects: the simple collision
model, the density distribution calculation, the experimental procedure and neglecting
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Figure 4.7: Exemplary population decay curves comparing thermal 7Li (left panel) to
6Li (right panel). Via Brillouin zone mapping the population of the states
in dependence of time and background is measured after an excitation
pulse. The lattice wavelength for these measurements is 672 nm, the
sodium atom number about 1.8 ·106, the lithium atom number on the left
is 14 · 103 and 8 · 103 on the right. Without BEC the excited state (blue
circles) is long lived. If the background BEC is present, the population of
the excited state (red circles) decays, the population of the ground state
(not plotted) increases. The decay rate is determined by an exponential
fit (red line). It is one order of magnitude faster for 6Li than for 7Li due
to stronger interspecies interaction.

the deviation from a single exponential process. In conclusion the collision model
allows a decent and straightforward description of the sodium density-dependent
decoherence.

4.5.2 Population decay for condensed 7Li

The situation is more complex for condensed 7Li. In this case, high lithium densities
occur and for bosons intra-species scattering is allowed. Furthermore the transfer
of an atom pair from the excited state into ground and second excited state is
energetically favorable. In Fig. 4.8 the experimental observation of this feature is
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4.5 Decoherence

presented. After excitation the population of the excited state decreases even without
sodium BEC (blue circles). Correspondingly the relative (right panel) and absolute
(left panel) population of the third level rises. The process stops or decelerates at a
certain population of the excited state, probably due to its decreased density. The
decay of atoms from the second state into ground and third level has been described
in similar systems [85].
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Figure 4.8: Population decay curves for condensed 7Li. The lattice wavelength is
672 nm, the sodium atom number about 2.2·106, the lithium atom number
is 5 · 104. Bosonic lithium atoms can collide and thereby pairs of atoms in
the first excited state (circles) can be transferred into the second excited
(triangles) and the ground state. This process does not depend on the
sodium BEC and is faster than the population decay due to scattering
with sodium atoms. After roughly 10 ms it slows down (dashed vertical
line) probably due to the reduced lithium density. The immersed decay
curve is bimodal and at the long time limit dominated by the interaction
with the sodium cloud.

In case of a sodium background the decrease of the excited state population is further
increased. These interleaving processes are hard to distinguish. At approximately
10 ms no further increase of the third state population is observed in case of a pure
lithium system and at about this time the immersed system exhibits a kink of the
excited state fraction. The decay prior and after this specific moment in time are
fitted separately, yielding the decay rates τ iwB for the initial and τ iwB for the final
process. The final evolution is dominated by interaction with sodium, the initial one
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by the total of intra- and interspecies interaction. Therefore the sum of these rates
equals the initial immersed rate:

1

τ iwB
=

1

τ fwB
+

1

τnB
=

1

14 ms
+

1

8.6 ms
=

1

5.3 ms
. (4.3)

This is of course only a rough and empirical description of this feature. Nevertheless
we can compare the time constant of the derived background-induced decay (14 ms)
to the value we obtain by the collision model and the effective density: ∼ 27 ms. It
either underestimates the overlap or one or more of the other uncertainties cause
this disagreement.
The simple collision model enables us to calculate the decoherence rate as a function
of the sodium density. The spread of experimentally relevant sodium densities within
one cloud is larger than the mismatch of the observation to the prediction. Therefore
it is an essential tool for the time dependent description of the signal of a whole
atomic cloud, see section 5.5. Further within the longest experimentally employed
evolution time (1.1 ms) only for 6Li decoherence is significant.
The faster intra-species decay process for condensed 7Li does not change the frequency
value of the Ramsey spectroscopy. First of all we compare the system with and
without sodium background, while the intra-species process takes place in both
scenarios. Secondly it only reduces the amplitude of the Ramsey fringe but does not
alter its phase. This is true if the affected lithium atoms are only weakly dependent
on the sodium density. If the sodium cloud causes strong deformation of the Lithium
BEC and the lithium atoms experiencing e. g. especially high sodium densities are
stronger affected by Li-Li collisions, the self-energy is underestimated. Furthermore
the process is significant only in case of high excitation probabilities during the free
evolution. In the respective scans in Fig. 6.8 a reduced amplitude is observable.
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5 Theory of an Impurity in a BEC

In the following chapter we will discuss the theoretical description of an impurity
atom in a BEC. As the full many body Hamiltonian is intractable to solve, we will
study two different approximations for determining the energy shifts: the coupled
Gross-Pitaevskii equations (see subsection 3.1.2 for the single species case) and the
Fröhlich Hamiltonian. Further, we will consider the density modulation of the BEC
by the standing light wave as a second possible source for a background dependent
impurity trap level shift. In the last part we will analyze the signal constitution in
the experiment, where many impurity atoms at different BEC densities are summed
up to one signal.

5.1 Coupled Gross-Pitaevskii equations

We will study the impurity-BEC interaction employing a mean field approach. It
leads to the well known Gross-Pitaevskii equation [72, 73], where operators are
replaced by c-numbers. The term mean field describes that the boson-boson and the
boson-impurity interaction are not described microscopically, but by an averaged
potential of the respective fields. In general we consider either fermionic or bosonic
impurities. In this section the atom number for the fermionic case is set to one
and for the bosonic one the particle number ranges from one to N . The impurities
are represented by one wave function Φ and are distinguishable from the bosonic
background atoms. A wave function for many bosonic atoms depicts a BEC. The
background BEC wave function is denoted by Ψ. The coupled time-independent
Gross-Pitaevskii equations read:

µBΨ =

(
−~2∇2

2mB
+ gBBΨ∗Ψ + gIBΦ∗Φ

)
Ψ, (5.1)

µIΦ =

(
−~2∇2

2mI
+ V + gIBΨ∗Ψ

)
Φ. (5.2)

See subsection 3.1.1 for a definition of g. The impurity intra-species interaction
gII is neglected as we either deal with one impurity atom or with a weakly self-
interacting 7Li BEC. For simplification the sodium BEC has no confining potential,
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leaving it flat. The eigenvalues of the wave functions are the chemical potentials
µB (µI), respectively. In Eq. (5.1) the first term corresponds to the kinetic energy,
the second term to the intra-species interaction of the bosonic bath and the third
one to interspecies interaction. In Eq. (5.2) the first term is the kinetic energy, the
second term is the potential energy and the third term is the interspecies interaction.
As impurity-impurity interaction is neglected, it is the Schrödinger equation of the
impurity where to the external potential V the potential of the BEC is added. In
this special case the chemical potential is equal to the energy per particle. Only one
impurity wave function is considered. This is appropriate if the number of impurities
is low. The eigenvalues of the fields can be calculated by multiplication with the
complex conjugate and integration over space. For a further evaluation we can utilize
the normalization of the impurity wave function

∫
dV |Φ|2 = NI. Integration yields:∫

d3xµB|Ψ|2 =

∫
d3xΨ∗

(
− ~2

2mB
∇2 + gBB|Ψ|2 + gIB|Φ|2

)
Ψ,∫

d3xµI|Φ|2 =

∫
d3xΦ∗

(
− ~2

2mI
∇2 + V + gIB|Ψ|2

)
Φ. (5.3)

We will use a simple model to understand the basic principles of these equations.

5.1.1 Analytic Model

We can solve the ansatz of a homogeneous BEC and a trapped impurity initiated above
if we make use of further approximations. The impurity density nI = |Φ|2 creates a
potential for the BEC of strength: VB = gIBnI. In Thomas-Fermi approximation, the
kinetic energy of the BEC is small compared to its self-interaction and is neglected.
In this case the BEC density fills up this potential nB = (µB − VB)/gBB, adapting to
the shape of the potential, in our case the impurity density, see Eq. (3.23). As the
potential of the impurity is not deep enough to trap all BEC atoms, the density of
the bath is modulated with the shape of the impurity density. For an illustration see
Fig. 5.2. The resulting BEC density reads:

|Ψ|2 = nB = n0 −
gIB
gBB

nI. (5.4)

As the constant part (n0) gives just an offset to the energy we can ignore it. We
thus have three contributions to the total energy of the system, the energy of the
background BEC EB, the energy of the impurity EI and the cross interaction energy
EIB. Note that the kinetic energy of the BEC is neglected due to the Thomas-Fermi
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approximation.

EB =

∫
dVΨ∗

(
gBB|Ψ|2

)
Ψ =

∫
dV gBBn2

B

=

∫
dV gBB

(
n2

0 − 2
gIB
gBB

n0nI +
g2
IB

g2
BB
n2
I

)
= E0

B − 2gIBn0

∫
dV |Φ|2 +

g2
IB

gBB

∫
dV |Φ|4

= E0
B − 2gIBn0NI +

g2
IB

gBB

∫
dV |Φ|4, (5.5)

EI =

∫
dV Φ∗

(
− ~2

2mI
∇2 + VI

)
Φ = − ~2

2mI

∫
dV Φ∗∇2Φ +

∫
dV VI|Φ|2, (5.6)

EIB =

∫
dV gIB|Φ|2|Ψ|2 =

∫
dV gIBnI(n0 −

gIB
gBB

nI) = E0
IB −

g2
IB

gBB

∫
dV |Φ|4. (5.7)

By the use of Eq. (5.4) we have effectively substituted Ψ by Φ and all energy terms
only depend on Φ. The total energy can be calculated by Etot = EB + EI + EIB.
It is interesting to note that within this model EB and EIB cancel out up to some
constant terms. For example, attractive interaction causes a density increase of the
BEC in the shape of the impurity density, increasing the interaction of the BEC with
itself and increasing the cross interaction in absolute value but with negative sign.
As in this approximation, only kinetic and potential energy of the impurity are left,
the solution of the coupled system reduces to the solution of an impurity in potential
VI. The potential of the impurity can be approximated to be cylindrical, as the
transverse extension is a parameter in our model. In harmonic approximation:

VI =
mIω

2
x

2
x2 +

mIω
2
⊥

2
(y2 + z2). (5.8)

For the impurity wave function we assume a Gaussian function, characterized by the
harmonic oscillator lengths along (ax) and perpendicular (a⊥) to the lattice. The
wave function is normalized to NI. This scenario corresponds to one fermion, one
boson or a condensed impurity of NI atoms. The harmonic oscillator wave functions
are the solution within our assumptions, neglecting e. g. BEC density modulation
by neighboring impurities. As we want to compare the impurity energy in ground
and excited state, the two corresponding harmonic oscillator wave functions Φ0 and
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Φ1 for NI particles are:

ax =

√
~

mωx
; a⊥ =

√
~

mω⊥
, (5.9)

Φ0 =
√
NI

1

a⊥
√
axπ3/4

e
− y

2+z2

2a2⊥
− x2

2a2x , (5.10)

Φ1 =
√
NI

1

a⊥
√
axπ3/4

√
2x

ax
e
− y

2+z2

2a2⊥
− x2

2a2x . (5.11)

In the experiment the impurity energy gap of ground and excited state is measured
via Ramsey sequences. For the total energy of the impurity we have to add up
EI = EI kin + EI pot + EIB , using the corresponding wave functions, Eq. (5.6) and
Eq. (5.7):

