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Abstract

The measurement of the joined production processes of three electroweak gauge bosons allows to probe
the gauge structure of the electroweak interaction. In the analysis presented, W boson production in
association with two high energetic photons has been measured for the first time using proton-proton
collision data recorded in 2012 with the ATLAS detector. The dataset corresponds to an integrated
luminosity of 20.3 fb−1 collected at a center-of-mass energy of

√
s = 8 TeV. Events are selected requir-

ing the muonic decay channel of the W boson and two isolated photons. The production cross-section
is measured in two restricted phase-space regions, with and without a requirement on the number of
additional jets. It is found to be consistent with predictions at next-to-leading order precision in the
strong coupling. The measurement is sensitive to new physics phenomena, namely anomalous quartic
gauge boson couplings. In the absence of significant deviations from the Standard Model, 95 % C.L.
frequentist CLS limits on quartic electroweak gauge boson couplings are set.

Zusammenfassung

Die Messung der gemeinsamen Produktion von drei elektroschwachen Eichbosonen erlaubt es, die Eich-
struktur der schwachen Wechselwirkung zu testen. In dieser Arbeit wird die erste Messung der Pro-
duktion von W-Bosonen zusammen mit zwei hochenergetischen Photonen in Proton-Proton-Kollision
vorgestellt. Die Daten wurden mit dem ATLAS-Detektor im Jahr 2012 aufgezeichnet und entsprechen
einer integrierten Luminosität von 20,3 fb−1 bei einer Schwerpunktsenergie von

√
s = 8 TeV. Die Er-

eignisse werden im muonischen Zerfallskanal des W-Bosons und zweier isolierter Photonen selektiert.
Der Produktionswirkungsquerschnitt wird in zwei Phasenraumbereichen gemessen und stimmt mit der
Vorhersage in nächstführender Ordnung in QCD überein. Die Messung wird dazu verwendet, die Daten
auf die Präsenz von anomalen Vierboson-Kopplungen zu testen. Da keine signifikanten Abweichun-
gen von der Standardmodell-Vorhersage aufgetreten sind, werden 95 % C.L. Ausschlussgrenzen auf die
Kopplungsstärke anomaler Vierboson-Kopplungen gesetzt.
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CHAPTER 1

Introduction

The Standard Model of particle physics (SM) is the theoretical framework for the calculation of particle
physics phenomena. It describes very precisely most of the experimental data [1]. At the Large Hadron
Collider (LHC) a new boson has recently been discovered by the ATLAS and CMS collaborations [2,
3]. It is compatible with the last missing piece of the Standard Model, the Higgs boson. Besides
its properties as a discovery machine, the LHC provides the possibility for many other tests of the
Standard Model. The self-interactions of electroweak gauge bosons are one interesting field through
their sensitivity to the electroweak gauge structure.

Several measurements of di-boson production processes have been carried out at the LHC and have
been found in agreement with the Standard Model expectations [4–6]. In this thesis the next step is
taken: For the first time the tri-boson production process of a W boson in association with two highly
energetic photons is measured. This processes directly tests the quartic gauge boson couplings predicted
by the electroweak theory.

After more than two years of LHC data taking, the Standard Model has been confirmed rather than
contested. Direct searches for new particles have found no evidence for physics beyond the Standard
Model and no hints for new physics phenomena have been observed in inclusive as well as exclusive
searches. The tri-boson production processes are directly sensitive to the electroweak gauge structure
and thus sensitive to new physics phenomena in the electroweak sector. Deviations from the Standard
Model can be parametrized in a model-independent way using higher-dimensional effective operators
that give rise to anomalous quartic gauge couplings [7].

The Standard Model, details of the Wγγ production process, and the mechanism of anomalous quartic
gauge couplings are discussed in Chapter 2. The LHC and the ATLAS detector are described in
Chapter 3. Details about the simulation of proton-proton collisions and the different simulation pro-
grams used in this thesis are given in Chapter 4. The algorithms used to reconstruct particles from their
energy depositions in the ATLAS detector are discussed in Chapter 5.

After the theoretical and experimental framework for the analysis has been introduced, the cross-
section measurement of the pp → Wγγ + X process is presented. Experimentally, the cross-section σ
can be measured in data with an integrated luminosity Lint, using the well known formula

σ =
Nobs − Nbkg

A · ε · Lint
.

The determination of each of the terms will be outlined in the following. The selection used to select
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1 Introduction

the number of observed events Nobs is discussed in Chapter 6. The methods that are used to estimate
the irreducible background Nbkg are introduced in Chapter 7. The corrections for the acceptance A and
the efficiency ε, as well as the calculation of the cross-section and comparisons to the Standard Model
prediction will be given in Chapter 8. In Chapter 9, the measurement will be used to constrain new
physics phenomena in the context of anomalous quartic gauge couplings.

The author has carried out the analysis for the W → µν decay channel of the W boson from the initial
sensitivity studies up to the final measurement and the limit setting. In parallel, the decay of the W boson
into an electron-neutrino pair was studied within ATLAS.
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CHAPTER 2

Theoretical background

The Standard Model of particle physics (SM) is the theoretical framework for the calculation of particle
physics phenomena. It describes the fundamental particles and the forces that govern the interactions
between them. Several theorists established it in the late sixties and early seventies of the last century
and it agrees remarkably well with experiments carried out over the last decades. The success of the
Standard Model was honored with several Nobel prizes and accumulated in the discovery of the long-
sought after Higgs Boson at the LHC [2, 3] and the Nobel prize award to Englert and Higgs in October
2013 "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of
mass of subatomic particles, and which recently was confirmed through the discovery of the predicted
fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider" [8].
However, there is reason to believe that the Standard Model is incomplete. For example it cannot
describe the matter-antimatter asymmetry and it does not provide a viable candidate for dark matter [1].
Anomalous quartic gauge couplings provide the possibility to search for new physics phenomena in a
model independent way.

The Standard Model will be briefly introduced in the first part of this chapter. Then, the Wγγ produc-
tion process and the physics at a hadron collider will be presented. At last the mechanism of anomalous
quartic gauge couplings is introduced.

2.1 The Standard Model of particle physics

The Standard Model is a relativistic quantum field theory describing the strong, weak and electro-
magnetic interactions of fermions. It consists of fermions, gauge bosons and the scalar Higgs boson.
The gauge bosons mediate the forces between the fermions, while the Higgs boson gives mass to the
particles. The fermions can be further split into two groups, the leptons which do not interact via the
strong force and the quarks which do. The leptons form three families of left-handed SU(2)L doublets,
each consisting of a lepton and a neutrino, and right-handed singlets only containing the lepton. The
three leptons, electron (e−), muon (µ−) and tau (τ−) carry negative electric charge, while the electron-,
muon- and tau-neutrino, νe, νµ and ντ respectively, are neutral. The quarks can also be grouped into
three families of doublets consisting of an up-type and down-type quark each. The up-type quarks,
up (u), charm (c) and top (t) carry an electric charge of qe = +2/3, while the down-type quarks, down (d),
strange (s) and bottom (b), carry qe = −1/3. The properties of the twelve fundamental fermions of the
Standard Model are summarized in Table 2.1. Each of the fermions has a corresponding antiparticle
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2 Theoretical background

Family Charge qe Interaction
I II III

neutral leptons νe νµ ντ 0 weak
charged leptons e− µ− τ− −1 weak, electromagnetic
up-type quarks u c t +2/3 weak, electromagnetic, strong

down-type quarks d s b −1/3 weak, electromagnetic, strong

Table 2.1: The properties of the twelve fundamental fermions of the Standard Model.

which has opposite charge, parity and color but otherwise the same quantum numbers. Antiparticles
are denoted by using a plus instead of a minus for the charged leptons, e.g. the anti-electron is e+, also
known as positron, and with a bar for the other fermions, i.e. the anti-up is denoted as ū.

The force carriers of the Standard Model are gauge bosons corresponding to the generators of the
symmetry groups of the interactions. The electromagnetic interaction is described by "Quantum Electro
Dynamics" (QED) with the symmetry group U(1)EM. It is mediated by a single massless gauge boson,
the photon (γ), that couples to the electric charge. The theory of the weak interaction follows an SU(2)L
symmetry group. The three massive gauge bosons, W± (mW = 80.4 GeV) and Z0 (mZ = 91.2 GeV) [1],
couple to the weak charge. The electromagnetic and the weak interaction have been unified by Glashow,
Weinberg and Salam [9–11] as the local symmetry of SU(2)L ×U(1)Y. This unified interaction is called
the electroweak interaction. The Higgs-mechanism gives mass to the particles through the mechanism
of spontaneous symmetry breaking.

The strong force is described by "Quantum Chromo Dynamics" (QCD) which obeys an SU(3)C sym-
metry. It is mediated by eight massless gluons coupling to color-charge. Only quarks and gluons carry
color and interact under the strong force. Up to now only color singlets have been observed (color
confinement) meaning that quarks either appear in bound quark-antiquark states called mesons (e.g.
the charged pion π+ =

∣∣∣ud̄
〉
) or in three-quark states called baryons (e.g. the proton p = |uud〉). Both

together are called hadrons.
The combination of QCD with the electroweak interaction yields the Standard Model, which is in-

variant under local SU(3)C × SU(2)L × U(1)Y gauge transformations.

2.1.1 The electroweak theory

The weak interaction follows a local SU(2)L gauge symmetry. Invariance under the non-abelian local
gauge transformation of SU(2)L gives rise to self interactions between the gauge bosons of the elec-
troweak interaction. Since the Wγγ production process is interesting through its possibility to study
the coupling between the gauge bosons W± and γ the theory of electroweak interactions will be briefly
introduced following the discussion in [12, 13].

The electroweak theory is a spontaneously broken local gauge theory with SU(2)L × U(1)Y as sym-
metry group. SU(2)L is the group of the weak isospin with the gauge fields W i

µ that couple only to
left-handed fermions causing the maximum parity violating behaviour. The generator of the U(1)Y
group is the weak hypercharge Y defined as Q = I3 + Y

2 , with the electric charge Q and third component
of the weak isospin I3. With the gauge field of U(1)Y, Bµ the SU(2)L × U(1)Y group gives rise to four
gauge fields.

The fermions are described as left-handed doublets (denoted by a subscript L) and right-handed sing-
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2.1 The Standard Model of particle physics

lets of the weak isospin (subscript R).The left-handed lepton doublets are(
νe

e

)
L
,

(
νµ
µ

)
L
,

(
ντ
τ

)
L
, (2.1)

and the right-handed lepton singlets are
eR, µR, τR . (2.2)

For quarks a small complication arises from the fact that the weak interaction does not couple to the
mass eigenstates of the down-type quarks. Therefore the left-handed quark doublets are given as(

u
d′

)
L
,

(
c
s′

)
L
,

(
t

b′

)
L
. (2.3)

The primed quarks are linear combinations of the mass eigenstates, which are specified by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [14, 15].

To obtain local gauge invariance the derivative ∂µ is replaced with the covariant derivative Dµ. Since
the right-handed fermions do not participate in the weak interaction the covariant derivatives Dµ are
different for left- and right-handed fermions:

DµψL =

(
∂µ + i

g

2
W i
µσ

i + i
g′

2
Bµ

)
ψL (2.4)

DµψR =

(
∂µ + i

g′

2
Bµ

)
ψR . (2.5)

Here, σi are the Pauli matrices and g and g′ are the coupling constant of SU(2)L and U(1)Y, respectively.
As expected the covariant derivative for right-handed fermions does not contain terms with the gauge
fields of SU(2)L, i.e. they do not couple to the weak interaction.

