Deterministic neural networks as sources of uncorrelated noise for probabilistic computations

Jakob Jordan¹, Mihai Petrovici², Thomas Pfeil², Oliver Breitwieser², Ilja Bytschok², Johannes Bill³, Andreas Grübl², Johannes Schemmel², Karlheinz Meier², Markus Diesmann¹, Tom Tetzlaff¹

¹ Inst. of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience & Inst. for Advanced Simulation (IAS-6), Theoretical Neuroscience, Jülich Research Centre and JARA, Jülich, Germany

² Kirchhoff Institute for Physics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
 ³ Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria

Motivation

Noise in functional networks

• neural implementations of probabilistic computing rely on presence of some form of stochastic-ity/noise [1,2] \rightarrow input from (pseudo) random-number generators

• requirements for RNGs:

1. (quasi) chaotic dynamics (seed sensitivity) with long (ideally infinite) cycle length

Decorrelation within functional networks

• active suppression of external correlations in recurrent networks with sufficient inh. feedback [5]

2. high throughput (rate of random-number production)
3. vanishing serial (temporal) correlations
4. vanishing spatial correlations
5. modulation of noise amplitude

- $\bullet\, space/bandwidth\,\, constraints\,\, in\,\, hardware\, \rightarrow\, limited\,\, number\, \rightarrow\, shared-noise\,\, correlations$
- Suitable sources of stochasticity in biological neural networks and hardware implementations?
 Do shared-noise correlations impair performance of networks implementing prob. computations?
 How can a limited number of noise sources provide uncorrelated input?

Recurrent neural networks as RNGs

Stochastic sources

Noise network

finite number N of exc./inh. independent stochastic units (e.g., Ginzburg)
mutually unconnected

recurrent network of N exc./inh. deterministic neurons (e.g., McCulloch-Pitts)
sparse, random connectivity

Noise network random network of deterministic neurons

for stochastic sources: significant decrease of sampling error for increasingly negative average coupling in Boltzmann machine (holds also for increasing the size)
for BRN noise: sampling error approx. independent of average coupling

Pattern recognition

Why recurrent neural networks?

• chaotic dynamics (for sufficiently strong excitation) [3] (req. 1. & 3.)

- \bullet easy/flexible to implement on neuromorphic hardware (req. 2.)
- ullet irregular activity (CV \sim 1) [3,4] (req. 3.)

active suppression of shared-input correlations through inhibitory feedback [6,7] (req. 2. & 4.)
rate modulation via change of, e.g., external input (req. 5.)

Sampling performance in presence of network-generated noise

sampling network: symmetric network with random weights
fixed number K of background inputs to functional network
modulation of shared-input correlations via number of noise sources N

Decorrelation by inhibitory feedback [6,7]

shared noise sources lead to input correlations

• due to feedback, activity in noise network is correlated

- increased sampling error due to shared-input correlations
- recovery of sampling performance for network-generated noise

References

- [1] Buesing et al. (2011), Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons. PLoS Comput Biol 7(11): e1002211
- [2] Petrovici et al. (2013), Stochastic inference with deterministic spiking neurons. under review
- [3] van Vreeswijk & Sompolinsky (1998), Chaotic Balanced State in a Model of Cortical Circuits. Neural Computation 10, 13211371

 \rightarrow suppression of shared-input correlations by spike-train correlations (consequence of inhibitory feedback)

Conclusion

- shared-input correlations impair performance of functional networks
 recovery of network performance in presence of network-generated noise, due to active supression of shared-input correlations
 active decorrelation in functional networks with negative feedback
 results generalize: sampling with LIF neurons (current-based / conductance-based synapses), attractor networks
- \rightarrow recurrent neural networks can serve as noise sources both in biological and in synthetic neuromorphic substrates
- [4] Brunel (2000), Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons. Journal of Computational Neuroscience 8, 183208
 [5] Helias et al. (2014), The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics. PLoS Comput Biol 10(1): e1003428
 [6] Renart et al. (2010), The Asynchronous State in Cortical Circuits, Science 327(5965):587–590
 [7] Tetzlaff et al. (2012), Decorrelation of Neural-Network Activity by Inhibitory Feedback, PLoS Comp Biol 8(8):e1002596

Acknowledgments: Partially supported by the Helmholtz Association portfolio theme SMHB, the Jülich Aachen Research Alliance (JARA), EU Grant 269921 (BrainScaleS), The Austrian Science Fund FWF #1753-N23 (PNEUMA), The Manfred Stärk Foundation, and EU Grant 604102 (Human Brain Project, HBP)