EI, 0 = NI~
(ωx

4
+
ω⊥
2

)
+NI~

(ωx
4

+
ω⊥
2

)
− g2

IB

gBB

N2
I

axa2
⊥(2π)3/2

, (5.12)

EI, 1 = NI~
(

3ωx
4

+
3ω⊥

2

)
+NI~

(
3ωx
4

+
3ω⊥

2

)
− g2

IB

gBB

3

4

N2
I

axa2
⊥(2π)3/2

. (5.13)

For a single impurity the measured energy gap corresponds to the intuitive expression:
∆EI = EI, 1 − EI, 0. For an impurity BEC care has to be taken as according to
Eq. (5.3) µI = EI/NI. So in general the gap can be calculated by µ1

I − µ0
I :

∆µI = EI, 1/NI − EI, 0/NI

=
~2

2mI

1

a2
x

+
mI

2
a2
xω

2
x +

g2
IB

gBB

NI

4axa2
⊥(2π)3/2

. (5.14)

Experimentally, we determine the corresponding interaction shifts with a differential
measurement of the gaps ∆µI with and without background. The value we are
interested in is ∆µintI −∆µ0

I :

∆µintI −∆µ0
I =

g2
IB

gBB

NI

4axa2
⊥(2π)3/2

. (5.15)

Up to some constants the result is given by the impurity density (NI/axa2⊥), the
impurity-BEC and BEC-BEC interaction. Assuming a symmetric superposition, half
of the impurity density can be assigned to the ground state and half of the density
to the excited state. This has to be accounted for by dividing the above expression
by a factor of 2.
Ground and excited state shift in the same direction and proportional to the transver-
sal impurity density n2DI = NI

a2⊥
in the respective states:

∆µI, 0 = −const · n2DI, 0, (5.16)

∆µI, 1 = −const · 3

4
· n2DI, 1, (5.17)
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5.1 Coupled Gross-Pitaevskii equations

Due to the compact shape of the ground state in lattice direction, its shift is 4
3
stronger.

Its higher density allows for a higher interaction strength. The density of the two
states can be related to the total density by the excited fraction ηex: n2DI, 1 = ηexn

2D
I, ,

n2DI, 0 = (1− ηex)n2DI . There is a critical value for the excited fraction ηex at which the
different shape is compensated by a higher occupation of the excited state, resulting
in no change of the trap level gap due to interaction with the background. The value
is ηex = 4

7
.

In order to compare our analytical model to numerical 1D calculations, we will now
adapt the above scenario to a 1D situation. The relevant expressions are:

ax =

√
~

mωx
, (5.18)

Φ0 =
√
NI

1
√
axπ1/4

e
− x2

2a2x , (5.19)

Φ1 =
√
NI

1
√
axπ1/4

√
2x

ax
e
− x2

2a2x , (5.20)

∆µintI −∆µ0
I =

g2
IB

gBB

NI

4ax
√

2π
. (5.21)

The characteristic features of this expression are shown in Fig. 5.1 and compared to
numerical results.
In general, it has to be discussed if the condensed bosonic impurity is better
described by a Gaussian wave function or (at least for high atom numbers) a
Thomas-Fermi profile. The typical trapping frequencies for a bosonic impurity
are: ω = 2π · (26300, 210, 460) s−1. The corresponding harmonic oscillator length
is aHO = (0.24, 2.6, 1.8)µm. Calculating the Thomas-Fermi radii (see Eq. (3.25))
for 3000 atoms, which is a typical value for a highly occupied lattice site results in
rTF = (0.094, 11, 5.3)µm. So in the Thomas-Fermi description the impurity is even
more anisotropic than the corresponding harmonic oscillator wave functions. The
reason for the small extension of the wave function in lattice direction is the lack
of kinetic energy that usually increases its size. An extension of a weakly repulsive
BEC smaller than the single-atom extension of a wave function rTF < aHO is not
reasonable. Therefore in lattice direction the use of a Gaussian shape is convincing.
The transversal extension will become a parameter NI/a

2
⊥ describing the 2D impu-

rity density in the next section, enabling the comparison between different theories
without restricting this ansatz to a certain transversal extension.
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Figure 5.1: Comparison of the numerical solution of the coupled Gross-Pitaevskii
equations (circles) to the analytic model of Eq. (5.21) (line). In the
regime where the analytic model is valid, it not only reproduces the
scaling of the numerics, but also the absolute values agree.

5.1.2 Numerical Model

As we are interested in the ground and excited state of the impurity, we use the
Newton method: The basic idea of this method is that the function f(Ψ) = HΨ−µΨ
has a zero even for Ψ being an excited state. Thus, the Newton method can be
applied to f but the starting conditions (Ψin) have to be chosen well. The numerical
code used here is based on a version that has been used to describe a Rb mixture of
two hyperfine states [86]. Since we want to test our analytic model, which is easily
translated into 1D, it is sufficient to use numerics in 1D. The healing length of the
condensate in 1D is given by ξ = a⊥/

√
2aBBñ [87], where ñ is the 1D density. To

consider the simplest case of uniform external potential for the BEC, we use periodic
boundary conditions for the BEC. Left and right edge are connected, thereby creating
a ring shape. The impurity is trapped in a harmonic potential with trap frequency
ω0. Using the above detailed procedure to numerically find the stationary solutions
of our coupled systems we expect to find the results of the model described before
as long as the Thomas-Fermi approximation for the BEC is valid. In Fig. 5.2 the
procedure is described. As a guess for Φ we use a harmonic oscillator ground (upper
row) and excited state (lower row) and for Ψ we use a flat density distribution, which
are exact solutions for the case without interaction (first column). The numerical
calculation solve the coupled Eq. (5.3), leading to a distortion of the initial guess for
Ψ and Φ (see second column). By bare eye only the modulation of the BEC is visible.
The right column provides the difference in density due to the coupling of Na and Li.
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Figure 5.2: Working principle of the numerical solution of coupled Gross-Pitaevskii
equations in 1D. The upper row shows the Na (blue) and Li (red) density
in the ground state, the lower row the excited state. The plotted functions
are normalized to their maximum value. The first column shows the
starting densities (non-interacting), the second column the results for
numerically found stationary states (interacting). In the right column
the difference between interacting and non-interacting solution is shown.

In this example, the interaction is repulsive, which leads to a dip of the sodium BEC
with the shape of the impurity density. The impurity density is compressed due to
interaction and the peak density is increased.

The background-induced frequency shift we are interested in can be calculated using
∆µintI −∆µ0

I . In order to obtain the difference ∆µ, ground and excited state have to
be calculated. As the reference, the non interacting case is determined by setting gIB
to zero. In total for each calculation of the interaction induced change of the energy
gap the complete numerical procedure has to be repeated four times.

As a test for the validity of the analytic model, the ratio of numerical results and
analytics is plotted in Fig. 5.3. For small ξ the analytic model is valid. It starts
to deviate as soon as the healing length ξ is larger than the harmonic oscillator
length. This can easily be understood: The Thomas-Fermi approximation gives good
agreement if NBaBB/a� 1 [65, p. 157]. So ξ must be small compared to the the size
of the impurity. Only in this case, the BEC density can adapt to the impurity density.
In the analytic model the BEC modification is fixed to the shape and size of the
impurity in all settings, which corresponds to the limit of a vanishing healing length.
Deformation on a small length scale causes high overlap and thereby high interaction
energy. Therefore ∆µ is overestimated, resulting in a small ratio ∆µnum/∆µana. For
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Figure 5.3: Test of the analytic model by comparing the obtained gap with a numer-
ical solution of the coupled Gross-Pitaevskii equations. The ratio a/ξ
compares the length scale of the BEC to the harmonic oscillator length
of the impurity. For small ξ simulated and calculated energies coincide.
For large ξ the analytic model overestimates the cross interaction, as the
numerics find that the BEC cannot adapt to the impurity shape.

ξ ≈ a and smaller it is easy to calculate the cross interaction of the impurity and the
BEC with the analytic model described in the previous subsection.

In order to get a further understanding, we compute the kinetic and potential
energy as well as intra-species and interspecies interaction energy and compare
them in Table 5.1. The assumed harmonic oscillator frequency for the impurity is
ω0 = 2π · 27 kHz. The table’s upper panel is for large sodium interspecies scattering
lengths, the lower part is for small ones, resulting in short and long healing length,
respectively. For sodium, only the contribution of the deformation is given. The
potential energy vanishes as V = 0 for the BEC. In the analytic model, the kinetic
energy of the BEC is zero, as this is the main assumption of the Thomas-Fermi
approximation. In the upper part analytic and numeric approach agree. In the
lower part the numerics give a kinetic energy for the BEC, showing that it cannot
be neglected. Further the interspecies interaction energy is overestimated in the
analytic scenario due to the perfect overlap. Hence at short a/ξ values the BEC is
not described correctly in Thomas-Fermi approximation. Therefore the values for
the cross interaction do not agree.

In the experiment, the sodium BEC is harmonically trapped and thus lithium atoms
probe a BEC density between zero and a maximal value. This leads to a ξ distribution
between 0.2 µm at the peak density and∞. This has to be compared to the impurity
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5.1 Coupled Gross-Pitaevskii equations

Table 5.1: List of energy contributions (kinetic, potential, intra- and interspecies
interaction energy) calculated both numerically (nu) and analytically (an).
The upper panel is for aBB = 1000a0, the lower part for aBB = 1a0 where
the Thomas-Fermi approximation is invalid, resulting in disagreement
between the two methods.

GS ES
E [Hz] Li an Li nu Na an Na nu Li an Li nu Na an Na nu

kin ν0/4 ν0/4 + 0.02 0 0.00 ν03/4 ν03/4 + 0.04 0 0.00
pot ν0/4 ν0/4− 0.02 0 0 ν03/4 ν03/4− 0.04 0 0
intra 0 0 0.12 0.11 0 0 0.09 0.08
inter -0.12 -0.12 -0.12 -0.12 -0.09 -0.08 -0.09 -0.08

kin ν0/4 ν0/4 + 2 0 9 ν03/4 ν03/4 + 3 0 6
pot ν0/4 ν0/4− 2 0 0 ν03/4 ν03/4− 3 0 0
intra 0 0 123 29 0 0 92 25
inter -123 -47 -123 -47 -92 -36 -92 -36

harmonic oscillator length of 0.25 µm. In Fig. 5.8 the calculated ξ distribution for 6Li
is shown, in Fig. 5.11 the distribution for 7Li, respectively. In the center of the BEC,
where the density is high, it is justified to use the Thomas-Fermi approximation, at
the border of the BEC this is questionable. So the analytic model is not perfectly
valid but should still yield a reasonable estimate.

In summary, we can calculate the impurity energy difference due to interaction
well with the simple analytic model as long as the Thomas-Fermi approximation is
valid.