The Lagrangian containing the dynamical terms and the SU(2)L × U(1)Y gauge terms can be written
as

L = ψ̄Lγ
µ

(
∂µ + i

g

2
W i
µσ

i + i
g′

2
Bµ

)
ψL

+ ψ̄Rγ
µ

(
∂µ + i

g′

2
Bµ

)
ψR

−
1
4

W i
µνW

µν
i −

1
4

BµνBµν .

(2.6)

The first two terms are the dynamical terms for the left-handed and right-handed fermions, respect-
ively. They contain the kinetic energy of the fermions and their interaction with the gauge bosons. The
last two terms are the kinetic terms and the self interaction of the gauge fields, where Bµν = ∂µBν−∂νBµ
and W i

µν = ∂µW i
ν − ∂νW

i
µ − gεi jkW j

µWk
ν .

The Lagrangian in the form of Equation 2.6 does not contain mass terms for the fermions and elec-
troweak gauge bosons, yet we know that both are massive particles. Simply adding a mass term for
these particles, e.g. mψ̄ψ = m

(
ψ̄LψR + ψ̄RψL

)
for the fermions, will not suffice since it violates the

gauge invariance of the SU(2)L group. One mechanism to generate the masses is the Higgs-Brout-
Englert-Guralnik-Hagen-Kibble mechanism [16–21] which introduces an additional scalar field φ. The
choice of a specific potential for this field leads to spontaneous symmetry breaking of the SU(2)L×U(1)Y
invariance as explained below.
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2 Theoretical background

A general scalar field is introduced as a complex scalar SU(2) doublet

φ =

(
φ+

φ0

)
, (2.7)

and the Lagrangian for this field is

LHiggs =
(
Dµφ

)† (
Dµφ

)
− V(φ) , (2.8)

with the covariant derivative defined as above. If the potential, V(φ), takes the special form

V(φ) = −µφ†φ + λ
(
φ†φ

)2
(2.9)

with µ2, λ > 0, the minimum of the potential is not at φ = 0 but at

|φ0| =

√
µ2

2λ
. (2.10)

Perturbative calculations require expansions around the minimum of the potential. If one arbitrary,
but fixed point satisfying Equation 2.10 is chosen, the SU(2) symmetry is broken. One common choice
is

φ =
1
√

2

(
0
v

)
, (2.11)

with v =

√
µ2

λ . If the field expanded around its minimum, i.e.

φ =
1
√

2

(
0

v + H

)
, (2.12)

is inserted into the Lagrangian 2.8, it contains mass terms for linear combinations of the four gauge
bosons:

LHiggs =
1
2

(
∂µH

)2
−

1
2

m2
HH2 −

√
λ

2
mHH3 −

1
4

H4

+

(
m2

WW+
µ W−µ +

1
2

m2
ZZµZµ

) (
1 +

H
v

)2
.

(2.13)

Here,

W±µ =
1
√

2

(
W1
µ ∓ iW2

µ

)
(2.14)

Zµ =
1√

g2 + g′2

(
gW3

µ − g
′Bµ

)
(2.15)

Aµ =
1√

g2 + g′2

(
gW3

µ + g′Bµ
)

(2.16)

are the mass eigenstates of the gauge bosons with masses mW =
gv
2 and mZ =

√
g2+g′2

2 v and the massless
photon. The first two terms of the Lagrangian 2.13 describe a scalar field of mass mH =

√
2λv known as
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2.1 The Standard Model of particle physics

W+, α

W+, µ

W−, β

W−, ν

(a) −ig2
(
−2gαβgµν + gαµgβν + gανgβµ

) γ, α

W+, µ

γ, β

W−, ν

(b) ig2 sin2 θW

(
−2gαβgµν + gαµgβν + gανgβµ

)

γ, α

W+, µ

Z0, β

W−, ν

(c) −ig2 sin θW

(
−2gαβgµν + gαµgβν + gανgβµ

) Z0, α

W+, µ

Z0, β

W−, ν

(d) ig2 cos2 θW

(
−2gαβgµν + gαµgβν + gανgβµ

)
Figure 2.1: The four quartic gauge boson interactions of the Standard Model and their Feynman rules in unitary
gauge. The arrows indicate the momentum flow.

the Higgs field. By adding a scalar field with a specially crafted potential the masses of the heavy gauge
bosons have been added in a gauge invariant way. The - still missing - masses of the fermions are added
by Yukawa couplings between the Higgs boson and the fermions.

The electroweak theory predicted several particles years before they had been discovered at a collider
and withstood all experimental tests in the last decades. One of the least tested sectors of the Standard
Model are the quartic couplings of the electroweak gauge bosons. They just started to be directly
accessible by experiments at the LHC. After the spontaneous symmetry breaking the Lagrangian of the
electroweak interaction can be written in terms of the physical fields W±µ , Zµ and Aµ. The resulting
Lagrangian for four-point self interactions between the gauge bosons is

LWWVV = −
g2

4

((
2W+

µ W−µ +
(
Aµ sin θW − Zµ cos θW

)2
)2
−(

W+
µ W−ν + W+

ν W−µ +
(
Aµ sin θW − Zµ cos θW

)
(Aν sin θW − Zν sin θW)

)2
) (2.17)

yielding four physically distinct cases, W+W−γγ, W+W−γZ, W+W−ZZ and W+W−W+W−. The corres-
ponding Feynman diagrams and the Feynman rules in unitary gauge are given in Figure 2.1.
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2 Theoretical background

2.2 General aspects of pp -scattering

The cross-section as well as the kinematic properties of a scattering process at a hadron collider do not
only dependent on the matrix elements calculated using perturbation theory. In addition, long-distance
processes, which are dominated by non-perturbative QCD and therefore can not be calculated directly,
have to be considered. These two parts of the cross-section can be treated separately according to the
factorization theorem [22]. The dominant non-perturbative effect for the Wγγ production process is the
momentum distribution of the partons inside the proton, which is described by the parton distribution
functions (PDFs). These will be introduced in this section.

2.2.1 Parton distribution functions

The factorization theorem allows to treat the hard scatter, i.e. the partonic cross-section σ̂ab→X , sep-
arately from soft, non-perturbative effects which cannot be calculated but have to be described using
phenomenological models tuned to experimental data. Typically these soft long-distance processes in-
clude the fragmentation and hadronization of quarks and gluons into jets and the parton distribution
functions describing the structure of the proton. The following description will focus on the latter, since
the Wγγ processes, which a subsequent decay of the W boson into a muon-neutrino pair, does not yield
quarks and gluons in the final state at leading order.

The proton is not an elementary particle. In the quark model the quantum numbers of the proton
are described by the color singlet |uud〉 of two up- and one down quark. This picture provides a good
description of the proton as long as it is probed at small energies. If the energy of the particle used to
probe the proton is increased, it can resolve finer structures. Therefore it becomes sensitive to spontan-
eous gluon exchange between the constituent quarks and gluons that split into quark-antiquark pairs.
The former gives raise to the gluon content of the proton, while the latter yields the so-called sea quarks
inside the proton. By this mechanism the structure of the proton depends on the momentum scale of the
interaction Q2.

Figure 2.2: Diagram of the structure of a hard scat-
tering process. From [23].

The structure is described by parton distribution
functions fp

(
x,Q2

)
that give the probability to find

a parton p with a fraction x of the total proton
momentum in an interaction at the scale Q2. The
Q2 dependence of fp

(
x,Q2

)
is determined by the

DGLAP equations [24–27], while the x dependence
has to be determined experimentally. It is meas-
ured in fixed-target and collider experiments using
either lepton-proton deep inelastic scattering or hard-
scattering in proton-(anti-)proton interactions. Several
groups use all or parts of the available data to determ-
ine the PDF of the proton, for example MSTW [28],
CTEQ [29] or HERAPDF [30].

A hard-scattering process in proton-proton collision
can be imagined as the partonic cross-section, σ̂ab→X ,
for the interaction of two partons a and b, folded with
their momentum distribution inside the proton. This is
illustrated in Figure 2.2: A and B are the incoming pro-
tons whose constituents a and b participate in the hard
scatter. The momentum distributions and the relative
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2.3 The Wγγ production process

frequency of occurrence for the different constituents is determined by the PDFs fa/A and fb/B.
More quantitatively the cross-section for the production of a final state X in proton-proton collisions,

σpp→X , can be schematically written as [23]

σpp→X =

∫
dxadxb fa

(
xa, µ

2
F

)
fb

(
xb, µ

2
F

)
· (σ̂0 + αS (µR) σ̂1 + . . .)ab→X .

Here, σ̂i are the partonic cross-sections for the process under study, where i indicates the order in
perturbation theory at which the cross-section is evaluated. The factorization scale, µF, is the scale that
separates the long- from the short distance physics and µR, the renormalization scale, is the scale at
which the renormalization that cancels the UV divergences of QCD is done. A typical choice for these
scales is µF = µR = Q2, where Q2 is the momentum scale that characterizes the hard interaction, e.g.
the invariant mass of the Wγγ system, mWγγ, for the process pp → Wγγ. In a calculation to all orders
in perturbation theory the physical observables are independent of these scales, since higher orders in
the partonic cross-section cancel the scale dependence. However, at finite order unknown higher order
corrections are absorbed in different choices of µF and µR. Therefore the scale dependence, i.e. the
change of the cross-section with µF and µR, is a measure on the uncertainty associated with the finite
order calculation of the cross-section.

2.3 The Wγγ production process

At the parton level and in leading order the pp→ W(→ lν)γγ+ X1 process is described by 21 Feynman
diagrams [31], four of them are shown in Figure 2.3. Besides the diagrams involving two connected
triple (WWγ) or one quartic WWγγ vertex, also ordinary W production contributes. In this case the
photons either stem from radiation of the incoming quarks or the outgoing lepton or a mixture of both.
In addition, photons coming from the hard fragmentation of a quark or gluon contribute to the Wγγ fi-
nal state if they appear in association with a W boson. Two example diagrams for the fragmentation
contribution are depicted in Figure 2.4. Here, Dq/g→γ

(
z,Q2

)
are the quark- and gluon-to-photon frag-

mentation functions respectively. They describe the probability that a photon is created and carries
away the fraction z of the parton momentum. Q2 is the scale fixed by the hard process. Experimentally
photons from a hard fragmentation cannot be distinguished from other photons and are considered as
part of the signal in this analysis.

The cross-section for the process pp→ lνγγ has been calculated at leading order in the strong coup-
ling [31] and next-to-leading order in the strong coupling [32] and [33]. The former calculation includes
the contribution from q → qγ fragmentation, but treats the W boson as stable. The latter calculation
includes leptonic decays of the W boson and, in particular, photon radiation from the charged lepton,
but does not include photons from fragmentation processes. Therefore special care has to be taken to
reject events with a photon emitted collinear to a quark, which would leads to infrared singularities.
These events are treated properly “by construction” when using the fragmentation functions Dq/g→γ to
describe real photon emissions below a fragmentation scale µfrag. The rejection of such events in case
the fragmentation functions are not used is commonly achieved by a so-called photon isolation criterion.

