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Motivation
Noise in functional networks
• neural implementations of probabilistic computing rely on presence of some form of stochastic-
ity/noise [1,2] → input from (pseudo) random-number generators

• requirements for RNGs:

1. (quasi) chaotic dynamics (seed sensitivity) with long (ideally infinite) cycle length

2. high throughput (rate of random-number production)

3. vanishing serial (temporal) correlations

4. vanishing spatial correlations

5. modulation of noise amplitude

• space/bandwidth constraints in hardware → limited number → shared-noise correlations

• Suitable sources of stochasticity in biological neural networks and hardware implementations?

•Do shared-noise correlations impair performance of networks implementing prob. computations?

•How can a limited number of noise sources provide uncorrelated input?
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Recurrent neural networks as RNGs
Stochastic sources
• finite number N of exc./inh. independent
stochastic units (e.g., Ginzburg)

•mutually unconnected

Noise network
• recurrent network of N exc./inh. determin-
istic neurons (e.g., McCulloch-Pitts)

• sparse, random connectivity
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Why recurrent neural networks?

• chaotic dynamics (for sufficiently strong excitation) [3] (req. 1. & 3.)

• easy/flexible to implement on neuromorphic hardware (req. 2.)

• irregular activity (CV ∼ 1) [3,4] (req. 3.)

• active suppression of shared-input correlations through inhibitory feedback [6,7] (req. 2. & 4.)

• rate modulation via change of, e.g., external input (req. 5.)

Sampling performance in presence of
network-generated noise
• sampling network: symmetric network with random weights

• fixed number K of background inputs to functional network

•modulation of shared-input correlations via number of noise sources N
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• increased sampling error due to shared-input correlations

• recovery of sampling performance for network-generated noise

Pattern recognition
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• strong readout-fluctuations for stochastic
sources (shared-input correlations)

• reliable readout response for BRN noise

• classification error scales inversely with number
of noise sources for stochastic sources

• recovery of performance for network-generated
noise

Decorrelation within functional networks
• active suppression of external correlations in recurrent networks with sufficient inh. feedback [5]
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• for stochastic sources: significant decrease of sampling error for increasingly neg-
ative average coupling in Boltzmann machine (holds also for increasing the size)

• for BRN noise: sampling error approx. independent of average coupling

Decorrelation by inhibitory feedback [6,7]

• finite stochastic sources
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• shared noise sources lead to input correlations

• due to feedback, activity in noise network is correlated

→ suppression of shared-input correlations by spike-train correlations (consequence
of inhibitory feedback)

Conclusion
• shared-input correlations impair performance of functional networks

• recovery of network performance in presence of network-generated
noise, due to active supression of shared-input correlations

•active decorrelation in functional networks with negative feedback

• results generalize: sampling with LIF neurons (current-based /
conductance-based synapses), attractor networks

→ recurrent neural networks can serve as noise sources both in biological
and in synthetic neuromorphic substrates
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