5.1.3 Variational Method

In our analytical model, we set the BEC deformation length scale to be the harmonic
oscillator length of the impurity. We observed that for a < ξ this cannot be true.
Using another ansatz in which the impurity and BEC deformation are described by
harmonic oscillator states, but with independent widths, it can be shown that for
a > ξ both have the same size (the harmonic oscillator length of the impurity). For
a < ξ the BEC density is modulated on a length scale of ξ, the smallest length scale
it can react to. This implies that in Eq. (5.15) the harmonic oscillator length a has
to be replaced by ξ for small a. Due to the length of the calculation and its intuitive
result it is not shown here, but we will come back to this point in section 5.3.
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5 Theory of an Impurity in a BEC

5.2 Fröhlich Hamiltonian and Self-Energy by
Green’s Function

The full many-body Hamiltonian for interacting mixtures cannot be solved exactly.
Up to now we have discussed the Gross-Pitaevskii approach. Another method for
describing an impurity atom in a BEC is the Fröhlich Hamiltonian. As long as
the interspecies interactions are sufficiently weak only the lowest lying harmonic
excitations of the BEC (phonons, see subsection 3.1.3) affect the impurity properties.
In this case the complexity of the full Hamiltonian can be reduced by performing the
Bogoliubov approximation with respect to the BEC degrees of freedom. The resulting
mathematical description is referred to as Fröhlich model and was first derived in
the 1950s in connection with the electron-phonon interaction in semiconductors
[12, 13, 27, 32]. Although this model is not exactly solvable, too, it offers a very
intuitive picture as it allows for an effective description of impurity dynamics in
terms of quasiparticles called polarons. The Hamiltonian reads:

H =
∑
k

Ek â
†
kâk +

∑
q

ωq b̂
†
qb̂q +

∑
k,q 6=0

Vqâ
†
k+qâk(b̂q + b̂†−q), (5.22)

where Ek describes the energy levels of the bare impurities and ωq correspondingly
the energy of the uncoupled phonons. The creation and annihilation operators
for the impurity are represented by â†k and âk. For the phonons they are denoted
by b̂†q and b̂q, respectively. The last term describes the density-density interaction
between impurity and BEC. Here the absorption or emission of a phonon changes
the momentum of the impurity atom, characterized by the coupling strength Vq:

Vq = λ
[
(ξq)2/((ξq)2 + 2)

]1/4
, (5.23)

where the BEC-impurity interaction amplitude is described by λ = gIB
√
nB, see

e. g. [27, 31, 32, 88]. For further reading [17, 89] is recommended.

In collaboration with Andreas Komnik (ITP Uni Heidelberg) the self-energies of the
two lowest external impurity states considering the coupling to a BEC have been
derived. Due to the relative weakness of the interspecies interaction one can use
perturbation theory in order to access the single-particle impurity properties. The
most convenient approach is the Feynman diagrammatic expansion. It allows for
the computation of the Green’s function, which is the key quantity of the approach
and from which one can extract energy shifts as well as effective parameters of
the impurities. For weak λ the leading order process is ∼ λ2 and corresponds to
emission/absorption and reabsorption/reemission of the same phonon by the impurity.
The lowest order self-energy approximation takes into account an infinite series of
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5.2 Fröhlich Hamiltonian and Self-Energy by Green’s Function

these processes taking place one after the other in an uncorrelated manner. The
terms of order λ are zero and therefore not calculated. It is this coupling to phonons
that leads to a mass renormalization of a free particle (polaron) and to the Lamb shift
for a bound particle. The actual self-energy calculation assumes zero temperature
and a uniform 3D BEC of density nB and healing length ξ, see Eq. (3.28).

The self-energy for a free particle can be interpreted as an impurity with an effective
mass. In case of a bound particle the shift of the energy levels corresponds to the
Lamb shift known from the hydrogen atom. Still, the electron mass used to compute
the (uncoupled) energy levels of the atom is mainly caused by the coupling of the
electron to the vacuum. In order to further illustrate the comparison we calculate
the effective mass of a free impurity atom in a uniform BEC in the same manner as
for the electron in vacuum [17]. To first order, the mass increase is m∗I/mI = 1 + να,
where α is the dimensionless interaction strength and ν and α are given by:

ν =
4

3π

(
1 +

mI

mB

)2 ∫ ∞
0

dx
√

x2

2 + x2

x4(
x2 + mI

mB
x
√

2 + x2
)3 , (5.24)

α =
a2
IB

aBBξ
. (5.25)

The integrals can be calculated for the mass ratios employed in our setup. For 6Li
(mI/mB = 6/23) ν = 0.36, for 7Li (mI/mB = 7/23) ν = 0.34. Using additionally
typical experimental values for the sodium BEC healing length (ξ = 0.33 µm for 6Li;
ξ = 0.66 µm for 7Li) we get m∗I/mI = 1+6 ·10−3 and m∗I/mI = 1+2.2 ·10−4 (6Li, 7Li).
The mass increase causes a reduction of the trap energy levels as ω∗/ω =

√
m/m∗.

The shift of the harmonic oscillator states due to increased mass results in:

∆Emeff = E∗ − E (5.26)

= ~ω∗(n+ 1/2)− ~ω(n+ 1/2) ω∗ = ω
√
m/m∗ (5.27)

= ~ω(n+ 1/2)(
√
m/m∗ − 1)

√
m/m∗ = 1− 1/2να (5.28)

= ~ω(n+ 1/2)(−1/2να), (5.29)

∆Emeff
0 = −να~ω

4
, (5.30)

∆Emeff
1 = −3να~ω

4
. (5.31)

The shift due to the increased mass is of the same order of magnitude as the self-
energy shifts. Still, the gap between ground and excited state is reduced in case of
an increased mass which is not true for the shifts derived for a bound state. Here
the downshift of the ground state is stronger than the shift of the excited state,
increasing the gap. In Fig. 5.4 the energy shift of ground and excited state as a
function of the sodium BEC characteristics (a/ξ) for 7Li are plotted.
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Figure 5.4: Phononic coupling causes a mass increase for free particles and level
shifts for bound particles (left panel). The mass increase by itself shifts
energy levels (right panel). The levels are denoted by GS (ES) for the
ground (excited) state, respectively. The mass increase reduces the gap,
as the upper state shifts stronger, unlike the self-energy behavior. Here
the situation is plotted for bosonic impurities. Bosonic enhancement in
case of the self-energy shift causes larger absolute values.

In case of confined impurities, the calculation assumes a potential with trapping
frequency ω0 in lattice direction, giving rise to the length scale a =

√
~/ω0mI

in x-direction and transversally free impurities. The impurities occupy the two
lowest lying states in lattice direction. Their eigenstates have energies En,k =
~ω0(n+ 1/2) + ~2k2/2mI − µ, where k is a 2D wave vector and n labels the state of
the confinement potential. The bare impurity Hamiltonian is:

HI =
∑
n

∫
d2k

(2π)2
En,k â

†
n,kân,k . (5.32)

The impurities are scattered on the harmonic modes of the BEC. The corresponding
interaction terms have been derived in the weak depletion limit in [27]. Adapting it
to the present setup leads to the following interaction term:

Hint =

∫
d2k

(2π)2

∫
d3q

(2π)3

∑
n1,n2

VqA(n1, n2, qx)× â†n1,k+q′ ân2,k
(b̂q + b̂†−q), (5.33)

where q′ = (qy, qz) denotes the transverse component of q. A is the matrix element
for the transition between the harmonic oscillator energy levels:

A(n1, n2, qx) =

∫
dxΦ∗n1

(x) Φn2
(x) e−iqxx, (5.34)
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Φn(x) are the wave functions of the n-th eigenstate. The Hamiltonian of the phonons
is

Hph =

∫
d3q

(2π)3
ωq b̂

†
qb̂q, (5.35)

where ωq = cq
√

1 + (ξq)2/2 with the sound velocity c, see subsection 3.1.3. Matrix
elements for the impurity-phonon scattering are given by Eq. (5.23). The weak
interspecies interaction gIB allows a perturbative treatment of the problem (see
beginning of this subsection). The necessary Green’s functions have the same shape
for both bosonic and fermionic case. For fermions, an equal superposition of the two
lowest states in the direction of strong confinement is assumed. Both states shift
downwards, reducing their energy. Due to its smaller spatial extension, the ground
state shifts stronger than the excited state, approximately by a factor of two. As the
shift depends on a and ξ, the necessary numerical integrals are calculated at several
sampling points (up to a/ξ = 0.8575) and fitted by a numerical approximation of
∆E(a/ξ). It reads:

∆E

(
a

ξ

)
=

λ2mB

8π2~2ξ
f

(
a

ξ

)
, (5.36)

f

(
a

ξ

)
= −0.11 +

0.95

a/ξ
. (5.37)

This result is implicitly dependent on the impurity density. A typical experimental
value for the chemical potential was used for the evaluation. For 600 atoms in the
central pancake the chemical potential is about 15 kHz.

In case of bosonic impurities, strong shifts can be generated due to bosonic enhance-
ment. In particular the scattering by phonons into occupied states is enhanced. This
macroscopic occupation dominates and thermal atoms (occupation number small,
around one) are neglected. The increased signal results in higher sensitivity and
allows for an enhanced experimental study. The fundamental coupling mechanism is
scattering, therefore the impurity density is important as well. Due to the presence
of the lattice potential, in this scenario the 2D density has to be employed. The
shift of ground (∆µ0) and excited (∆µ1) state are calculated in dependence of the
relative densities of impurity states (n2DI, 0, n2DI, 1). The 2D densities can be related to
the calculated atomic densities taking into account the relative excitation ηex:

n2DI, 0 = (1− ηex)n2DLi, BEC, (5.38)

n2DI, 1 = ηexn
2D
Li, BEC. (5.39)

∆µ is used to describe the level shift for bosons, as E has been used to describe
the total energy of an atomic cloud and ∆µ = ∆E/NI. For bosonic impurities the
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expressions for the level shifts and the cross interaction are given by the following
terms:

∆µ00 = − λ2mB

8π2~2ξ
n0I, 2D

[√
32π2ξ2 exp

(
a2

ξ2

)(
1− erf

(
a

ξ

))]
, (5.40)

∆µ01 = − λ2mB

8π2~2ξ
n1I, 2D

4πa2

∫ ∞
0

dηxη
4
x

exp
(
−a2η2x

2ξ2

)
ηx

(
1 + η2x

2

)
− 2

(
mB
mI

ξ2

a2

)2

 , (5.41)

∆µ11 = − λ2mB

8π2~2ξ
n1I, 2D

[√
32π3ξa−

√
32π2a2 exp

(
a2

ξ2

)(
1− erf

(
a

ξ

))]
, (5.42)

∆µ10 = − λ2mB

8π2~2ξ
n0I, 2D

πξ2

∫ ∞
0

dηxη
2
x

(
1− a2η2

x

ξ2

)2 exp
(
−a2η2x

2ξ2

)
ηx

(
1 + η2x

2

)
− 2

(
mB
mI

ξ2

a2

)2

 .
(5.43)

Here ∆µ01 denotes a shift of the ground state due to occupation of the excited state.
Calculating the numbers in the relevant parameter regime reveals that the cross
terms ∆µ01 and ∆µ10 are one order of magnitude smaller and can be neglected. This
facilitates numerical calculations, as no integrals have to be solved.
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Figure 5.5: Healing length dependence of the energy level gap due to phononic
coupling. For bosonic impurities this function additionally depends
on the 2D impurity density. Here n2DLi, BEC = 38 µm−2 in a symmetric
superposition is plotted. Experimentally relevant a/ξ values are depicted
by vertical bars.
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In Fig. 5.4 ∆µ00 and ∆µ11 are depicted as a function of a/ξ. Further, we can now
study the dependence of the energy gap ∆µ = ∆µ11 − ∆µ00 on the ratio a/ξ for
bosonic and fermionic impurities. The result is plotted in Fig. 5.5. High BEC
densities correspond to a short healing length. Hence we get the intuitive result
that higher BEC densities cause larger shifts. For bosonic impurities this function
saturates at about a/ξ = 1. Note that for describing the experimental results, one
has to keep in mind that we realize many different ξ in one experimental run. Due
to the non-linearity of the functions we have to consider the distribution of ξ.