The simple prescription for the photon isolation that rejects events containing partons within a cone
around the photon is theoretically not well defined [34]. If no energy is allowed in the cone around
the photon the cone-based isolation is not infrared safe: no soft-gluon emission into the isolation cone

1 In the following pp→ W(→ lν)γγ+ X will be referred to as pp→ W(→ lν)γγ process, or simply Wγγ production process.
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Figure 2.3: Typical Feynman diagrams for the process qq̄→ lνγγ.

is allowed and thus the cancellation of the infrared singularities is spoiled. Therefore the cone-based
isolation requirement is replaced by the so-called Frixione isolation [34] which does not suffer from the
problems described above. A photon is considered isolated if it fulfills∑

i

Ei
Tθ(δ − Riγ) ≤ εEγ

T
1 − cos δ
1 − cos δ0

∀δ < δ0 , (2.18)

with parameters δ0 and ε, that describe the cone size and the allowed energy fraction of the photon,
respectively. Here, i is the parton with transverse energy Ei

T and a separation Riγ from a photon with
transverse energy Eγ

T. This definitions allows soft partons that are arbitrarily close to the photons.
However, a parton that is exactly collinear to the photon is required to have vanishing energy.

Throughout this work the calculations from [33] will be used for the theory predictions. The calcula-
tion is available as a part of the VbfNlo program [35]. VbfNlo is a parton level Monte Carlo program
for the simulation of various processes at next-to-leading order in the strong coupling constant.

Properties of Wγγ at next-to-leading order in QCD

In the following the properties of the Wγγ process at next-to-leading order in QCD will be discussed.
The predictions have been derived using the VbfNlo program [35], version 2.7.0-beta4, with a min-
imal set of selection criteria that represent the typical experimental requirements of a general purpose
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Figure 2.4: Feynman diagrams illustrating the fragmentation component of the Wγγ process.

detector at the LHC. These selections are

pl,γ
T > 20 GeV,

∣∣∣yl,γ
∣∣∣ < 2.5, p j

T > 30 GeV,
∣∣∣y j

∣∣∣ < 4.4,

Rγ,γ > 0.4, Rl,γ > 0.7, Rl, j > 0.3, Rγ, j > 0.3 ,
(2.19)

where pT is the transverse momentum and y is the rapidity of the lepton (l), photon (γ) and parton ( j), re-
spectively. The distance in the rapidity-azimuthal angle plane between the different particles is denoted
by R. As explained above the calculations do not include the fragmentation contribution. Therefore a
photon isolation requirement has to be applied to get rid of infrared singularities. The isolation is based
on the Frixione prescription given in Equation 2.18 with the parameters δ0 = 0.4 and ε = 0.5.

Since the properties of the Wγγ process are studied at a hadron collider, the prediction for the cross-
section does not only depend on the matrix element calculation. In addition, the momentum distribution
of the partons in the proton has to be folded into the cross-section. This is done using parton distribution
functions (PDFs) derived from data. Details how the calculation of the matrix element and the PDFs
are combined are given below in Section 2.2. For the calculations presented here, the MSTW2008NLO
PDF set [28] has been used.

The results for the cross-section in this phase-space for the process pp → W±γγ → l±νγγ at a
center-of-mass energy

√
s = 8 TeV are given in Table 2.2 for leading order (LO) and next-to-leading

order (NLO) in the strong coupling. In addition the k-factor defined as k = σNLO/σLO is given. The
NLO corrections enhance the cross-section by more than a factor of three. This extraordinary large
correction has two reasons, one associated with general features of three boson production processes
and the other one specific to the Wγγ final state, which will be discussed later.

The individual contributions of the channels depicted in Figure 2.3 cannot be separated in a gauge-
invariant way. However, the contribution from diagrams where one or both photons are radiated from the

LO [fb] NLO [fb] k-factor

3.66 10.97 2.99

Table 2.2: Cross-section for pp→ l±
(–)
νγγ at leading (LO) and next-to-leading order (NLO) in the strong coupling

for a center-of-mass energy
√

s = 8 TeV. In addition the ratio between the next-to-leading order and leading order
cross-section is given as the k-factor. The statistical uncertainty on the calculation is below one per-mil.
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Figure 2.5: Invariant mass of the lνγ1 system (a) for the photon with the larger transverse momentum, γ1, and
invariant mass of the lνγ2 system (b) for the photon with the second largest transverse momentum, γ2.

lepton can be assessed exploiting the invariant mass distribution of the lνγ and lνγγ system, respectively.
The mlνγ distribution is shown in Figure 2.5a for the photon with the larger transverse momentum
and in Figure 2.5b for the photon with the second largest transverse momentum. The peak around
mW = 80.4 GeV is caused by events where the photon is radiated of the lepton and carried away a part
of its momentum. The continuum above the mass of the W boson is created by events where the photon
originates from another source. Therefore the fraction of events where the invariant mass of the lνγ
system is close to mW for one of the two photons in the final state, gives a handle on the contribution
of processes where one of the photons is radiated of the lepton. For the phase-space considered here,
this is the case for around 26 % of the events. The same argument can be applied to the invariant mass
distribution of the lνγγ system. Two photons are emitted by the lepton in roughly 0.1 % of the events.

The scale dependence of the theory prediction is evaluated by changing the factorization scale, µF and
the renormalization scale, µR, independently by a factor ξ ∈ {0.5, 1, 2}. The envelope of the resulting
eight variations is then taken as the uncertainty. The scale dependence of the prediction for the di-photon
invariant mass distribution is shown in Figure 2.6a and the prediction for the transverse momentum of
the lγγ system is shown in Figure 2.6b. Both distributions show a moderate scale dependence. The
uncertainty on the total cross-section is around 6 %.

Large QCD corrections

The NLO corrections for other triple vector production cross-sections are sizable and generally between
a factor of 1.5 and 2 [36–39]. In these channels NLO corrections open up completely new topologies
for the production of the three vector bosons in the final state. This is illustrated in Figure 2.7, which
shows one example of a Feynman diagram contributing only at next-to-leading order for the calculation
of Wγγ production. In addition, the process now is sensitive to the gluon PDFs as can been seen from
the incoming gluon line. Especially at small x the contribution of the gluon PDFs is substantial and
leads to an increased cross-section.
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Figure 2.6: Scale dependence of the prediction for the di-photon invariant mass, mγγ, and the transverse mo-
mentum of the lγγ system, plγγ
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Figure 2.7: Example of a Feynman dia-
gram at next-to-leading order in QCD.

The remaining difference between the Wγγ and other triple
vector production processes can be explained by a feature called
radiation zero [40]. It predicts that the amplitude of the qq̄ →
W±γγ process vanishes for cos θ∗W = ±1/3 and collinear photons.
Here, θW denotes the angle between the incoming quark and the
W boson and the ∗ implies that the angle is calculated in the
parton center-of-mass frame. However, this does not hold for
gluon-induced channels like the one in Figure 2.7, which appear
in next-to-leading order calculations. Thus the radiation zero is
expected to be weakened in the NLO predictions.

This can be seen in Figure 2.8, which shows the rapidity dif-
ference between the W boson and the photon pair, which is a
useful variable to observe radiation zero at a hadron collider
according to [31]. At leading order (a) a dip around 0 is ob-
served. This dip is not present anymore if next-to-leading order
corrections are included in the calculation (b). Therefore the ex-
traordinary large k-factor of Wγγ production compared to other three boson production processes can
be explained by the cancellation of the radiation zero only present for the Wγγ process

The QCD corrections show a large phase-space dependence as illustrated in Figure 2.9, which shows
the k-factor as a function of the transverse momentum of the lepton-photons system. The correction
increases from about 2 to more than 10 with increasing transverse momentum. This especially affects
the search for anomalous quartic gauge couplings described below. In general, searches for physics
beyond the Standard Model are carried out in an extreme phase-space region to suppress the Standard
Model background and enhance the sensitivity. With NLO QCD corrections of O(10) it is not clear that
higher orders of perturbation theory give tiny corrections and can be neglected.

Currently, no calculation for the Wγγ process considering next-to-next-to-leading order (NNLO) cor-
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Figure 2.8: Rapidity difference between the W boson and the di-photon system at LO (left) and NLO (right).

rections is available. However, the calculation of the Wγγ+jet at NLO QCD was published recently [41],
which is an important step towards an NNLO calculation [42]. The k-factor of Wγγ + jet is around 1.4
for a similar phase-space as used above. This indicates once again that the extraordinarily large k-factor
for Wγγ occurs due to the cancellation of the radiation zero and that NNLO corrections may be sizable.
When comparing the data to Monte Carlo simulations without these corrections, the difference may be
misinterpreted as a sign for physics beyond the Standard Model.

This can be partly prevented by employing a jet veto, i.e. not considering events that contain real
emissions of quarks or gluons. This reduces the contribution of higher orders to diagrams that con-
tain only pure-virtual corrections, which are expected to be smaller. However, the jet veto is plagued
by large theoretical and experimental uncertainties and the scale dependence is artificially small [42].
Nevertheless in the work presented here, physics beyond the Standard Model will be searched for in a
phase-space without additional jets.

2.4 Searches for anomalous quartic gauge couplings

The sensitivity of the Wγγ process to quartic vector boson couplings that are not tightly constrained
by previous measurements makes it a viable candidate for the search for physics beyond the Standard
Model (BSM physics). Even if no deviations from the Standard Model are observed, the measurement
will help to constrain models that predict new physics scenarios which modify the quartic vector boson
couplings. In general, searches for BSM physics can be performed using two distinct approaches. One is
a model-dependent search which tries to falsify a specific model based on its predictions. One example
for this type is the search for the minimal super-symmetric extension of the Standard Model (MSSM).
The other approach is a model-independent search which tries to exploit general features of yet undis-
covered processes. One way to determine these general features is the so-called effective field theory
approach suggested in [43].
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2.4.1 Effective field theory

The effective field theory approach is based on the assumption that the yet undiscovered processes (in
the following referred to as new physics phenomena) are not directly accessible with the current exper-
iments. That means that the energy scale Λ at which new physics phenomena manifest themselves is
larger than the energy scales of the Standard Model and out-of-reach of current collider experiments.
This is a reasonable assumption, since no new physics phenomena have been discovered at the current
energies. Therefore the current experiments are only sensitive to low-energy effects of new physics
phenomena.

In general, the Lagrangian, L, that describes new physics phenomena can be written as the sum of
the Standard Model Lagrangian, LSM, and new Lagrangians describing the effects of the new physics
phenomena

L = LSM +LEFT +LNEW . (2.20)

Here, LEFT describe the part of the new theory which modifies the interaction between the particles
of the Standard Model, and LNEW contains the yet unknown interactions and fields. The latter term is
negligible, since far below the energy scale of the new theory no new particles can be produced directly.

The effective Lagrangian, LEFT, is required to fulfill the same symmetry as the Standard Model
Lagrangian, i.e. invariance under SU(3)C × SU(2)L × U(1)Y gauge transformations. The low energy
effects of new physics phenomena come into play by allowing operators with a dimension larger than
four. In the Standard Model these operators are not allowed since their presence renders the theory
unrenormalizable [13]. In the low-energy limit of an effective theory that is known to be valid only up
to an energy scale Λ non-renormalizable operators do not spoil the predictive power. The operators in
LEFT can be ordered according to their dimension, yielding

LEFT =
1
Λ
L5 +

1
Λ2L6 + . . . (2.21)
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with

1
ΛdLd =

∑
i

f (d)
i

Λd O
(d)
i . (2.22)

Here, O(d)
i is an operator with dimension d and coupling f (d)

i , and i runs over all possible operators of this
dimension. The Lagrangian Ld contains therefore all operators with dimension d. Equation 2.21 can be
seen as an expansion in powers of 1

Λ
, thus if an experiment is carried out at an energy E, the terms of

LEFT are suppressed by
(

E
Λ

)d
. This has two important consequences. Firstly, in the limit of low energies

or high new physics phenomena scales the Standard Model is recovered and all current experimental
data is well described. Secondly, only the lowest dimension operators have to be considered.

