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(A) Cortical activity adapts to build a Bayes-optimal model of the stimulus space [1]. (B) Neural sampling: abstract model [2] vs. LIF neurons. (C) Dynamics of 
LIF neurons in the HCS [3]. (D) Prediction of the (conductance-based) LIF activation function under Poisson bombardment. In the HCS, the activation function 
𝜈𝑘(𝑢 𝑘) becomes a scaled logistic function, thereby enabling neural sampling from Boltzmann distributions [4]. 

(E) A network of LIF neurons (blue) sampling from a target distribution (red) [3]. (F) Example of Bayesian inference in 
an LIF network trained with a subset (0,3,4) of the MNIST dataset [3]. Given an ambiguous stimulus, the network 
samples from the correct conditional distribution. (G) Implementation of the Knill-Kersten illusion with LIF neurons [5]. 

(A) The equivalence of LIF dynamics to MCMC sampling from Boltzmann 
distributions enables the use of LIF networks as restricted Boltzmann 
machines (RBMs) [6]. With contrastive divergenece as a learning rule, 
the network parameters are updated as follows: 

Δ𝑤𝑖𝑗    ∝     𝑧𝑖𝑧𝑗 data 
−      𝑧𝑖𝑧𝑗 model 

 

Δ𝑏𝑖   ∝    𝑧𝑖 data − 𝑧𝑖 model  
(B) Sample spike trains from a network trained on the MNIST dataset. In 
the label layer, individual neurons encode the class of the input image. 
With only this simple learning rule, LIF networks can achieve 96.9% 
correct classification, compared to 97.1% for classical Gibbs sampling. 

(A) Mixed-signal neuromorphic “Spikey” chip with highlighted communication 
infrastructure [8]. (B) Parameter fluctuations inherent to analog devices [9] can be 
compensated by replacing individual neurons by “sampling units”. Inhibitory feedback via 
synfire chains serves as a quasi-refractory mechanism. (C) A spike volley propagating along a 
synfire chain becomes the equivalent of an individual spike in the original LIF sampling 
framework. (D) Sampling from an exemplary target distribution over three RVs on Spikey. 
The chip emulates 100 biological seconds within 10 ms of wall-clock time [10]. 

(D) Short-term plasticity modulates synaptic 
strengths on short time scales. (E) This allows 
LIF-based  RBMs to escape from local 
attractors in a computationally more efficient 
way than, e.g., simulated tempering. (F) The 
LIF-based RBM only loses a small fraction of 
its discriminative power compared to Gibbs 
sampling, but becomes a far superior 
generative model [6]. 
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(C) In an unsupervised learning setup, a network of LIF 
neurons learns its own classes 𝑧1 …𝑧𝐾  via a spike-based 
expectation maximization (SEM) rule implemented as 
STDP [7]: Δ𝑉𝑖𝑘 ∝ 𝑧𝑘 𝑦𝑖 exp −𝑉𝑖𝑘 − 𝑉𝑖0 − 1 . 
An additional homeostasis mechanism ensures that mean 
firing rates of neurons in the cause layer remain fixed. 
(D) After learning, the network becomes a generative 
model of the training data. In particular, this is reflected by 
more cause layer neurons being assigned to the more 
frequently presented input classes. 

(A) Receptive fields of three cause layer neurons trained 
with SEM on a subset of the MNIST dataset in an 
implementation that is portable to state-of-the-art 
neuromorphic hardware. (B) Homeostasis allows cause 
layer neurons to learn patterns with different intensities. 
(C) Discretization of synaptic weights to 4 bits only has a 
small effect on the network performance. 
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