The shift of the ground state ∆µ00 and the shift of the excited state ∆µ11 depend on
the impurity occupation of the respective states. For the same 2D density the ground
state shifts more than the excited state, see Fig. 5.4. This can be compensated by
an increased occupation of the excited state ηex. The critical excitation leading to
no change of the energy gap by coupling to the background can be calculated by:

(1− ηex)∆µ00 = ηex∆µ11 (5.44)
ηex = ∆µ00/(∆µ00 + ∆µ11). (5.45)

It is plotted in Fig. 5.6 as a function of the BEC healing length. The mean critical
ηex and a/ξ for our 7Li setup are indicated by dashed lines. They do not intersect at
the function due to the averaging over the function’s non-linearity.
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5.3 Comparison of the two Approaches:
Gross-Pitaevskii Equation versus Fröhlich
Hamiltonian

The first part of this chapter approached the impurity BEC interaction via the Gross-
Pitaevskii equation. In the second part a microscopic treatment via the Fröhlich
Hamiltonian was performed. We now investigate if there is a regime where both
approaches are valid. As the Gross-Pitaevskii equation works best for high atomic
densities, the results of Eq. (5.15) are compared to the self-energy expression for
condensed bosons (Eq. (5.40)). It is recast in a form where the mean value of the
numerical part is ≈ 1, so that it is justified to neglect it.

∆µGPE
I =

g2
IB

gBB

NI

4aza2
⊥(2π)3/2

(5.46)

∆µselfI ≈
λ2mBξ

2π~2
nI, 2D λ = gIB

√
nB (5.47)

=
g2
IBnBmBξ

2π~2
nI, 2D nB = 1/(8πξ2aBB) (5.48)

=
g2
IBmB

16π2~2ξaBB
nI, 2D gBB = 4π~2aBB/mB (5.49)

=
g2
IB

4πgBBξ
nI, 2D nI, 2D = NI/a

2
⊥ (5.50)

=
g2
IB

gBB

NI

a2
⊥

1

ξ

1

4π
ξ ≈ az (5.51)

≈ g2
IB

gBB

NI

a2
⊥

1

az

1

4(2π)3/2
(5.52)

= ∆µGPE
I . (5.53)

In a parameter regime where a and ξ are of the same order of magnitude the two
approaches coincide. The connection is even more universal, as the reason for a to
show up in the expression for ∆µGPE

I is the Thomas-Fermi approximation. For a > ξ
the deformation of the BEC is determined by a, for a < ξ the healing length ξ is
decisive.
In current literature, it is still a matter of debate whether a classical field theory can
calculate an effect based on fluctuations. Some strongly support this view [90–92]
but their opinion has been questioned as well [93].
In our case, the comparison works better for bosonic impurities than for fermionic
ones, as the structure of the Fermi sea changes the fundamental characteristics of
the system. Even for T = 0 most of the fermions occupy states with finite momenta
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which is not the case for bosons. Furthermore the Gross–Pitaevskii description is
best for high atomic densities, which is tenuous for a single fermion.
The deeper foundations causing the accordance are still to be studied in future
work.

5.4 Effect on Lithium by the Sodium BEC
Modulation Resulting from the Lattice

Our studies have shown that an impurity atom in a BEC distorts the condensate. This
change in BEC density changes the effective impurity potential, altering the energy
levels of the trapped states. However, in practice this effect has to be differentiated
from the impact by modifications of the otherwise flat BEC via an external potential.
In our experiment this can be observed, as the optical potential used to address the
impurities has an effect on the BEC as well. We will call the depth of this potential
for the impurity VI and the depth for the background BEC VB. Due to the large
detuning for sodium, the ratio VB/VI is small. Using Eq. (3.1) we can calculate the
potential for impurity and BEC resulting from the laser intensity I(~r) of the standing
light wave at frequency ωlat. Please note that due to the large detuning for sodium,
the application of the rotating wave approximation changes the values by several %,
therefore it is not used here. For the resonance frequencies ωI and ωB of the impurity
and the background atoms, we find a ratio of:

VI
VB

=
ω3
B

ω3
I

(
ΓI

ωlat − ωI
+

ΓI

ωlat + ωI

)(
ΓB

ωlat − ωB
+

ΓB

ωlat + ωB

)−1

. (5.54)

We performed experiments ranging from wavelengths of about 670 nm to 672 nm,
while the lithium transition is at 671 nm. For the experimentally employed values
VI/VB ranges from ±0.5 % to ±1.1 %. The change in sign expresses the fact that
the potential is always attractive for sodium but can be attractive or repulsive for
lithium, depending on the wavelength.
As in subsection 5.1.1 we use the Thomas-Fermi approximation, yielding a BEC
density of nB = (µB − VB)/gBB. If µB � VB, we can write this as nB = n0 − VB/gBB.
This describes a flat BEC with a modulation of VB/gBB on top. This modulated
BEC density adds a potential for the impurity:

ṼI = VI + gIBnB = VI −
gIB
gBB

VB = VI

(
1− gIB

gBB

VB
VI

)
. (5.55)

We approximate the potential to be harmonic with trapping frequency ω0 for the

impurity. In this case, the modified trap frequency ω̃/ω0 =
√
ṼI/VI. This leads to a
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Figure 5.7: The relative frequency change for lithium induced by the external mod-
ulation of the sodium BEC through the lattice can be calculated by
Eq. (5.56) (lines), as long as the Thomas-Fermi approximation is valid. It
can be derived numerically (markers) solving the coupled Gross-Pitaevskii
equations, revealing excellent agreement. For 7Li (diamond/line) the
effect is weaker and inverted compared to 6Li (circle/dashed line).

relative change of the frequency:

δlatt =
∆ω

ω0

=
ω̃ − ω0

ω0

=

√
ṼI
VI
− 1 =

√
1− gIB

gBB

VB
VI
− 1 = −1

2

gIB
gBB

VB
VI
, (5.56)

where the approximation
√

1 + x ≈ 1 + x/2 has been used. In order to test this
expression numerically, several approaches are possible. The modified impurity
potential VI can be calculated and fitted quadratically, the potential can be diago-
nalized numerically revealing the eigenstates and the corresponding energies or the
background potential can be implemented into the numerical solution of the coupled
Gross-Pitaevskii equations (see subsection 5.1.2). We will deploy the latter, as it has
already been introduced.
The system size is set to a multiple of the lattice spacing to avoid jumps of the
potential which is necessary due to the employed periodic boundary conditions.
The assumed lattice periodicity is 1.65 µm, as in the experiment, and the system
extends over 6 lattice sites. In order to avoid population of several lattice sites,
a harmonic potential with curvature ω is assumed for lithium, whereas sodium is
exposed to a sine potential. In order to extract the effect induced by the lattice, the
lithium energy gap of excited and ground state is calculated. Afterwards the gap of
the system without sodium modulation is determined and subtracted. In Fig. 5.7
the potential for lithium is kept constant, while the wavelength of the potential is
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scanned. Depending on the wavelength, the intensity of the potential has to be
adapted resulting in a different strength for sodium. As long as the wavelength is
shorter than 671 nm the potential is repulsive for lithium and attractive for sodium,
resulting in lithium being located in sodium density minima. At a wavelength larger
than the lithium D-line transitions, the optical potential is attractive for both species,
lithium being located in sodium BEC maxima. Therefore, the effect changes sign
at the resonance frequency of lithium at λ = 671 nm. For 6Li the potential depth
is 25.4Erec, while for 7Li the depth is 33Erec, corresponding to a gap of roughly
ω0 = 2π · (27.25 kHz). The effect of the optical potential on the sodium cloud is
calculated by Eq. (5.54). In Fig. 5.7 the prediction of Eq. (5.56) is confirmed, showing
a linear dependence on the detuning. Due to the difference in aIB, the slope is larger
for fermionic lithium and has opposite sign compared to the bosonic line.
In a regime where Thomas-Fermi approximation is not valid any more, the BEC mod-
ulation is suppressed and the analytic model will overestimate the effect. For a full
discussion on the validity of the Thomas-Fermi approximation see subsection 5.1.2.

5.5 Signal Constitution for a Sample of Many
Impurities

Based on chapter 3 we can calculate and characterize the density distribution of
the two-species mixture in the trap. As explained in the previous sections, there
are two main contributions to the energy shifts of lithium atoms due to the sodium
BEC. Lithium atoms immersed in the sodium BEC experience a background induced
energy shift due to the deformation of the BEC by the impurity and due to the
deformation of the BEC by the lattice. The strength of the potential change for
impurities depends on the position, as the sodium density varies. The read-out
averages over the whole lithium sample. Hence, in order to compare our theory to
experimental data, we need to take this averaging over the clouds into account.

The time evolution of the coherent superposition is given by e−iωt where ω = ∆E/~.
The dominant energetic contribution ω0 ≈ 27 kHz is given by the external potential
and gives rise to a phase evolution φ = ω0t. Lithium atoms in contact with the
sodium BEC have an additional BEC density dependent energy term, causing a phase
evolution (ω0 + ∆ω)t = φ+ ε. The oscillatory phase evolution of the superposition is
mapped on an oscillation in the population of states by the second interferometer
pulse in the employed Ramsey scheme (see subsection 4.4.2). We observe a sine
function in the population of the excited state:

ηex = 0.5 sin((ω0 + ∆ω)t) + 0.5. (5.57)
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When ω0 is known, which we need for strong coupling of the external states, the
observation of an interference fringe allows the definite determination of ∆ω. This
is especially true as we work at short evolution times t, ∆ωt � π. Due to the
unambiguous assignment we will not discuss ηex, but the signal, its phase or frequency
itself. In the experiment decoherence and dephasing cause decreased amplitudes.
These effects reduce the sensitivity, but do not change the unique relation between
the excited fraction and the phase evolution.

When scanning the effective phase of the Ramsey readout pulse, a sine shaped fringe
is expected. We will now discuss the question, how the signal of various frequencies
looks like. First, we can differentiate between lithium atoms in contact with the
sodium BEC (immersed fraction ηim) and lithium atoms outside the BEC. The latter
ones have a phase evolution φ = ω0t. The atoms inside the BEC have an additional
phase ∆ωt = ε. For small ε we find:

sin(φobs) =(1− ηim) sin(φ) + ηim sin(φ+ ε) (5.58)
=(1− ηim) sin(φ) + ηim(sin(φ) cos(ε) + cos(φ) sin(ε))

≈(1− ηim) sin(φ) + ηim(sin(φ) + ε cos(φ))

= sin(φ) + ηimε cos(φ)

≈ sin(φ) cos(ηimε) + cos(φ) sin(ηimε)

= sin(φ+ ηimε).