2.4.2 Anomalous quartic gauge couplings

The Feynman diagrams that describe the three boson Wγγ final state measured in this work comprise
the WWγγ vertex. Therefore effective operators modifying the quartic gauge boson couplings of the
electroweak theory are of special interest. The lowest dimensions operators yielding anomalous quartic
gauge couplings (AQGC) are of dimension six. However, these operators additionally modify the tri-
linear gauge couplings (TGC), which are far more constrained by the experimentally better accessible
di-boson production processes. Operators of dimension eight are the lowest-dimension operators that
only modify quartic gauge couplings. All parity conserving operators, which obey SU(2)L × U(1)Y
gauge symmetry and lead to pure quartic couplings between the weak gauge bosons have been listed
by [44]. They identified in total 18 operators, 14 of them modify the WWγγ coupling relevant to the
Wγγ final state. They are named LT and LM. One example for such an operator is

LT,0 =Tr
[
ŴµνŴµν

]
× Tr

[
ŴαβŴαβ

]
. (2.23)

Here, Ŵµν =
∑

j W j
µν
σ j
2 and the rest is as defined above. Thus the effective Lagrangian that can be

constrained by measurements of the Wγγ final state can be written as

L =
∑

i

fM,i

Λ4 LM,i +
∑

i

fT,i
Λ4 LT,i (2.24)

and limits can be set on the coupling parameters fM,i

Λ4 and fT,i
Λ4 with the dimension of TeV−4.

In previous measurements of anomalous quartic gauge boson couplings carried out at LEP [45–48]
and TeVatron [49] a slightly different parametrization has been used. These measurements set limits on
the couplings aW

0 , aW
C which can be associated with above parameters [50]:

fM,2

Λ4 = −
g2g′2

2m2
W

aw0
Λ2 (2.25)

and

fM,3

Λ4 =
g2g′2

2m2
W

awC
Λ2 . (2.26)

Comparing the dimension of aW
0/C , TeV−2, to the dimension TeV−4 of fM,i, it seems like the former
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couplings belong to dimension six operators. This would contradict the previous observation that pure
quartic couplings can only be achieved by dimension eight operators. However, according to [51] the
definition of these operators suffers from poor power-counting, rendering them effectively dimension
eight and resolving the contradiction.

2.4.3 Unitarity violation

Every effective field theory violates the unitarity of the S -matrix, if the scale at which the theory is
probed gets close to the scale of new physics phenomena. A prominent historical example is the effective
theory Fermi introduced to describe the β-decay [52, 53]. Fermi postulated a four fermion interaction
that gave a satisfying description in an energy regime far below the W mass. However, when going
to higher energies the theory predicted that the total cross-section rises with the center-of-mass energy
leading to a violation of unitarity above Λ ∼

mW
2g
√
π
. Today, the reason for this behaviour is known. At

these scales the interaction resolves the heavy W boson mediating the interaction turning the effective
four-fermion vertex into two three-point vertices connected by the W boson. Therefore the inclusion
of the, at the time Fermi developed the theory, unknown electroweak interaction, regularized the bad
high-energy behaviour and made the theory UV-complete.

This example can be transferred to the effective field theories considered in this thesis. If a measure-
ment probes scales to close to that of the new physics phenomena, the unitarity of the S -matrix will be
violated. This renders the predictions obtained from the effective theory unphysical and therefore the
limits meaningless. Current limits on these couplings are on the order of O(1 TeV−4) [54, 55]. There-
fore assuming a coupling O(1) the current measurements probe scales Λ ∼ 1 TeV in reach of the LHC.
This implies that the assumption that the new physics scale is well above the current experimental reach
might already be violated.

To approach the possible unitarity violation more quantitatively, the unitarity bound is calculated
using a tool from the VbfNlo authors [56]. The calculation is based on a partial wave decomposition of
the S -matrix of VV → VV scattering (with V = W±, Z or γ). The unitarity criterion is defined such that
the real part of the zeroth partial wave has to be below 0.5 [57]. Although the calculation is based on
2→ 2 scattering processes and therefore not strictly valid for the 1→ 3 processes encountered in three
boson production, it provides an estimate of the unitarity bound.

The unitarity bound can be seen in Figure 2.10a which shows it as a function of the effective center-
of-mass energy,

√
ŝ, and for three different operators. The region to the right of the unitarity bound

violates unitarity, while the region above the dotted lines is excluded by experiments. It is clear that
the unitarity bound crosses the experimental limits far below

√
ŝ < 8 TeV. More precisely the unitarity

bound is between 600 GeV for fT,0 and 1.4 TeV for fM,2 using the current experimental limits on the
couplings. These effective center-of-mass energies are easily reachable in the data recorded at the LHC
with a proton-proton center-of-mass energy of

√
s = 8 TeV. Therefore it is necessary to unitarize the

effective Lagrangians before using their predictions as inputs for the limit setting.

2.4.4 Unitarization

Several methods exist to obtain meaningful theory predictions and thus meaningful limits at energy
scales which might already violate unitarity. One class of methods is the form-factor approach. It
modifies the couplings with a form-factor F (s), which depends on the scale of the interaction, s:

fi → fi · F (s) . (2.27)
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Figure 2.10: (a): Unitarity bounds as a function of
√

ŝ for three different operators and current experimental
limits (dotted lines). (b): Dipole form-factor, F (s), with ΛFF = 1 TeV as a function of

√
s.

The form-factor can be an arbitrary function of s as long as it suppresses contributions from processes
with s ∼Λ. One trivial choice would be

F (s) = Θ(Λ2
FF − s) , (2.28)

with the Heaviside Function Θ and a form-factor scale ΛFF. This choice of the form-factor suppresses
contributions above a scale ΛFF completely and is therefore often called cutoff or trimming. The scale
can be arbitrarily chosen but it must guarantee that unitarity is conserved up to all scales s the experiment
can reach, i.e. up to

√
s in case of a collider experiment. A common choice for ΛFF is to use the smallest

scale that ensures unitarity.
Another choice of F often used in the literature due to its larger reach and smoother form is the dipole

form-factor defined as

F (s) =

1 +
s

Λ2
FF

−2

. (2.29)

It effectively suppresses the contribution from anomalous couplings already at scales below ΛFF as
can be seen in Figure 2.10b, which shows the dipole form-factor as a function of the energy,

√
s, for

ΛFF = 1 TeV.
In this work the unitarization of the results will be obtained using the dipole form-factor from Equa-

tion 2.29. The form-factor scale is chosen as the largest value such that new physics phenomena with a
coupling equal to the expected limit still conserves unitarity up to

√
s = 8 TeV.

The application of a form-factor is necessary to obtain physically meaningful results, but it has a
drawback. It introduces a dependence on another parameter, the form-factor scale. This can be thought
of as choosing a specific model in an up-to-now model independent prescription of new physics phe-
nomena.
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CHAPTER 3

The ATLAS experiment at the LHC

This analysis was carried out using proton-proton collision data recorded with the ATLAS1 experiment
located at the Large Hadron Collider (LHC). This chapter provides an overview over the experimental
setup. At first, the LHC will be introduced and then the ATLAS experiment will be discussed. The
overview given here covers the main features of both machines, more details can be found in [58]
and [59], respectively.

3.1 The Large Hadron Collider

The Large Hadron Collider is currently the world’s highest-energy particle accelerator, having reached
a center-of-mass energy

√
s of 8 TeV. It is designed to collide proton beams at

√
s = 14 TeV with a

peak instantaneous luminosity of 1034 cm−2 s−1. In addition, heavy ion beams can be collided with an
energy of 2.8 TeV per nucleon and a peak instantaneous luminosity of 1027 cm−2 s−1. It is built in the
former tunnel of the Large Electron Positron Collider (LEP), located at the European Organization for
Nuclear Research (CERN) near Geneva. The tunnel which has a circumference of 26.7 km was built
between 1984 and 1989 and lies between 45 m and 170 m below the surface. It consists of eight straight
sections connected by eight arcs. Two tunnels link the LHC with the accelerator complex located at
CERN, which is used to inject the proton beams with an energy of 450 GeV into the LHC.

From the eight possible interaction points located around the tunnel, four have been equipped with
large-scale experiments. The two general-purpose experiments ATLAS and CMS2 [60] have been de-
signed for a diverse physics program, including the discovery of the Higgs boson, precision measure-
ments of the Standard Model, and searches for physics beyond the Standard Model. Two specialized
experiments have been installed in other interaction points. One of them, ALICE3 [61], is specialized
on heavy ion collisions and studies the formation of the quark-gluon plasma at extreme energy densities
and temperatures. The other, LHCb4 [62], is focused on precision measurements of processes including
b quarks to better understand CP violation and the matter-antimatter asymmetry in the universe.

In contrast to electron-positron colliders where synchrotron radiation limits the achievable beam en-
ergies, the maximum beam energy at a proton collider depends on the magnetic field that bends the

1 A Toroidal LHC Apparatus
2 Compact Muon Solenoid
3 A Large Ion Collider Experiment
4 Large Hadron Collider beauty experiment
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protons around the ring. To reach a beam energy of 7 TeV at the LHC, the required dipole field strength
is 8.33 T. This field strength is obtained by using superconducting Nb-Ti magnets operated at a tem-
perature of 1.9 K, cooled using super-fluid helium. As the LHC is a particle-particle collider, two beam
pipes that host the counter-rotating beams are necessary. A magnet design that hosts two coils and beam
lines in the same mechanical structure and cryostat has been adopted, due to limited space and to reduce
cost.

The instantaneous luminosity provided by the LHC is proportional to the beam intensities, the revolu-
tion frequency of the beam around the ring, and further factors describing the geometry of the beams at
the interaction point. To achieve the design luminosity, these parameters have to be tuned to the edge
of the presently available technologies. The revolution frequency is obtained by the circumference of
the ring and the speed of light and is thus fixed to 11.2 kHz due to the decision to reuse the LEP tunnel.
Each proton beam is divided into 3500 bunches, of which 2808 bunches are occupied at full intensity.
Each of these bunch positions is separated by 25 ns from the following. This gives rise to a 40 MHz
bunch-crossing rate of the two counter-rotating beams in the interaction points. At each of the bunch
crossings, not only one proton-proton collision takes place, but several, depending on the beam intensity
and the size of the interaction region. On average 23 proton-proton collisions will happen in one bunch
crossing at design luminosity.

The operation of the LHC started in September 2008, but was abruptly stopped only nine days later
due to a faulty electrical connection that caused mechanical damage due to a subsequent release of he-
lium. The operation was resumed in November 2009 with a reduced center-of-mass energy of 900 GeV.
The energy was raised to 3.5 TeV per beam in March 2010, and data was recorded until November 2011
yielding an integrated luminosity of about 5.6 fb−1 delivered by the LHC. During this time the bunch
spacing was reduced from 75 ns to 50 ns.

The physics program of the LHC restarted in March 2012 with an increased center-of-mass energy of
8 TeV. Data was taken until December, at which point the LHC had delivered an integrated luminosity
of 23.3 fb−1 with a peak instantaneous luminosity of 7.73 × 1033 cm−2 s−1. Currently, the LHC is in the
Long Shutdown 1, during which it is prepared for a center-of-mass energy of 14 TeV.

3.2 The ATLAS experiment

The ATLAS experiment is a general-purpose experiment at the LHC built in a cavern at the interaction
point 1. It was built by thousands of collaborators in a period over fifteen years, before the installation
was finished in 2008.