So as long as ∆ωt is small, we still expect to observe a sine function at full amplitude
with a slightly changed phase compared to the free evolution. However, a problem
remains that short times and small frequency shifts are easy to describe but hard to
measure due to the finite time of the experimental sequence. We will now take the
full density distribution into account. The average frequency shift can be calculated
by the weighted arithmetic mean as a sum over many volume elements partitioning
the atomic clouds:

∆ω =

∑
iwi(∆ω)i∑

iwi

=
∑
x,y,z

nx,y,zLi dV
NLi

∆ωx,y,z

=
1

NLi

∫
nLi(~r)∆ω(~r)dV. (5.59)

The signal weight is given by the lithium density nLi(x, y, z). This expression is
correct for t = 0. In order to expand it to t > 0 the oscillatory behavior of the phase
evolution has to be regarded. When two atoms accumulate a relative phase of π,
their summed signal vanishes. Hence, instead of calculating the weighted mean of
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the frequency, the weighted mean value of sin(ωt) should be applied:

∆ωeff = arcsin

(
1

NLi

∫
nLi(~r) sin ((ω0 + ∆ω(~r))t) dV

)
/t. (5.60)

Here we assumed that the signal is still given by a sine function, which is legitimate
for small phases due to the considerations in Eq. (5.58). The signal amplitude is
damped due to decoherence. This effect is due to collisions with sodium and therefore
depends on the sodium density. Here the thermal sodium density can be included,
but it causes only minor changes. In close analogy to [48] we employ a simple model
for decoherence:

Γ = nNaσv = nNa4πa
2
IB

√
~ω0

4mLi
, (5.61)

where we assume that the mean velocity can be estimated from the oscillation speed
of the superposition of ground and excited state (v̄ = vmax/

√
2). The time-dependent

signal of the cloud can be calculated by:

S(t) =
1

NLi

∫
nLi(~r) exp(−Γ(~r)t) sin ((ω0 + ∆ω(~r))t) dV. (5.62)

For small ∆ω(~r) it is a sine with reduced amplitude:

A(t) =
1

NLi

∫
nLi(~r) exp(−Γ(~r)t)dV. (5.63)

The reduced amplitude diminishes the slope of the fringe, hence for the extraction of
the effective phase ∆ωeff the amplitude cannot be neglected. It has to be taken into
account that the weight is time dependent:

sin(φeff(t)) =

∫
nLi(~r) exp(−Γ(~r)t) sin ((ω0 + ∆ω(~r))t) dV∫

nLi(~r) exp(−Γ(~r)t)dV
, (5.64)

∆ωeff(t) = arcsin (sin(φeff(t))) /t. (5.65)

If large ∆ω(~r) become relevant, the amplitude can furthermore be reduced by
dephasing. In this case Eq. (5.63) does not yield correct amplitude values (see
Fig. 5.12) and therefore Eq. (5.65) is invalid as well. Still, Eq. (5.62) is correct and
enables us to calculated the signal at all times, but the analytic derivation of the
phase is intractable.

The energy shifts in dependence on the densities have been denoted in section 5.2.
The shifts are strongly dependent on the BEC density. In Fig. 5.8 these expressions
are applied to the calculated 6Li density distribution. On the left, the distribution
of the probed healing length is shown, on the right the corresponding frequencies.
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Figure 5.8: The 6Li cloud probes all parts of the sodium BEC, resulting in the shown
histogram of the healing length (left). It translates into a distribution
of frequencies (right). In both cases the mean values are indicated by
vertical bars. On the right lithium atoms outside the BEC are accounted
for, but the peak at ν0 = 27 kHz is truncated for a better recognizability.

There is a difference, as only the immersed fraction ηim = 54 % of the fermions
penetrate the BEC. Therefore the relative amplitude at ν0 = 27 kHz is 0.46 but cut
off to depict the structure of the distribution. The atoms outside the BEC reduce the
mean frequency (see Eq. (5.59)) which is not the case for the mean a/ξ value. Some
wiggly modulation of the spectrum is observable. Every lattice site has a strong peak
at ν0 and a characteristic extension, given by the maximum sodium density within
the volume of the lattice site. Their sum therefore shows an oscillatory shape.

Only for t = 0 it is correct to average over the frequencies. For t > 0 the oscillatory
behavior of the phase has to be taken into account. Further decoherence and
dephasing occur. In Fig. 5.9 the distribution of sin(φ) is shown (dotted line) for
1.1 ms, the longest experimentally realized evolution time. Dephasing is not significant
in this case, as the highest values are about 0.6, corresponding to a phase of π/5.
However, for 6Li decoherence is relevant due to the strong inter-species interaction
and high overlap. Employing the decoherence model Eq. (5.61) we see that especially
large phases, corresponding to high sodium densities, are greatly reduced (see black
line) and their mean value is roughly halved compared to the scenario without
decoherence. On the right side, the time evolution of the effective frequency shift is
depicted. It can be approximated by a monoexponential decay based on the effective

88



5.5 Signal Constitution for a Sample of Many Impurities

sin(2πν t)
0 0.2 0.4 0.6

re
la

ti
v
e 

am
p
li

tu
d
e

0

0.005

0.01

0.015

0.02

t = 30 cycles
≈ 1.1 ms

w/o decoherence

w/   decoherence

time [ms]

0 0.2 0.4 0.6 0.8 1

∆
 ν

ef
f [

H
z]

10

15

20

25

30

full model

appr. dec.

Figure 5.9: Time evolution of the signal value for a 6Li cloud. On the left the impact
of decoherence on the signal distribution is shown. The corresponding
mean values are depicted as vertical bars. On the right the time evolution
of the effective frequency shift is depicted (line). It is approximated by a
simple exponential model (dash dotted line, Eq. (5.67)).

sodium density for immersed lithium atoms:

n̄imNa =

∫
BEC nLi(~r)nNa(~r)dV∫

BEC nLi(~r)dV
=

∫
BEC nLi(~r)nNa(~r)dV

ηimNLi
, (5.66)

∆νeff(t) = ∆νeff(t = 0) · exp(−Γimt), (5.67)

where Γim can be calculated from n̄imNa by Eq. (5.61). The origin of the mismatch
lies in the structure of the spectrum. We can see in Fig. 5.10 that this decoherence
approach fits the amplitude decay much better (dash-dotted line in the left panel).
But in the description of the time evolution of the amplitude we encounter the
problem of this static model: Due to its lack of lithium motion only atoms inside the
BEC decay on a short timescale. Half of the lithium atoms are outside the BEC,
interacting with the low thermal sodium density and hence exhibiting an extremely
slow collision rate. The signature of this situation is a clear bimodal decay that is not
observed in the experiment. Nevertheless no lithium motion is included here as the
short time behavior is well captured. For long times the static model underestimates
the frequency and overestimates the amplitude. In Eq. (3.38) an effective density
n̄Na averaging over the whole cloud is introduced:

n̄Na =

∫
nLi(~r)nNa(~r)dV∫

nLi(~r)dV
=

∫
BEC nLi(~r)nNa(~r)dV

NLi
. (5.68)
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Figure 5.10: Time evolution of the signal amplitude for a 6Li cloud (left). The
amplitude of the introduced model (Eq. (5.63), line) is approximated by
Eq. (5.70) (dash dotted line) and Eq. (5.69) (dashed line). On the right,
10 signal values at 1.1 ms are calculated by use of Eq. (5.62) (circles).
As dephasing is negligible, the model Eq. (5.65) captures the fringe
well, revealing a insignificant difference between the calculated function
(dashed line) to the fit (line). In the experiment this fringe has to be
compared to the free evolution (dotted line).

It enables us to describe the amplitude time evolution of the whole cloud as a
monoexponential decay:

A(t) = A(t = 0) · exp(−Γt), (5.69)

where again Γ can be calculated from n̄Na by Eq. (5.61). This approach has been used
in [48] and is plotted as a dashed line. Although its decay constant is smaller (lower
effective density) than the two section model, the absolute decay itself is quicker, as
it drops to zero and does not just affect the immersed lithium part. The dash dotted
line describes the situation where the amplitude of the immersed lithium atoms ηim
decays at Γim, the part outside the BEC does not decay at all:

A(t) = A(t = 0)
(
ηim exp(Γimt) + (1− ηim)

)
. (5.70)

It approaches the full model, but exhibits an obvious discrepancy for long times.
As a last step we test the validity of the model derived in the beginning of this
section. It is susceptible to dephasing and has to be used carefully. Therefore an
exemplary fringe at the longest experimentally employed evolution time of 1.1 ms is
displayed on the right panel of Fig. 5.10. The calculated values can be well described
by a sine function. The fit reveals no significant difference to the plotted function
based on Eq. (5.65) and Eq. (5.64). The ideal fringe obtained after a free evolution
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is plotted as a dotted line. The experimental challenge is to differentiate between
the vertical bars (line and dotted). As for 6Li the background modulation effect is
dominant, the experimentally measured phase shifts between the fringes are larger,
but only a small part is due to the phononic coupling. The plotted and discussed
situation neglects the sodium BEC modulation by the lattice, its wavelength is set
to lithium resonance.
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Figure 5.11: The 7Li BEC probes only the surface of the sodium BEC. The left panel
shows a histogram of the probed sodium BEC healing length. Taking
n2DLi, BEC into account it translates into a broad distribution of frequency
shifts. In the right panel the peak at ν0 = 27 kHz is cut off for better
visualization. Mean values are indicated by vertical bars.

The probed sodium BEC healing length ξ and corresponding frequency distributions
for 7Li differ from the ones for fermions. As explained in the previous sections only
the condensed impurities contribute to the frequency shift. Therefore, the left panel
of Fig. 5.11 displays the sodium BEC a/ξ values, which are probed by the condensed
impurities. The sodium BEC itself is almost the same as in the fermionic case, so
values of up to a/ξ = 1.22 are realized. Due to interspecies repulsion the highest
probed values are 0.85. Still, when converting the probed sodium and lithium density
into frequencies, values about twice as high as in case of 6Li are realized. The reason
is the bosonic enhancement. Again most of the atoms (66 %) contribute to ν0. Here
the reason is twofold: the condensate fraction is ηCF = 0.57 and the immersion of
the BEC is 0.6. A broad spectrum promotes dephasing, as the time evolution differs
strongly.