To guide the design, requirements on the detector have been identified using several benchmark pro-
cesses that represent the wide range of the intended physics program [63]. These benchmark processes
included the discovery of the Higgs boson, as well as the discovery of potential new physics phenomena,
like the decay of hypothesized super-symmetric particles, or new heavy gauge bosons. The requirements
are as follows:

• A tracking system with a high granularity embedded in a strong magnetic field to be able to
provide good track momentum resolution and vertex reconstruction.

• A large coverage calorimetry that allows high resolution energy measurements provides the ability
to identify electrons and photons. The large-coverage is necessary to allow an accurate measure-
ment of the missing transverse momentum.

• A muon system that provides excellent resolution for muons over a large range of momenta.
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• A highly efficient trigger and data acquisition system that allows to reduce the 40 MHz collision
rate to a level that can be stored permanently.

The general design of the detector was guided by a few basic choices on the layout of the magnetic
fields used to bent the particles in the tracking and muon system. The inner tracking devices are im-
mersed in a 2 T solenoidal field, generated by a thin superconducting solenoid located in front of the
calorimeters. Three air-core, superconducting toroids generate the magnetic field that bends the particle
tracks inside the muon system. They are arranged around the calorimeter in an eight-fold azimuthal
symmetry.

The layout of the ATLAS detector is shown in Figure 3.1. It is forward-backward symmetric with
respect to the interaction point and covers the full angle around the beam axis. It consists of a barrel-
shaped central part and two disc-shaped endcaps, one on either side. The diameter of the detector is
25 m. With a total length of 40 m and a weight of approximately 7000 t, it is the world’s largest detector
built at a particle collider. The different detector systems are arranged layer-wise around the interac-
tion point. The innermost detector is the inner detector, which is used to measure the trajectory and
momentum of charged particles produced in the collision. The next layer is comprised of the calori-
metry that measures the energy of incident particles. The outermost system is the muon spectrometer
dedicated to the measurement of the trajectory of muons.

Figure 3.1: Layout of the ATLAS detector. From [59].

The reference coordinate system used in ATLAS is defined as follows. The origin of the a right-
handed coordinate system is defined as the nominal interaction point. The beam line defines the z-axis,
and the x-y-plan is transverse to the beam direction. The positive x-axis points from the interaction
point towards the center of the LHC, and the positive y-axis points upwards. The azimuthal angle, φ, is
measured in the plane perpendicular to the beam axis, and the polar angle, θ, is defined from the beam
axis. The transverse quantities, pT, ET and Emiss

T , are defined in the x-y-plane. The pseudo-rapidity is
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defined as η = − ln tan (θ/2), and the distance in pseudo-rapidity-azimuthal angle space is defined as
∆R =

√
∆η2 + ∆φ2.

This section is organized as follows: At first, the inner detector is briefly introduced. Afterwards, the
calorimeters and the muon spectrometer are outlined. Then, the trigger system is summarized. At last,
the principle of the luminosity measurement is explained.

3.2.1 Inner detector

The inner detector (ID) is designed to measure the trajectory of charged particles with pT > 0.5 GeV
and |η| < 2.5, created in the collision or subsequent decays. As it is immersed in a 2 T solenoidal
magnetic field, the curvature of the trajectories allows to measure the momentum of the particles. The
primary vertex and additional secondary vertices, originating from the decay of a long-lived particle
within the beam pipe, can be reconstructed using the intersection of two or more trajectories. Finally,
the inner detector has particle identification capabilities, which allow to separate electrons and hadrons
with transverse momenta between 0.5 GeV and 150 GeV and with |η| < 2.0.

The inner detector consist of three subsystems which can be operated independently. From inside out,
these are the Semiconductor Pixel Detector, the Silicon Microstrip Detector (SCT) and the Transition
Radiation Tracker (TRT). The first two sub-detectors cover the region |η| < 2.5, while the TRT only
extends up to |η| < 2.0. The length of the cavity housing all three sub-detector systems is 6.2 m, and its
diameter is 2.1 m. The layout of the inner detector is shown in Figure 3.2.

Figure 3.2: The layout of the ATLAS inner detector. From [59].

The innermost subsystem, the Semiconductor Pixel Detector, consist of 80.4 million pixels, most of
which have a size of (50 × 400)µm2. The pixels are grouped in 1744 sensors placed on three cylindrical
layers in the barrel and five discs on either side. The intrinsic accuracy of the pixel system is 10 µm in
the transverse, and 115 µm in the z- and R-direction for the barrel and endcap discs, respectively.

The Silicon Microstrip Detector, which is the intermediate sub-detector system, is equipped with
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15912 sensors hosting 768 active silicon strips each with a length of 12 cm and a pitch of 80 µm. The
intrinsic accuracy in the R-φ-plane is 17 µm. The intrinsic accuracy in the z- and R-plane for the barrel
and endcap, is 580 µm and is achieved by an 40 mrad stereo angle between the SCT sensors.

The outermost system is the Transition Radiation Tracker, which is comprised of polymide straw
tubes of 4 mm diameter, a length of 144 cm in the barrel and 37 cm in the endcap. The barrel tubes are
aligned in parallel to the beam direction, while the tubes in the endcap are pointing outwards. Inside
the tubes a 31 µm diameter gold-plated tungsten wire serves as anode. The tubes are filled with a gas
mixture consisting of 70 % Xe, 27 % CO2 and 3 % O2. The TRT provides 36 hits per track on average
with an intrinsic accuracy of 130 µm in the plane perpendicular to the beam and enhances the pattern
recognition on the trajectories. As mentioned above it only covers the region |η| < 2.0. The straw
tube are interleaved with material that provokes transition radiation consisting of low energy photons.
These are absorbed in the gas mixture and give rise to larger signal amplitudes than minimum ionising
particles. Therefore the TRT hits are classified as either low-threshold (typically larger than 250 eV) or
high-threshold (typically larger than 6 keV) hits directly at the front-end electronics. This information
is later used to discriminate tracks from electrons and hadrons.

3.2.2 Calorimetry

The purpose of the ATLAS calorimeters is to measure the energy and direction of incident particles, and
to determine the missing transverse energy. The missing transverse energy is an energy imbalance in
the plane transverse to the beam direction, caused by the presence of particles that escape the detector
undetected. In addition, the calorimeter must provide spatial information about the energy deposition
that can be used to identify the particle type.

Sufficient precision of the energy measurement can only be achieved if the induced shower from
the incident particles is stopped within the calorimeter. This necessitates a large radial depth of the
calorimeter. The direction and shape of the shower is measured by segmenting the calorimeter into
many small cells whose measured energy can be read out individually. At the same time, the calorimeter
should provide almost full coverage of the solid angle to obtain a precise measurement of the missing
transverse energy.

To achieve these goals at reasonable cost, the ATLAS calorimeters are divided laterally and longit-
udinally into different subsystems. The innermost layer is the electromagnetic calorimeter (EM), which
is thick enough to stop electrons and photons. Other particles that induce hadronic showers are stopped
in the outer part, the hadronic calorimeter (HAD). The central part of the calorimeters that covers the
region |η| < 2.5 is dedicated to high precision measurements and hence was built with a fine segment-
ation. The calorimeters which cover the region 2.5 < |η| < 4.9 are built with a coarser granularity and
are designed to provide reasonable precision for jet and missing transverse energy measurements.

All calorimeters are sampling calorimeters, which means that they are built using two different al-
ternating materials, one acting as absorber and the other one helps to measure the energy. Primary
particles interact with the absorber material giving rise to secondary particles, which are detected in the
active material. The ATLAS calorimeters are built with a variety of different technologies. The elec-
tromagnetic layer uses liquid argon as active and lead as absorber material in the barrel (|η| < 1.475)
and endcap (1.375 < |η| < 3.2) calorimeters. For the hadronic calorimeter, steel is the absorber material
and polystyrene-based scintillators are the active material in the barrel part (|η| < 1.7). The hadronic
calorimeter endcaps (1.5 < |η| < 3.2) use LAr as active material with copper as absorber. The forward
calorimeters (3.1 < |η| < 4.9) also employ LAr as active material and copper or tungsten as absorber for
the electromagnetic and hadronic part, respectively. The layout of the ATLAS calorimeters is shown in
Figure 3.3.

23



3 The ATLAS experiment at the LHC

Figure 3.3: The layout of the ATLAS calorimeter system. From [59].

Electromagnetic calorimeter

The electromagnetic calorimeter is a sampling calorimeter using lead as absorber and liquid argon as
the active material. The barrel part is divided into two identical half-barrels, one for the positive and
negative z-direction, respectively. The endcap calorimeters consist of two wheels each, the outer wheel
covering the region 1.375 < |η| < 2.5 and the inner wheel which covers the region 2.5 < |η| < 3.2.
The absorber material as well as the electrodes are accordion-shaped to provide full coverage in the
azimuthal angle.

The electromagnetic calorimeter shares a common vacuum vessel with the solenoid magnet to reduce
the amount of material in front of the calorimeter. In addition, a thin layer of active material (the pres-
ampler) is placed in front of the calorimeter inside the cryostat to provide information about energy lost
upstream of the calorimeter. The material budget in front of the presampler and the electromagnetic
calorimeter is shown in Figure 3.4. The amount of material corresponds to a radiation length between
2 X0 and 5 X0, with the notable exception of the transition region between the barrel and endcap calor-
imeters at around |η| = 1.4, where it reaches up to 11 X0. The large material budget poses a challenge
for the reconstruction of photons, since a significant fraction undergoes a conversion into an e+e− pair
before reaching the calorimeters.

In the region |η| < 2.5, the electromagnetic calorimeter is segmented into three longitudinal layers.
The innermost layer is finely segmented in η and dedicated to a precise position measurement of photons.
In addition, it provides detailed information about the shower shape, which helps to identify photons
and electrons. The layout of the electromagnetic barrel calorimeter is illustrated in Figure 3.5. The three
layers and the accordion-shaped geometry are clearly visible.
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Hadronic calorimeter

The hadronic calorimeter is separated into a barrel and an endcap part. In contrast to the electromag-
netic calorimeter, different technologies are used for the two calorimeter parts. The hadronic barrel
calorimeter is built using steel as absorber and scintillating tiles as active material with a volume ra-
tio between these materials of 4.7 : 1. It consists of three parts, the central barrel covering the region
|η| < 1.0, and two extended barrels covering 0.8 < |η| < 1.7. The total thickness of the hadronic barrel
calorimeter in units of the interaction length, λ, is approximately 7.4 λ. The scintillators are connected
via wave-length shifting fibers to the photomultiplier tubes. The fibers are grouped such that a longitud-
inal segmentation into three layers and a lateral segmentation into an approximately projective geometry
in pseudo-rapidity with a typical granularity of 0.1 in ∆η and ∆φ is achieved.

The hadronic endcap calorimeter is based on copper absorbers with liquid argon as active material.
Each endcap consist of two adjacent wheels, the front- and rear-wheel, that differ in the ratio of active
to absorber material. The granularity is 0.1× 0.1 in ∆η×∆φ for the region 1.5 < |η| < 2.5, and 0.2× 0.2
for larger |η|.

Forward calorimeter

The forward calorimeter consists of three modules mounted about 4.7 m away from the interaction point,
and covers the region 3.1 < |η| < 4.9, which corresponds to a radius of approximately 40 cm. The active
material for all modules is liquid argon. The module closest to the interaction point uses copper as
absorber, while the two outer modules use tungsten, due to its high absorption length.

3.2.3 Muon spectrometer

The muon spectrometer is the outermost system of the ATLAS detector and measures the trajectories
of charged particles that exit the calorimeters. Due to the large radiation and interaction length of the
calorimeters, these are mostly muons. The muon spectrometer, which covers the region |η| < 2.7, is
designed to provide an adequate momentum resolution for particles with momenta up to 3 TeV without
the information from other parts of the detector. This is achieved by a variety of different tracking
detectors placed over a large volume, immersed in a strong toroidal magnetic field.
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The toroidal field is generated by three superconducting air-core toroids, consisting of eight coils
each. The barrel toroid covers the region |η| < 1.4 and the two endcap toroids cover the region 1.6 <

|η| < 2.7. In the transition region both fields overlap. The geometry of the coils that generate the toroidal
magnetic field is shown in Figure 3.6. The eight barrel coils and the interleaved eight endcap coils as
well as the tile calorimeter and the return yoke are shown.

In total, four different tracking detectors are used in the muon spectrometer. The Monitored drift
tube chambers (MDT) and Cathode strip chambers (CSC) are designed to provide high precision space
point measurements of a particle passing through them. They are complemented by two fast tracking
devices, the Resistive-plate chambers (RPC) and Thin-gap chambers (TGC), which deliver information

Figure 3.6: Geometry of the coils
generating the toroidal field. In
addition, the tile calorimeter with
an outside return yoke is shown.
From [59].
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in a few nanoseconds. They are used to trigger on muons and to provide information about the position
perpendicular to the bending plane.

In the barrel, the precision tracking chambers are placed on three cylindrical shells located on and
between the coils. In the endcap, three discs perpendicular to the beam axis are equipped with the
tracking chambers. MDTs are used in the region |η| < 2.7, except for the endcap disc closest to the
interaction point, where CSCs are used in the region |η| < 2.0. In the barrel, |η| < 1.05, the RPCs
are used as fast tracking devices, while for the endcap, 1.05 < |η| < 2.4, TGCs are used. The region
2.4 < |η| < 2.7 is not equipped with fast tracking devices. The layout of the muon spectrometer is shown
in Figure 3.7.

Figure 3.7: The layout of the muon spectrometer. From [59].

A Monitored drift tube chamber consist of several layers of Monitored drift tubes. Each aluminum
tube has a diameter of approximately 30 mm and is operated with a gas mixture of argon and carbon
dioxide at pressure of 3 bar. In the center of the tubes a tungsten-rhenium anode wire with a diameter of
50 µm is strained and operated at about 3 kV. The position resolution in the plane perpendicular to the
tube is about 80 µm for a single tube and about 40 µm for a chamber. MDTs can only be safely operated
for rates up to 150 Hz cm−2, which is exceeded in the first layer in a region |η| > 2.0. Therefore Cathode
strip chambers, which can withstand rates of up to 1000 Hz cm−2 are used for the region 2.0 < |η| < 2.7.
The Cathode strip chambers are multi-wire proportional chambers with 30 µm diameter anode wires
oriented in the radial direction. The charge induced on the cathodes, which are aligned perpendicular to
the wires, is read out and the position resolution achieved in the bending plane is 60 µm.

The fast tracking devices are designed to achieve a time resolution well below the bunch crossing
rate of 25 ns, such that they can be used to identify the bunch-crossing and provide fast information
for the trigger decision. Their momentum resolution must be sufficient to keep the trigger rate due to
mis-measured muon momenta at a reasonable level. The Resistive-plate chambers which are used in
the barrel are gaseous parallel electrode-plate detectors, operated in avalanche mode and read out via
capacitive coupling. The Thin-gap chambers are multi-wire proportional chambers like the CSCs. They
are however, operated in saturation-mode to achieve the necessary time resolution.
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3.2.4 Trigger system

The typical size of an event containing information from all sub-detectors is above 1 MB. At the design
bunch-crossing rate of 40 MHz the recorded data rate would exceed 40 PB s−1, which is orders of mag-
nitudes larger than what current state-of-the-art storage technologies can handle. However, it is not
necessary to store every event permanently. The vast majority of collisions has a negligible momentum
transfer compared to the processes which constitute the physics program of ATLAS. This is illustrated
in Figure 3.8, where the cross-sections for various Standard Model processes as a function of the center-
of-mass energy are displayed. The total inelastic cross-section is several orders of magnitude higher
than, for example, the Higgs boson production cross-section.
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Figure 3.8: Cross section of various Standard Model pro-
cesses at the TeVatron and LHC colliders as function of
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The final event rate to permanent storage is a few hundred Hz. Thus a rejection factor on the order
of 106 is needed. This is achieved by a trigger system, which is designed to filter all but the most
interesting events. The criteria that an event has to fulfill to be kept are typically formulated in terms of
pT thresholds for certain particle types.

The ATLAS trigger system consists of three levels, which subsequently refine the decision of the
previous level. The first trigger level (L1) reduces the input rate to roughly 75 kHz using custom-made
electronics. The second (L2) and third (Event Filter, EF) trigger levels, which reduce the rate to 3.5 kHz
and 200 Hz, respectively, are built using commercially available computers.

The L1 trigger uses custom hardware, which identifies signatures of high-pT electrons, photons,
muons, jets and missing transverse energy. The decision must be available within 2.5 µs. Thus only
reduced granularity input from the subdetector systems and fast algorithms can be used. Muons are
identified using the input from the RPCs and TGCs of the muon system. Electrons, photons and jets are
identified using a sliding window algorithm on projective towers with a granularity of 0.1×0.1 (∆η×∆φ)
in most parts of the detector. In addition to the decision whether or not an event should be processed fur-
ther, the L1 system provides information about detector regions containing possibly interesting high-pT
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objects to the next trigger level. These regions are called Regions-of-Interest (RoI).
The second level trigger has access to the full detector granularity in the RoIs identified by the L1 trig-

ger. It can therefore use more complex, software based algorithms to refine the decision of the first level
trigger. The average computing time per event is about 40 ms yielding an output rate of approxim-
ately 3.5 kHz to the third trigger level. The event filter has access to the full detector information and
granularity. The algorithms employed at the EF are very similar to the algorithms used for the offline
reconstruction (cf. Chapter 5). The average time the EF takes to reach a decision for a particular event
is about 4 s.

To reduce the rate of an individual trigger either the trigger threshold can be raised, or a so called
prescale factor can be applied. A prescaled trigger with prescale P only selects one in P events that
passed the trigger requirement. The prescale factors can be set or changed during the data taking with
the ATLAS detector.

3.2.5 Luminosity measurement

The precise determination of the luminosity the LHC delivered is a challenging and important measure-
ment. It affects most of the analyses that are carried out at ATLAS. Thus several detectors are employed
to measure the instantaneous luminosity. One of them, BCM5, served as the default device for the meas-
urements of the integrated luminosity in 2011 and 2012. BCM measures the rate of incident particles,
which is proportional to the luminosity, using diamond sensors. It is placed 184 cm away from the
interaction point on both sides of the ATLAS detector.

Since the BCM system only measures the relative luminosity, the absolute luminosity must be calib-
rated at least once. This is done a few times per year using dedicated running conditions of the LHC. The
measurement of the luminosity is based on the following formula, which expresses the instantaneous
luminosity, Linst, as a function of the beam parameters

Linst =
nc frnanb

2πΣxΣy
. (3.1)

Here, nc is the number of bunches travelling with a revolution frequency fr around the ring. na and
nb are the number of protons in each of the beams and Σx and Σy are the convoluted beam widths
in x and y direction, respectively. The numerator of Equation 3.1 is either given by the LHC ( fr) or
can be measured by special instruments (na, nb and nc). The beam profiles have to be determined
using a dedicated measurement, known as the van-der-Meer scan [64, 65]. In a van-der-Meer scan, the
interaction rate is measured as a function of the beam separation, when one beam is scanned through
the other in the transverse plane.

Once the rate measured with LUCID is calibrated to the instantaneous luminosity, the total integrated
luminosity can be determined using the relative luminosity measurements. The systematic uncertainties
that affect the luminosity determination can be split into two categories. The first affects the determin-
ation of the instantaneous luminosity with the van-der-Meer scan, while the other is an uncertainty on
the stability of the relative luminosity measurement over time. For the data taken in the year 2012 the
relative uncertainty on the luminosity measurement is 2.8 %. More details on the methods used can be
found in [66].

5 Beam Conditions Monitor

29





CHAPTER 4

Monte Carlo simulation

The precise simulation of physics processes using Monte Carlo (MC) methods is one of the most im-
portant aspects in modern particle physics. The features of particular signal processes can be studied in
order to understand how to separate them from other processes constituting the background. In addition,
the simulation allows the comparison between data and theoretical predictions. Other uses of simula-
tions include the calibration and performance study of reconstruction algorithms and benchmarks for
design of new experiments.

The importance of simulation can also be seen when considering that the most referenced journal
publication authored by CERN is that of the Geant4 toolkit [67], cited over 4000 times [68]. The
Geant4 toolkit describes the passage of particles through matter, which is one of the three steps that
have to be simulated to describe an event from the collision to the response of the detector.

At first, the simulation of the collision will be discussed, then the ATLAS simulation infrastructure is
introduced. At last, the Monte Carlo samples used in this analysis are listed.

4.1 Simulation of the collision

The simulation of the proton-proton collision can be separated in four distinct steps. The first of them is
the hard-scatter, whose simulations includes the calculation of the matrix element and the phase-space
integration. Afterwards, the parton shower and hadronization of quarks and gluons is simulated. The
last step is the proper treatment of the underlying event, i.e. the interaction of the proton remnant.

For simple topologies, the hard-scatter can be calculated analytically, but in general, the necessary
multi-dimensional integration is done numerically using Monte Carlo methods. The calculation is done
at fixed order in perturbation theory, typically at leading or next-to-leading order in QCD. So-called
multi-leg generators can calculate matrix elements with additional partons in the final state. This typ-
ically yields a better description of the differential distributions, although the calculation of the total
cross-section can not be thought of as "improved leading order result", since it might be farther away
from the next-to-leading order result [69].

The quarks participating in the hard scatter can emit gluons, q → qg, and the participating gluons
can split, g → gg, or create a quark-antiquark pair, g → qq̄. This is modelled by the parton-shower
simulation, which describes the evolution of a parton at the time-like scale, tmax, set by the hard scatter,
down to a cut-off scale, t0, by successive branching. In case of incoming partons the evolution is done
backwards, also starting from the hard scatter. The cut-off scale is chosen as the scale at which QCD
becomes strongly interacting and the splitting functions which are based on perturbative calculations
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are not valid anymore (∼ 1 GeV). Different choices for the scale exist, most notably the pT of the
parton (pT-ordered shower) or the angle between the splittings (angular-ordered shower). An additional
complication arises for multi-leg generators. As the first branching of an outgoing parton can not be
distinguished from a real emission calculated in the matrix element, special care has to be taken to avoid
over- or under-counting of additional jets. For example, an event with (N + 1)-jets in the final state
can be either obtained by simulating an (N + 1)-parton final state, or by an N-parton final state with
a successive wide-angle radiation in the parton-shower. Several schemes are available that match the
matrix element calculation to the parton-shower (ME-PS matching) and try to resolve the ambiguity,
for example CKKW [70] or MLM [71]. These matching schemes essentially provide an event-by-event
prescription whether the matrix element or the parton shower is used to obtain an additional jet.