In Fig. 5.12 the time evolution for the bosonic impurity case is studied. At the
longest experimentally employed evolution time of 1.1 ms the distribution of sin(φ)
stretches almost up to 1, corresponding to a phase difference of π/2 between the
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Figure 5.12: Time evolution of the signal for a 7Li cloud. The values of sin(φ) ap-
proach unity for long evolution times. Therefore dephasing becomes im-
portant. In the lower left panel 10 points are calculated using Eq. (5.62).
Their fit differs from a modeled function using Eq. (5.63) as the ampli-
tude is not captured correctly in case of dephasing. This is highlighted
by the lower right panel, where the analytic expression (line) and its
approximation Eq. (5.70) (dash dotted line) deviate from the fitted
amplitudes (dotted line). As the amplitude is important for the fre-
quency derivation if the phase is derived from a function value except
zero, in the upper right graph the calculated values (Eq. (5.65), line)
contradict the frequencies derived using the fitted amplitude (dashed
line). They agree with the phase of the fit to the sine fringe (circle). For
a comparison to the effect of decoherence the prediction of Eq. (5.67) is
depicted (dotted line).

atoms experiencing the strongest shift and the atoms outside the sodium BEC.
Because of the sinusoidal dependence the phase distribution corresponding to high
frequencies is compressed compared to the spectrum in Fig. 5.11. The fringe at
1.1 ms evolution time (lower left) illustrates the failure of the model due to dephasing.
Decoherence is low due to the small interaction (Γ ∝ a2

IB) and the low sodium BEC
density probed. The model (dashed line) takes only decoherence into account and
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overestimates the accurate amplitude values (circles). The zero of the fringe is correct,
but the effective frequency is calculated from the absolute value at the former zero
(here 30 cycles). This works out only if the correct fringe amplitude is considered. If
this is not the case, the energy shift is underestimated (black line upper right). If the
amplitude is determined by a fit, proper values can be derived (dashed line). The
effective frequency derived from the fringe fit is depicted as a circle. The dotted line
indicates the time evolution of the shift assuming only decoherence (see Eq. (5.67)).
On the lower right panel amplitudes calculated by Eq. (5.63) and Eq. (5.70) are
plotted as well as the fitted values. The discrepancy is easily visible. In conclusion,
for large phases the fringe has to be calculated at several points and fitted.

The model can be extended to include the sodium BEC modulation by the lattice
(see section 5.4). Every lithium atom inside the BEC gets an additional ∆ωlatt.
For bosonic impurities the fraction experiencing δlatt is different to the portion
experiencing the self-energy shift as all lithium atoms within the sodium BEC see
a potential modification due to the sodium BEC modulation by the lattice, but
only condensed lithium atoms within the sodium BEC are considered to distort
the sodium BEC efficiently. In sum, high effective frequency shifts with noticeable
dephasing are obtained for fermionic as well as bosonic impurities. Hence for the
theoretical predictions in section 6.3 both scenarios are analyzed by fitting of the
calculated fringes, which we have found to be robust against dephasing effects.
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In this chapter we present our Ramsey type spectroscopy measurements of lithium
impurities immersed into a sodium BEC. First the data representation is explained.
Next measurements on fermionic and subsequently on bosonic impurities are shown.
These experimental results are compared to theoretical expectations.

The Ramsey sequence determines the gap between the two lowest external states of
the lattice (trapping frequency ω0). The background-induced gap modification (∆ω)
is isolated by performing the pulse sequence with and without sodium BEC. The
two obtained fringes exhibit a phase difference of φ. It is handy to characterize the
change of the energy gap by the dimensionless quantity (see Eq. (4.2)):

δ =
∆ω

ω0

=
φ

2π ·#cycles
, (6.1)

where the number of cycles refers to the periods of the harmonic oscillator (ω0) for
the whole duration of the Ramsey scheme, including the pulses. More information
on the experimental technique can be found in subsection 4.4.2.
We identified two different mechanisms how the background modifies the impurity
potential: off-resonant modulation of the sodium BEC through the lattice and the
self-energy shift (see chapter 5). We extract the self-energy shift by interpolating
to a resonant lattice for lithium, corresponding to no sodium BEC modulation. In
Eq. (5.56) the lattice effect is given to be proportional to the ratio VB/VI. This
ratio is, besides some constants, solely determined by the wavelength creating the
potential. Therefore the most obvious way of analyzing the data is to plot δ over
the lattice wavelength. Due to experimental necessities (consistent band structure
for Li) we have to keep the potential height for lithium constant. In order to scan
VB/VI we employ red and blue detuned lattices with a detuning of about ±0.5 nm
and ±1 nm, respectively. To adapt the lithium potential, we adjust the lattice light
intensity to 0.7 V and 1.4 V respectively on the controlling photo diode (power of
44 mW V−1 per beam). Thereby the absolute value of VI is kept constant and VB
and the relative sign is scanned. In first approximation VB is proportional to the
light intensity, as the detuning is large. The ratio VB/VI has been calculated from
the employed wave length and atomic properties, see Eq. (3.1).
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6.1 Fermionic Impurities

For fermions, the dominant background-induced effect is via the sodium BEC modu-
lation through the lattice. Therefore we first show the dependence of the relative
frequency changes δ on the evolution time and the lattice potential ratio VB/VI (see
Fig. 6.1). Further, the absolute fringe amplitudes are depicted as they contain infor-
mation about decoherence and dephasing. As asymmetric Ramsey pulses (6= π/2)
influence the amplitudes as well, these scans (see Fig. 6.4) are excluded from the
plots containing absolute amplitudes. As we will see later (Fig. 6.3), the lithium
atom number for these plots has to be post-selected. The median lithium atom
number of the plotted scans is between 4 · 103 and 11 · 103. Time is given in multiples
of the oscillation period, the lattice frequency is about 27 kHz, corresponding to a
time scale of 37 µs.

In the lowest row of Fig. 6.4 the offset and slope of the linear fits to the four datasets
are plotted. The error bars correspond to the 68 % confidence level. Analyzing the
δ-values over time we cannot retrieve a distinct time evolution. The data shows high
uncertainties and at the last time step dephasing gets important (see next paragraph).
If any time evolution of δ can be conjectured, the tendency hints at a decrease in
time. To our knowledge there are no time-dependent effects, but decoherence affects
only the immersed part and therefore causes a time-dependent total δ value. Thus,
these results are in agreement with the assumption that we are studying a constant
frequency shift due to the background interaction. Therefore it is natural to merge
all data taken at different times and to benefit from the reduced uncertainty due to
a higher number of measurements.

The highest possible fringe amplitude is 0.5, see Eq. (5.57). In our setup we typically
reach 0.3 to 0.4, see subsection 4.4.1 for more information. The marker showing
the amplitude values are slightly displaced for presentation. For short times the
amplitudes with (AwB) and without (AnB) background are very similar. For longer
times, the decoherence gets stronger, but even the amplitude without background is
reduced due to dephasing of different lattice sites.
The values at high potential ratios decrease more than the center ones due to the
background interaction. This can be understood by a second dephasing mechanism:
differentiating between immersed lithium atoms and atoms outside the sodium BEC,
we get large phase differences for long times. Here (at 30 cycles and VB/VI = ±0.012)
the total value is φ = 0.2 π. Assuming a typical immersion of ηim = 0.4, the phase
difference of immersed to unaffected atoms is 0.2/0.4 π = 0.5 π. At π the amplitude
would be decreased to 0.2 times the initial value and the observed phase would be
zero. Hence at 30 cycles and strong sodium modulation this dephasing mechanism
gets important, visible by an amplitude reduction with background.

96



6.1 Fermionic Impurities

V
B

 / V
I

-0.01 -0.005 0 0.005 0.01

δ
 [

%
] 

| a
m

p
li

tu
d

e

-0.4

-0.2

0

0.2

0.4

12 cycles

V
B

 / V
I

-0.01 -0.005 0 0.005 0.01

δ
 [

%
] 

| a
m

p
li

tu
d

e

-0.4

-0.2

0

0.2

0.4

15 cycles

δ

A
nB

A
wB

V
B

 / V
I

-0.01 -0.005 0 0.005 0.01

δ
 [

%
] 

| a
m

p
li

tu
d

e

-0.4

-0.2

0

0.2

0.4

20 cycles

V
B

 / V
I

-0.01 -0.005 0 0.005 0.01

δ
 [

%
] 

| a
m

p
li

tu
d

e

-0.4

-0.2

0

0.2

0.4

30 cycles

time [cycles]

10 15 20 25 30

δ

×10
-4

-5

0

5

10

15
offset

time [cycles]

10 15 20 25 30

δ
/(

V
B

/V
I)

0.15

0.2

0.25

0.3

0.35
slope

Figure 6.1: Time evolution of background-induced effects for 6Li atoms. The upper
four plots depict δ (diamond) along with a linear fit and the amplitudes
of the fringes over time as a function of VB/VI. The fringe amplitude
without background AnB is depicted by a circle, with background AwB by
a triangle. The lower part summarizes the linear fits. The red pentagram
is a fit to all above shown data points at once, the green star includes
even more data points with an unbalanced excitation.

Another interesting aspect is the difference between red and blue detuning regarding
the overlap. At positive potential ratios the decoherence seems to be stronger than
at negative ones. At large VB/VI the lattice is at λ ≈ 672 nm and thus is red detuned
for both, sodium and lithium. The sodium modulation is rather strong and the
effective density is about 50 % higher than at λ = 670 nm (see Fig. 3.9). The stronger
decoherence decreases the observed total δ value, as the unaffected part does not
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6 Spectroscopy of Impurities in a BEC

undergo decoherence. This might contribute to the surprisingly small δ-value at 30
cycles and U = 1.44 V.
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Figure 6.2: Summary of the background-induced energy shift δ for fermions (left).
Outer lines indicate the 1-σ trust region of the fit. On the right hand
side the corresponding relevant experimental parameters are displayed.
NNa and NLi describe the atom numbers, the detuning of the lattice
for lithium is denoted by ∆, UPD is the voltage of the light intensity
controlling photo diode, ν = ω0/2π is the trapping frequency and the
bottom-right graph is a relative measure for the resonance condition (see
Fig. 4.3).

To reduce the statistical uncertainties, in Fig. 6.2 all 6Li scans at adequate atom
number (median between 4 · 103 and 11 · 103) are combined, including scans at
asymmetric excitation, as we do not observe any imbalance dependence for fermions
(see Fig. 6.4). The weighted means of the δ values are plotted over the lattice
potential ratio VB/VI which is about 1 %. The data points show a linear behavior
which is fitted. The fit line displays a clear offset at the resonance condition for
lithium. This offset corresponds to an energy shift of ∆E/~ = 2π · (18± 3)Hz. Here
the uncertainty corresponds to the 1-σ trust region of the fit. For completeness the
right side displays important experimental parameters. The mean values of all scans
are plotted as a horizontal line. The atom numbers (NNa, NLi) do not show any
relevant trend which certifies that the effect is not due to unwanted fluctuations. The
sodium atom numbers are underestimated by a factor of 1.6 due to in-situ imaging.
The lattice detuning to lithium resonance is labeled ∆, the controlling photo diode
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Figure 6.3: Dependence of δ (stars) and fringe amplitudes on the 6Li atom number.
The amplitude without BEC (AnB) is denoted by triangles, in case of a
BEC (AwB) by circles. Displayed scans have symmetric Ramsey pulses, 20
cycles of total evolution time and UPD = 1.4 V. For small atom numbers
a good overlap is revealed by large δ values and stronger decoherence in
the presence of sodium background.

voltage UPD. The trapping frequency is indicated by ν = ω0/2π. The lower right
side depicts a measure how resonant the lithium lattice is (see Fig. 4.3).

In the last two plots only measurements for a certain range of lithium atom numbers
were displayed. In Fig. 6.3 we can see why this is necessary. Both background-induced
effects depend on the overlap. As we have not performed systematic scans of VB/VI
for several lithium atom numbers, we cannot differentiate between the two effects
and therefore the displayed data is without correction for lattice modulation of the
BEC. The measured sodium atom number is decreased from 1.4 · 106 to 0.9 · 106 with
rising lithium atom number. For vanishing lithium atom numbers, the measurement
uncertainty increases strongly, but the values for δ and the overlap are very high.
This can be seen on the ratio of amplitudes on the right of Fig. 6.3, showing strong
decoherence. Larger 6Li atom numbers result in smaller values for δ, as less lithium
atoms are in contact with the sodium BEC. Furthermore larger lithium clouds occupy
many lattice sites, which causes dephasing due to varying lattice depths at different
lattice sites. This reduces the amplitude values AnB. The amplitude AwB remains
almost constant, as the amplitude reduction by dephasing is compensated for by
diminished decoherence due to reduced overlap.

Our last systematic study for fermions examines the dependence of δ on the population
of states during the free evolution time. We varied the number of excitation cycles of
the first Ramsey pulse to prepare an imbalanced superposition of ground and excited
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Figure 6.4: Dependence of δ on the excited fraction ηex during free evolution for
6Li. No trend is observable. On the right the corresponding amplitude
values are depicted. the case without BEC (AnB) is depicted by triangles,
the amplitude for scans with BEC (AwB) by circles. The amplitudes are
reduced for strong imbalances. As for the delta values the uncertainty
weighted mean of the fits is calculated for the amplitudes.

state. The second pulse always consists of 5 cycles (=̂π/2). The number of cycles is
converted into a fraction of excited atoms ηex by the Rabi fringe in subsection 4.4.1.
Fig. 6.4 displays the results. These scans are performed at UPD = 1.4 V and have
not been corrected for the lattice effect, so raw measurement data is shown. The
median lithium atom number of the displayed scans is between 4 · 103 and 11 · 103.
Within the uncertainties no systematic trend with the excited fraction is visible. In
the right panel the amplitudes are plotted. Obviously the fringe contrast is reduced
in asymmetric pulse schemes.

6.2 Bosonic Impurities

We studied bosonic lithium in two typical scenarios, condensed and thermal. Bose-
Einstein condensation in this species is experimentally controlled by the lithium atom
number and temperature (see section 2.6). The corresponding density distributions
are described in subsection 3.3.4. As highlighted in chapter 5, thermal bosonic
impurities show a similar behavior to 6Li, but have different atomic properties. The
main distinction is the repulsive and weaker interaction between sodium and 7Li. It
results in negligible decoherence on the time scales of our experiments.
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Figure 6.5: Summary of results for thermal 7Li. On the left δ values for different
VB/VI are plotted over the atom number, showing no dependence until
condensation sets in, displayed by a yellow vertical line. In the right
panel only the scans with median atom number below 3 · 104 atoms are
plotted, for which the lithium atoms are still thermal. The δ values of
these thermal scans are depicted in dependence of the ratio VB/VI.

All experiments with bosonic impurities are performed with a total duration of
1.1 ms. In Fig. 6.5 all measurement values for the thermal 7Li scenario are depicted.
On the left side the relative background-induced frequency change δ is plotted over
the lithium atom number. The scans were performed at different values of VB/VI,
which are indicated by the different colors (see right panel). For λ = 670.485 nm
(orange triangles) measurements at many atom numbers have been performed. For
small lithium atom numbers the uncertainty increases due to the reduced absorption
signal. For larger atom numbers the δ values increase, as Bose-Einstein condensation
of 7Li sets in. Therefore, for the study of the potential effect on the right only
measurement data with scans below 3 · 104 atoms are shown. As for the fermionic
case we get a linear dependence with a rather large uncertainty of data points. The
slope of the fit can be used to correct for the potential effect. The δ over N plot with
subtracted potential effect is shown in Fig. 6.6. This figure includes the amplitudes
as well. The potential effect is compared to the condensed case in Fig. 6.7.

In the condensed case we observe a strong dependence on the sodium BEC modulation
by the lattice and the lithium atom number. In order to study these effects separately,
the δ values have to be corrected for these parameters. This cannot be done
independently, as there is no dataset scanning only one of the parameters. Therefore
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Figure 6.6: Dependence of δ on the atom number. For the scenario called thermal
(circles), values increase due to condensation when reaching lithium atom
numbers of more than 3 · 104. Condensed impurities (stars) show a linear
behavior over the whole experimentally tested range. On the right the
fringe amplitudes are depicted where the index nB denotes no background
and wB with background.

the linear fitting of the atom number and for VB/VI is done iteratively. First the δ/N
dataset is fitted linearly. It allows the scaling of δ for every data point to 34 · 103

lithium atoms. These values are then plotted over VB/VI and fitted linearly as well. In
a next step the δ values at lithium resonance (UPD = 0) can be calculated. They are
plotted over the lithium atom number and fitted. The procedure quickly converges.
In the next three plots the data for condensed impurities has been corrected like
this.

In Fig. 6.6 all population balanced scans for 7Li are shown. The data points are
interpolated to lithium resonance. Over the range of lithium atom numbers δ for
the condensed case behaves strictly linear. It is not a line through the origin as
condensation sets in above a certain atom number. For 7Li solely condensed atoms
exhibit a considerable non-zero δ. In the blue scenario, where the high field hybrid
trap has been deployed, the fit line crosses the x-axis at 104 atoms, where the
formation of a BEC starts. In the red setup, without the high field hybrid trap
and therefore much higher sample temperature, δ values get significantly positive at
about 3 · 104 lithium atoms.
The study of the amplitudes on the right is very insightful. For small atom numbers
the thermal samples reveal no decoherence, as the fringe amplitude with and without
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6.2 Bosonic Impurities

sodium background is the same. For increasing atom number the amplitude tends
to get larger, as condensation results in smaller clouds and the occupation of less
lattice sites. The occupation of few lattice sites reduces dephasing, as every lattice
site has a slightly different depth. For the condensed data a difference between
with and without sodium BEC is increasing with NLi but should not be attributed
to decoherence. The maximum amplitude (for small NLi) is very high, as only a
few lattice sites are populated. With increasing Lithium atom number the energy
difference increases as well. This is only true for lithium atoms immersed into the
sodium BEC. Parts of the lithium cloud do not probe the BEC and do not accumulate
a different phase than the one by the trap (ω0). This is another reason for dephasing,
causing the fringe amplitude in case of background to shrink. There are two types of
dephasing, one due to inhomogeneity of the standing light wave intensity and one due
to inhomogeneity of the sodium BEC density which is probed by the lithium atoms.
No decoherence can be measured and is expected due to the small intra-species
interaction.
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Figure 6.7: The lattice potential effect for bosons. Condensed impurities (blue) are
compared to thermal ones (red). Bothe are linearly fitted and the 68 %
confidence area is plotted as well. No shift at lithium resonance can be
extrapolated in the thermal case but a strong one in case of condensation.
On the right experimental parameters are summarized, see Fig. 6.2 for a
description of the parameters.

Fig. 6.7 allows the determination of the self-energy for bosonic impurities. The
condensed δ values are interpolated to 34 · 103 lithium atoms. The thermal lithium

103



6 Spectroscopy of Impurities in a BEC

sample does not exhibit an energy shift, in accordance with the theoretical expec-
tations. The condensed cloud shows an energy shift of ∆E/~ = 2π · (107 ± 2)Hz.
All plotted and mentioned uncertainties correspond to 1-σ confidence intervals. The
slope of the fit in the condensed case is reduced compared to the thermal one, as a
BEC can evade the repulsive sodium BEC more easily when the overlap is changed
due to potential changes. On the right side experimental parameters are shown, mean
values are given as horizontal lines. The same reasoning as given in the previous
paragraph is valid for the explanation of the fringe amplitudes. Several types of
dephasing occur.

Fig. 6.8 shows agreement with theory, depending only weakly on the difficult to calcu-
late overlap (see Fig. 5.6). We expect ground and excited state to shift proportional
to their population. In our parameter regime the population of the ground state
causes a negligible energy shift of the excited state and vice versa, see section 5.2 for
details. Due to the higher density of the ground state, its shift is stronger. This can
be compensated by a higher population in the excited state, leading to no effective
energy shift. The corresponding experimental data is shown in Fig. 6.8. All δ values
are interpolated to NLi = 34 · 103 and VB/VI = 0. In theory a linear dependence of
the energy shift on the population of states is expected and at 85 % of the impurity
atoms in the excited state the shifts of ground and excited state cancel out. The
challenge is to map our experiment onto this two-level theory. The reason is twofold:
a part of the atoms in highly occupied states are attributed to other states due to
detection noise. Another reason is that in the experiment we cannot completely
neglect the 3rd band. The potential is rather harmonic and the coupling strength
is quite high. Therefore the 3rd band gets populated. This is shown in the lower
left panel of the figure. At the point of highest excitation into the 2nd band 11 % of
atoms are detected in the 3rd band and 14 % of the atoms are assigned to the 1st
band, see subsection 4.4.1 for more information. In order to account for this problem,
on the right panel the same data is plotted, but the fraction of excited atoms ηex
is renormalized to ηex = η2/(η1 + η2) (see lower right panel). This shifts the data
point of highest excitation from ηex = 0.69 to ηex = 0.76. The deployed number of
excitation cycles are encircled in blue. The light red line is a linear fit to the data
points and the dark red dashed line is a fit with the theoretically expected x-axis
crossing at ηex = 0.85. The free fit crosses the x-axis at 0.81± 0.07 (red bar) giving
good agreement with theory.
The cross interaction between the population of states is negligible, implying that a
population of one state does not influence the other one. Thus, we can deduce the en-
ergy shift of the ground state for 34 ·103 7Li atoms to be ∆E0/~ = 2π · (−230±10)Hz
and the excited state shift to be ∆E1/~ = 2π · (−53±30)Hz, both plotted as red bars.
The fact that the ground state shifts more than four times stronger than the excited
state emphasizes the problem of the population assignment: In a two level system
atoms that are not in the excited state are in the ground state and are expected to
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Figure 6.8: Effect of population imbalance during free evolution on the measured
energy shift. On the left side the lithium population is distributed on
three trap levels like we detect it in our experiment. Theory considers two
levels only, therefore on the right the plot is repeated with a renormalized
excited fraction ηex. The underlying calibration Rabi cycles are plotted
below the panels, experimentally employed pulses are encircled. In both
cases the measured δ values (stars) are fitted linearly (line) and by a line
with a fixed zero predicted from theory (dashed). The 68 % confidence
interval of the free fit at ηex = 0 and 1 is depicted by a red bar as well as
the zero of the fit line. In the center the measured fringe amplitudes are
plotted with (AwB) and without (AnB) background.

cause a strong shift. But the atoms are in the 3rd band yielding a negligible shift.
This is why the renormalization to a two level system is justified and necessary.
In the central lower part the fringe amplitudes as a function of ηex are shown. Again
we see that without background we have high fringe amplitudes and for strong
energy shifts the amplitudes with background are reduced. A new characteristic
appears here: for high ηex the amplitude is small even without background. This
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6 Spectroscopy of Impurities in a BEC

feature is caused by Li-Li scattering from the 2nd band to the 1st and 3rd bands,
see subsection 4.5.2.