The hadronization step turns color-charged quarks and gluons into colorless hadrons. It is described
by phenomenological models tuned to data, since at the scales relevant for this process, QCD is strongly
interacting and cannot be treated perturbatively anymore. The two schemes used typically for the trans-
ition from partons to hadrons are the Lund string [72] and the cluster hadronization model [73, 74].
Both describe the hadronization as a probabilistic, iterative process.

The last step is the embedding of the hard-scatter into the underlying event, which has two main
aspects, the proton remnant and multiple parton interactions. The proton remnant, i.e. the particles that
appear after the proton is broken up by the hard scatter, is color connected to the rest of the event and
thus may give rise to additional hadrons in the final state. Multiple parton interactions occur if more
than one constituent pair of the protons interacts. Normally these additional interactions are soft, but
sometimes an additional hard-, or semi-hard interaction will occur.

Several different programs, so-called Monte Carlo generators, exist that cover some or all of the
aforementioned steps. The following generator programs are used in this thesis.

Sherpa is a multipurpose multi-leg generator [75]. It includes the simulation of parton-shower, had-
ronization and the underlying event and uses an extension of the CKKW approach for ME-PS
matching [76]. The hadronization is implemented using a cluster fragmentation scheme based
on the description in [77]. It can simulate the Wγγ process up to three additional partons and
includes photons from fragmentation and radiation.

AlpGen is a multi-leg generator [78], which simulates only the hard scatter. It is typically interfaced to
Herwig [79, 80] for the parton-shower and hadronization and Jimmy [81] for the underlying event.
However, any simulation program that supports interfacing can be used.

Pythia is a multipurpose simulation program, that includes several 2 → 2 processes at leading or-
der [82, 83]. It provides a full treatment of the parton-shower, hadronization and underlying
event. A pT-ordered prescription is used to model the parton shower, and the hadronization is
based on the Lund string model.

Mc@Nlo is a next-to-leading order generator [84], which simulates the hard-scatter and the parton-
shower. The matching is done using the Mc@Nlo technique. As in the case for AlpGen, the
hadronization and the underlying event are typically simulated using Herwig and Jimmy, respect-
ively.

Powheg is a next-to-leading order program [85], that simulates the matrix element and the parton-
shower. Normally, Pythia is used for the hadronization and the underlying event simulation. The
ME-PS matching is done using the Powheg method.

The result of the simulation of one proton-proton collision by these programs is typically a list of stable
particles that were produced, where a stable particle is defined as having a lifetime of cτ > 10 mm. To
be able to compare data and simulation, the interactions of these particles with the detector material and
the electronics of the detectors have to be simulated.
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4.2 ATLAS simulation framework

The ATLAS collaboration employs a multi-stage simulation infrastructure [86]. This means that the
simulation process is split into several consecutive steps, starting with the event generation, i.e. the
simulation of a hard scatter as described above. Afterwards, the interactions of the particles with the
detector material is simulated with the Geant4 program [67]. The result of this step are energy de-
posits in the sensitive detector material (hits) which are subsequently passed to the simulation of the
electronics. This step, the digitization, converts the hits to the detector signal, e.g. voltage or current, of
the particular sub-detector. After the digitization, the simulated events can be passed to the exact same
reconstruction algorithms used for real collision data. This ensures that both data and simulation are
treated completely identically. One notable exception is the truth record stored for simulated events,
which contains information about the process and final-state particles of the hard scatter as well as links
between energy depositions and incident particles that can be used for performance studies.

The presence of pile-up is taken into account in the simulation as described in [87]. Two types of pile-
up can be distinguished and are included differently. The first, in-time pile-up, i.e. additional particles
from multiple collisions in the same bunch crossing, is simulated by overlaying the hits from minimum
bias events before the digitization. The minimum bias events are simulated with Pythia 8. The effect
of collisions in neighbouring bunches, out-of-time pile-up, is considered by simulating proton bunches
which are organized in four trains of 36 bunches. The spacing between the bunches was set to 50 ns in
agreement with the bunch spacing used during the data taking.

The number of minimum-bias events overlaid in each simulated event is drawn from a Poisson dis-
tribution, whose mean is the average number of interactions per bunch crossing, 〈µ〉. Since the value of
〈µ〉 decreases during an LHC fill, the distribution of 〈µ〉 should be used in the simulation to determine
the number of overlay events. However, the simulation of events started well before the first collision
was recorded and the distribution of 〈µ〉 was yet unknown. Therefore values of 〈µ〉 between 1 and 40
have been simulated to cover the expected range of 〈µ〉 values at the LHC. To ensure a good pile-up
description, the simulated events are reweighted on an event-by-event basis to restore the distribution of
〈µ〉 observed in data.

4.3 Signal process simulation

The correction of the acceptance and efficiency of the event selection is determined using simulated
Wγγ events. The signal process has been simulated using Sherpa and AlpGen, the latter interfaced with
Herwig and Jimmy for the simulation of the parton-shower, hadronization and underlying event. The
sample simulated with Sherpa was chosen as the nominal sample, since the analysis of the Wγ process
showed that Sherpa provides a better description of the data [88]. The nominal sample is used to derive
the central value of the acceptance and efficiency correction. The sample simulated with AlpGen is
used to assess the systematic uncertainties on this corrections. The total number of events, N, the cross-
section, σ, and the integrated luminosity, Lint = N/σ, of the two samples is shown in Table 4.1. The
cross-section for the comparison of data to theory is provided by VbfNlo [35].

N σ [fb] Lint [fb−1]

Sherpa 350 · 103 162.4 2155.2
AlpGen 360 · 103 62.59 5751.7

Table 4.1: The total number of events, N, the cross-section,
σ, and the integrated luminosity, Lint = N/σ, of the signal
samples.
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CHAPTER 5

Object reconstruction

The energy depositions in the detector subsystems are used to reconstruct particle candidates. Ideally,
these candidates would have the same kinematic properties as the incident particle depositing the energy.
However, due to detector effects and stochastic fluctuations in the particle’s energy depositions, this is
in general not achievable. In addition, the particle type can only be determined with a probabilistic
approach leading to a trade-of between the reconstruction efficiency and the rejection of other particles
mimicking their signature.

The reconstruction algorithms are part of the Athena [89] software framework and maintained cent-
rally. This ensures that all results obtained within the ATLAS collaboration use consistent algorithms.
Furthermore, the development and performance studies of the algorithms are simplified. This chapter
provides details about the algorithms used to reconstruct and identify the particles relevant to this ana-
lysis, namely: photons, muons, jets and the missing transverse momentum.

5.1 Photons

The photon reconstruction and identification proceeds in two distinct steps: at first a list of photon can-
didates is reconstructed. In the second step various identification criteria are applied to these candidates.
The advantage is that each analysis can apply identification criteria specific to their needs. In the fol-
lowing the reconstruction and identification of photons will be briefly summarized, while more details
can be found in [63, 90, 91].

5.1.1 Photon reconstruction

Photons interact electromagnetically, hence their signature is a collimated energy deposition in the elec-
tromagnetic compartment of the calorimeter. Since they do not carry charge, no track that points to
the energy deposition is expected. As the inner detector of ATLAS has a large material budget (cf.
Section 3.2), about 40 % of all photons undergo a conversion into an electron-positron pair (conver-
ted photons) before they reach the calorimeter. Typically, the opening angle between the electron and
the positron is so small that they cannot be reconstructed separately. Using the above signature would
therefore exclude a large fraction of photons from being reconstructed because the electron-positron
pair might leave a track pointing to the energy deposition in the calorimeter. In order to recover con-
verted photons, energy deposition in the electromagnetic calorimeter which have an associated track
originating from a vertex within the volume of the tracker are also considered as photon candidates.

35



5 Object reconstruction

The photon signature is reconstructed in three steps: at first the energy deposition in the calorimeter
is reconstructed using a clustering algorithm. Then tracks from vertices within the tracker volume are
reconstructed [63]. At last the tracks are associated to the clusters. After the discussion of these three
steps in the following sections, the performance of the reconstruction chain will be presented.

Cluster reconstruction

Photons deposit their energy in many calorimeter cells. The combination cells such that their energy
reflects that of the incident photon is done by clustering algorithms. ATLAS uses the sliding window
clustering algorithm [92] to reconstruct photon candidates.It consists of two steps:

• Tower building: the electromagnetic calorimeter is divided into a grid of 51 200 towers of size
0.025×0.025 in η-φ space. The tower energy is defined as the sum of the energy in all cells inside
the tower. If a cell spans multiple towers its energy is divided among the towers according to their
fractional area.

• Seed Finding: a window of 3×5 towers is moved across each tower in the η-φ grid. If the sum of
the transverse energies of all towers in the window is a local maximum above 2.5 GeV a cluster is
formed. The η and φ position of the cluster is calculated as the energy-weighted barycenter of all
cells contained in the inner 3 × 3 towers to be less sensitive to noise. After all cluster have been
formed duplicate cluster are removed: if two clusters are closer to each other than 0.05 × 0.05 in
η-φ only the cluster with the larger transverse energy is kept.

Conversion vertex reconstruction

If the photon undergoes a conversion into an electron-positron pair inside the tracker, the location of the
conversion can be reconstructed by the intersection of the electron and positron track. The reconstruction
of conversion vertices therefore starts by selecting pairs of tracks with opposite sign and a small opening
angle in φ. The tracks considered need to have a minimum transverse momentum of pT > 0.5 GeV and
the transverse and longitudinal impact parameters must be compatible with the primary vertex of the
event. In addition, electron-like tracks are selected by requiring a large ratio of high-threshold TRT
hits. The combinatorial background for two track pairs is further reduced by requiring that the minimal
distance between both tracks is small. The track pairs remaining after this selections are used in a vertex
fit with the additional constraint that both tracks should have the same initial azimuthal and polar angle,
which reflects that the photon is a mass-less particle. The goodness-of-fit of this vertex fit allows to
further reduce the background from track pairs not originating from a photon conversion vertex. All
vertices passing the goodness-of-fit selection are called double-track conversion vertices and are stored
for later cluster matching.

A further complication arises since a significant number of converted photons leave only one track
in the inner detector. This can happen either because the electron-positron pair has an asymmetric mo-
mentum distribution rendering one of the two tracks as unreconstructable, or because the conversion
happens so late that the individual tracks cannot be resolved. In order to recover these single-track
conversions tracks that are not assigned to a double-track conversion vertex are selected if they do not
have a hit in the pixel vertexing layer and the ratio of high-threshold TRT hits is high. The position of
the single track conversion vertex is set to the innermost energy deposition associated with the track.
The importance of considering single-track conversions is shown in Figure 5.1. It shows the reconstruc-
tion efficiency for converted photons with pT > 20 GeV as function of the pseudo-rapidity obtained
from simulated events. The single-track conversions contribute between 20 % and 40 % to the total
reconstruction efficiency rendering them very important for the reconstruction of converted photons.
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Photon classification

Clusters that do not have an associated track either from the primary tracking or from a conversion vertex
are considered as unconverted photon candidates. In order to resolve the ambiguity between electrons
and converted photons, further steps are necessary. If the cluster is matched to a conversion vertex
it is generally considered as a converted photon candidate, otherwise it is considered as an electron
candidate1.

The association between calorimeter clusters and conversion vertices is based on the distance in η-φ
space. Therefore the tracks from the conversion are extrapolated from their last hit to the second
sampling of the electromagnetic calorimeter. The vertex is called matched if the extrapolated track
is closer than 0.05 in η-φ to the cluster position. The window is extended to 0.1 in φ on the side of
the cluster where bremsstrahlung losses are expected due to the bending of the track in the magnetic
field. Double-track conversion vertices where one of the tracks has a momentum, which is smaller by
at least a factor of four, are handled differently: a straight-line extrapolation from the conversion vertex
position with the track direction obtained from the vertex fit is used to determine the impact point in the
calorimeter and the same matching windows as above is used.