6.3 Comparison of Experiment to Theory

Our theoretical considerations are based on the calculated overlap of the clouds and
treat two different aspects: the self-energy shift due to phononic coupling and the
energy shift due to density modulation of the sodium BEC by the lattice. Both rely
on the density calculation but in the δ over VB/VI plot they can be separated. At
the crossing of the y-axis only the self-energy contribution is present. In Fig. 6.9
experimental data and theory for the scan of VB/VI and the dependence on the 6Li
atom number are depicted. For the left panel the median atom number of the plotted
scans ranges from 4 · 103 to 11 · 103, the calculations are based on the mean number,
7400. The calculated values (stars) bend at high potential ratios. The reason are the
large phase values that are calculated, which result in small net values due to the
sinusoidal behavior. The cause of the large phase values is an overestimation of the
lattice effect. It is based on the Thomas-Fermi approximation and can only be precise
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Figure 6.9: Comparison of experimental data to theory for 6Li. In the left panel the
lattice wavelength is scanned, plotted as the ratio of potentials. Measured
data is plotted as circles, calculated values as stars. In the right panel
the 6Li atom number is scanned, strongly changing the overlap. Here
theory is depicted by a line.
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when ξ < a. As discussed thoroughly in Fig. 5.8 this is not everywhere the case in
our system. The dashed line is a fit to the calculated points at |VB/VI| = 0.005. This
fit nicely intersects at the calculated value for vanishing BEC potential. This gives
the confirmation that for moderate phase values a deduction of the pure self-energy
shift can be done from the values that are dominated by the lattice modulation.
The slope of the dashed line surpasses the slope of the fit to experimental data
by a factor of 2.4. The self-energy shift which is the intersection of the y-axis is
met very well. It does not rely on the Thomas-Fermi approximation but takes the
calculated ξ values into account. In summary, for fermions the overlap calculation
seems reasonable and results in a good self-energy estimation, but the lattice effect
is strongly overestimated.
This poses a challenge for further analyses. We want to see if the behavior in
dependence of the impurity atom number is described well. But for fermionic
impurities the lattice effect is dominant. In the right panel a calculated line and
measured points are plotted. Here the potential ratio is VB/VI = 0.011, so it refers
to the data point at the far right of the left panel. The evolution times for the
two plots are slightly different, leading to a difference from the theoretical value
on the left to the function value at 7400 atoms on the right. The lattice effect is
proportional to ηim which is the geometrical overlap of the clouds. The trend of the
data points is reproduced well, but one has to keep in mind that the small mismatch
is due to the bending of the sine function for large phase values, see the left panel at
|VB/VI| = 0.012. The increased uncertainty of the data points at small atom numbers
might not just be due to detection issues, but have its root as well in the steep slope
of δ at fluctuating lithium atom numbers. The criticality of the prediction clearly
shows, why lithium atom numbers have to be postselected. The strong increase of
δ in this graph gives an impression of the impurity-BEC interaction that can be
reached in case of good geometrical matching of the clouds.

In case of 7Li the self-energy becomes more important, at least for the condensed case.
In Fig. 6.10 the corresponding comparison of calculated to measured data is shown.
Again we study the values as a function of VB/VI to differentiate between phononic
effects and the density modulation of the sodium BEC by the far detuned lattice.
For the bosonic impurity we distinguish two scenarios at different temperatures and
call them condensed and thermal, whereby at high enough densities (atom numbers)
condensation sets in even in the thermal case. On the left the assumed atom number
for the condensed study is 34 · 103, for the thermal one it is 13 · 103. The condensed
setting is plotted in blue and the calculated values (stars) are fitted like described
for 6Li (dashed line). Again the slope of the dashed line is twice as high as the slope
of the fit to measurement data. But this time the self-energy shift is underestimated
by a factor of three. This will become even more pronounced in the right panel.
The thermal scenario is well described by theory. For the self-energy (the y-axis
intersection) this is clear, as we do not have BEC formation, leading to no substantial
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Figure 6.10: Comparison of experimental data to calculated values for 7Li. Two
scenarios at different temperatures are depicted (red and blue) and
named condensed and thermal. On the left calculations are depicted as
stars and fitted linearly (dashed line), on the right they are shown as
dashed lines. Another calculation approach is plotted as dash dotted
line.

shift. But the fit to the calculated data lies close to the fit to experimental values.
As argued before, we expect the simple calculation to overestimate the lattice effect
and therefore to exceed the experimental values. This indicates a mismatch. As
δlatt ∝ ηim it is reasonable to assume that the geometrical matching of thermal cloud
and sodium BEC ηim is underestimated by a factor of two, e. g. due to an incorrect
temperature.

In the right panel the dependence on the atom number is studied. Here the lattice
effect is subtracted, assuming it is similar for all impurity atom numbers. Calculated
values are displayed as lines. The values represented by the dashed line are based
on calculations that slice the lithium density in the optical dipole trap according
to the lattice spacing and assigns the corresponding lithium atom numbers to the
lattice sites, where the final density is calculated assuming a 2D situation. For
the calculation of the dash-dotted line the lithium atoms are distributed over the
trap assuming one overall chemical potential. Again the final density is calculated
separately for each lattice site in 2D. See Fig. 3.7 for more information on the two
techniques. The onset of condensation varies with the calculation approach, but
the values at the atom numbers we are especially interested in are similar. There is
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a large gap between theory and measurement showing that the self-energy shift is
underestimated.
For the y-axis intersection in the left panel an error estimation can been performed.
The most critical and unknown parameters are the atom numbers and the temper-
ature. Increasing the sodium and lithium atom number by 20 % and reducing the
temperature by 50 nK to 300 nK results in an absolute δ value of 61 Hz, roughly half
of the measured 107 Hz. So in order to explain the mismatch for 7Li a systematical
error of the calculations or an incorrect parameter needs to be found. Further the
backaction of lithium onto sodium has been neglected which in case of condensed
7Li might be wrong as the lithium density gets very high. Still, in a naive picture
taking the backaction into account reduces the overlap, as the interaction is repulsive.
The mismatch of the theoretical description might be due to the failure of the
Thomas-Fermi approximation. Furthermore it is an open question, if the relevant
effects of two interacting BECs can be straightforward captured by the Fröhlich
Hamiltonian.
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7 Conclusion and Outlook

In this thesis some aspects of the Fröhlich Hamiltonian and its implementation in
a mixture of ultracold atomic gases have been discussed. The observed increase of
the energy level splitting is a clear signal of the Lamb shift, as it contradicts the
expectation based on an increased effective mass.
The validity of a description of an impurity atom immersed into a BEC by the Fröhlich
Hamiltonian relies on the description of the BEC via the Bogoliubov transformation.
This transformation is based on a macroscopic occupation of the ground state. Strong
interaction or high temperature reduce this number. In our experiment the sodium
BEC is well suited for a description via the Bogoliubov theory. A further prerequisite
for the mapping of the Fröhlich Hamiltonian onto the impurity-BEC scenario is a
sufficiently small interspecies interaction strength [29]. The sodium-lithium interac-
tion in our setup is sufficiently weak for both lithium isotopes. The impurity density
should be low, as impurity-impurity interaction via the phonons is neglected in this
description. The theory for 6Li presented in section 5.2 takes the trap geometry
and the Pauli blocking into account. For fermions the possibilities of scattering is
reduced by occupied states. We discuss a single atom effect influenced by quantum
statistics of the system. Still it is no polaron-polaron interaction, as the fermions
do not interact via phonons. The low 6Li density and the quantitative agreement
between theory and measurements indicate that polaron-polaron interaction is not
vital for the description in our experiment. Furthermore it is a process of higher
order, having a marginal effect on the absolute value. In the case of condensed 7Li,
the atomic density is high. As these atoms are described by a single wave function,
they can only interact with the 7Li BEC at the next lattice site, which is relatively
far away. In summary all constraints for the description of our experiments by the
Fröhlich Hamiltonian are fulfilled.
In case of high impurity densities (condensed 7Li), the Gross–Pitaevskii equation is a
trustable theory as well and delivers analogous results. Still it is less controlled from
a theoretical point of view. The Feynman diagrams attributed to the Fröhlich Hamil-
tonian are well understood, whereas they are unidentified for the Gross-Pitaevskii
approach. For 6Li the significance of the Gross–Pitaevskii result has to be questioned
due to the low atomic density.// In contrast to the good agreement between exper-
iment and theory for fermionic impurities, bosonic impurities show a much larger
energy shift due to phononic coupling (≈ 3 times) than predicted. Several causes
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for this mismatch are possible. The density calculation is difficult due to the strong
variations resulting from the 7Li condensation. Further, the impact of the lithium
density onto the sodium cloud is neglected, which might affect the results due to
the much higher densities for the bosonic species. Moreover, the potential of the
optical dipole trap can deviate from the assumption of a three dimensional harmonic
oscillator. In addition the partial immersion of the 7Li BEC into the sodium BEC
weakens the application of a homogeneous theory. A derivation of the corresponding
results from the Fröhlich Hamiltonian for an inhomogeneous and finite BEC could
clarify this question.
The second background-induced effect arises from the modulation of the sodium
BEC by the lattice, which is captured within a Thomas-Fermi approximation in our
description, overestimating the result. Better agreement of this trivial effect can
be achieved by a numerical solution of the Gross-Pitaevskii equation for the whole
system.
The measurements of the energy level spacing via Ramsey sequences are based
on superpositions of the corresponding states. These are subject to decoherence,
which causes a quickly decreasing contrast of the signal. An increase in interspecies
interaction increases decoherence as well. The energy shift amplification by a con-
densed impurity is a fine workaround. Nevertheless, the strong coupling limit is in
principle experimentally accessible and provoking as theory still does not deliver
unique predictions. In our setup tuning of scattering lengths via Feshbach resonances
has proven to cause strong losses, but some atomic mixtures exhibit less losses and
have higher background scattering lengths. Another line of interest might be the
possibility of observing a signature of polaron-polaron interaction [94, 95].
For the future a change of the geometry of the setup is promising. Experiments with
homogeneous BECs have been reported [96, 97]. Such a realization obviates the need
for complex density calculations and allows for direct comparison of experiments to
theory. In the context of a finite but homogeneous BEC the controlled motion of an
impurity atom is intriguing and can reveal dynamical effects [98], but experiments
with a lattice of the type we already use have been proposed as well [31]. In both
cases a good imaging resolution is necessary, as minute effects are expected in our
atomic mixture.
In addition a reduction of the background dimension increases the probability of
reabsorption of an emitted phonon. Thereby superradiance can be caused in a chain
of impurity atoms in the excited state of the lattice. The resonance condition that
has to be fulfilled is the matching of the phonon wavelength that is emitted when an
impurity decays into the ground state to the distance of the lattice sites. In a next
step the complexity of the system can be enhanced by a chiral bath [99].
An inspirational aim is the observation of the famous Casimir effect [100]. In its
original version it describes a force attracting two parallel electrically conducting
plates due to vacuum fluctuations. Its translation into ultracold atomic systems has
been proposed for one-dimensional systems [101].
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