At this stage so-called cleaning cuts are applied to all photon candidates. Their purpose is to remove
photon candidates from non-collision energy depositions, e.g. cells with sporadic noise bursts which
produce a signal larger than 2.5 GeV and thus giving rise to a photon cluster. These clusters are re-
moved if more than 98 % of the cluster energy are deposited in the second layer of the electromagnetic
calorimeter, or more than 90 % for any other layer.

Photon calibration

The energy measurement of the photons is calibrated using simulated events. The simulation has been
validated and improved by performing a series of measurements with the calorimeter and the tracker [93,
94] with test beams. The energy determination comprises three different contributions each calibrated
separately: the energy deposited in front of the calorimeter and in the presampler Efront, the energy in
the electromagnetic calorimeter Ecal and the energy that leaked into the hadronic calorimeters Eback.
Each of these contributions is parametrized as function of the energy deposited, the position inside the
detector, and the particle type (i.e. converted or unconverted photon). For example, Efront is given as a

1 Some exceptions exists, full details can be found in [90].
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Figure 5.2: Expected ratio of reconstructed to true energy for unconverted (a) and converted (b) photons from
simulated events as function of the pseudo-rapidity and photon pT after the energy calibration has been applied.
Figure from [95].

second order polynomial in the energy deposited in the presampler Eps, where the coefficients have been
parametrized as a function of the deposited energy in the calorimeter, Ecal, and the pseudo-rapidity, η,

Efront = a (Ecal, η) + b (Ecal, η) Eps + c (Ecal, η) E2
ps . (5.1)

The sum of all three contributions, Efront, Ecal and Eback yields the total cluster energy. The ratio
between the reconstructed and the true particle energy is shown in Figure 5.2 for unconverted (a) and
converted (b) photons as a function of the pseudo-rapidity and photon pT. The deviation from zero is
within ±1 % for most of the simulated samples. Only in the region 1.7 < |η| < 2.2 for low photon
transverse momenta, the difference from zero reaches up to 1.5 % for converted photons.

Performance of the photon reconstruction

The performance of the photon reconstruction has been determined using a simulated H → γγ decays.
Only photons with pT > 20 GeV and within |η| < 2.37 are considered for this study. The overall re-
construction efficiency, defined as the ratio of the number of reconstructed to true photons, is found
to be (97.82 ± 0.03) %. Photons, which fall into the transition region between the barrel and end-cap
cryostat (1.37 < |η| < 1.52) are not considered in the calculation. The reconstruction efficiency for un-
converted photons amounts to (99.83 ± 0.01) % and is slightly higher than for converted photons, where
it is (94.33 ± 0.09) %. The photon reconstruction efficiency as function of the transverse momentum
and pseudo-rapidity of the true, simulated photon is shown in Figure 5.3 for unconverted and converted
photons as well as the combination of both types. The efficiency is almost flat in pT and the structure in
η reflects the material budget in front of the calorimeters.

5.1.2 Photon identification

After the photon reconstruction step only a small percentage of photon candidates stems from prompt
photons. Most photon candidates originate from neutral hadron decays (e.g. π0 → γγ) due to the
abundance of hadrons at a pp-collider. In addition, a small fraction of the photon candidates stems from
narrow jets of charged hadrons. These fake photons need to be distinguished from prompt photons in
order to properly select the Wγγ process. In ATLAS, this separation is achieved using selections on
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Figure 5.3: Photon reconstruction efficiency as function of the transverse momentum (a) and pseudo-rapidity (b)
of the true, simulated photon. In addition, the reconstruction efficiency is shown separately for converted- and
unconverted photons. The plots are from [90].

variables computed from the energy depositions in the calorimeter. In the following, these variables and
three specific selections, namely LOOSE, TIGHT and ANTITIGHT, will be described.

Calorimeteric variables

In total, nine variables are defined to discriminate prompt from fake photons. They can be divided into
three different categories:

Hadronic Leakage Rhad Showers from real photons are contained in the electromagnetic calorimeter,
while fake photons are often accompanied by other hadrons penetrating the electromagnetic calor-
imeter and depositing energy in the hadronic calorimeter. The ratio, Rhad, of the transverse energy
in the first sampling2 of the hadronic calorimeter to the transverse energy of the photon cluster,
thus separates prompt from fake photons. The considered energy in the hadronic compartment is
the sum of all cells in a window of 0.24×0.24 in η-φ around the cluster center. The separation can
be seen in Figure 5.4a showing the normalized distribution of Rhad for prompt photons and fake
photons for reconstructed photon candidates before any selection. As expected, the distribution of
Rhad for photon candidates from prompt photons shows a peak around zero and a negligible tail,
while the distribution for fake photon candidates shows a significant tail towards higher values.

Middle layer variables The following variables are calculated using the second longitudinal layer of
the electromagnetic calorimeter. They make use of the fact that fake photons are often accom-
panied by other hadrons and tend to yield broader showers, similarly to the hadronic leakage
described above.

• Rη: The ratio of energy deposited in the central window of 3 × 7 cells around the cluster
position with respect to the energy deposited in a window of 7 × 7 cells.

• Rφ: The ratio of energy deposited in the central window of 3 × 3 cells around the cluster
position with respect to the energy deposited in a window of 3 × 7 cells.

2 For photon candidates with 0.8 < |η| < 1.37 all layers of the hadronic calorimeter are used.
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• w2: The energy weighted lateral width of the shower calculated using the central window of
3 × 5 around the cluster position. The energy weighted lateral width is defined as

w2 =

√∑
i Ei (ηi − ηcluster)2∑

i Ei
, (5.2)

where Ei and ηi are the energy and pseudo-rapidity of cell i, respectively.

The first variable (Rη) is shown in Figure 5.4b for prompt and fake photons. As expected, the
distribution for prompt photons show a sharp peak around 1.0 confirming that the shower is con-
tained in the inner 3 × 7 cells. The distribution of fake photons shows a large tail towards smaller
values confirming that they yield broader showers.

Strip layer variables The first layer of the electromagnetic calorimeter is finely segmented in η (cf.
Section 3.2) and therefore can be used to discriminate directly between prompt photons and neut-
ral hadron decays. Fake photons are often found to have two maxima due to e.g. π0 → γγ decays.
Therefore the following variables operate on the cell with second highest energy found in a win-
dow of η-φ = 0.125 × 0.2 around the cell with the largest energy deposition.

• ∆E: The magnitude of the dip between the two maxima is computed as the energy difference
between the cell with the minimal energy and the cell with the largest energy. The cell with
the smallest energy between the two cells with the largest energy is considered as minimum.

• Eratio: The ratio of the energy difference between the cells containing the two highest ener-
gies over the sum of the energies. The distribution of Eratio is shown in 5.4c and it shows a
clear peak around 1.0 for real photons while the distribution for fake photons show a large
tail towards zero.

In addition, three more variables are calculated using the cells around the cell with the highest
energy deposition to cover cases where the two photons of the neutral hadron do not create two
distinct maxima:

• ws3: The energy weighted lateral shower width as defined above, calculated using three cells
around the cell with the largest deposited energy.

• wstot: The energy weighted later shower width calculated using all cells in the cluster.

• Fside: The fraction of the energy deposited outside the core of the cluster. The cluster core
is defined as the three cells containing the cell with the largest energy deposition.

Photon selections

Using these discriminating variables two different selections are defined , one high-efficiency selec-
tion (LOOSE) and one high-purity selection (TIGHT). Both will be briefly introduced in the following.
In addition, a special selection (ANTITIGHT) will be presented. The detailed selection criteria used for
each of these selections are given in [90].

The LOOSE selection
The LOOSE selection is based on the variables defined in the middle layer of the electromagnetic calor-
imeter (Rη, Rφ and w2) and the hadronic leakage (Rhad). The values have been optimized using simula-
tions. To account for differences in the showers shapes due to differences in the material in front of the

40



5.1 Photons

had
R

0.05 0 0.05 0.1 0.15 0.2 0.25

)
h
a
d

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

10

210
ATLAS Preliminary

Simulation

 (unconverted)γ

jets (unconverted)

ηR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

)
η

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

φ
R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

)
φ

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

2η
w

0 0.005 0.01 0.015 0.02 0.025

)
2

η
1
/N

 d
N

/d
(w

6
10

5
10

410

3
10

210

110

ratio
E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
ra

ti
o

1
/N

 d
N

/d
(E

3
10

210

110

E [MeV]∆

0 2000 4000 6000 8000

]
1

E
) 

[M
e
V

∆
1
/N

 d
N

/d
(

6
10

5
10

410

3
10

210

110

1

1η

totw

0 2 4 6 8 10 12 14

)
1

ηto
t

1
/N

 d
N

/d
(w

5
10

410

3
10

210

110

side
F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
s
id

e
1
/N

 d
N

/d
(F

410

3
10

210

110

1η

3w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
1

η3
1
/N

 d
N

/d
(w

5
10

410

3
10

210

110

(a)

had
R

0.05 0 0.05 0.1 0.15 0.2 0.25

)
h
a
d

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

10

210
ATLAS Preliminary

Simulation

 (unconverted)γ

jets (unconverted)

ηR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

)
η

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

φ
R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

)
φ

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

2η
w

0 0.005 0.01 0.015 0.02 0.025

)
2

η
1
/N

 d
N

/d
(w

6
10

5
10

410

3
10

210

110

ratio
E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
ra

ti
o

1
/N

 d
N

/d
(E

3
10

210

110

E [MeV]∆

0 2000 4000 6000 8000

]
1

E
) 

[M
e
V

∆
1
/N

 d
N

/d
(

6
10

5
10

410

3
10

210

110

1

1η

totw

0 2 4 6 8 10 12 14

)
1

ηto
t

1
/N

 d
N

/d
(w

5
10

410

3
10

210

110

side
F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
s
id

e
1
/N

 d
N

/d
(F

410

3
10

210

110

1η

3w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
1

η3
1
/N

 d
N

/d
(w

5
10

410

3
10

210

110

(b)

had
R

0.05 0 0.05 0.1 0.15 0.2 0.25

)
h
a
d

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

10

210
ATLAS Preliminary

Simulation

 (unconverted)γ

jets (unconverted)

ηR

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

)
η

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

φ
R

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

)
φ

1
/N

 d
N

/d
(R

6
10

5
10

410

3
10

210

110

1

2η
w

0 0.005 0.01 0.015 0.02 0.025

)
2

η
1
/N

 d
N

/d
(w

6
10

5
10

410

3
10

210

110

ratio
E

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
ra

ti
o

1
/N

 d
N

/d
(E

3
10

210

110

E [MeV]∆

0 2000 4000 6000 8000

]
1

E
) 

[M
e
V

∆
1
/N

 d
N

/d
(

6
10

5
10

410

3
10

210

110

1

1η

totw

0 2 4 6 8 10 12 14

)
1

ηto
t

1
/N

 d
N

/d
(w

5
10

410

3
10

210

110

side
F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
s
id

e
1
/N

 d
N

/d
(F

410

3
10

210

110

1η

3w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
1

η3
1
/N

 d
N

/d
(w

5
10

410

3
10

210

110

(c)

Figure 5.4: Distribution of calorimeteric variables used to discriminate between prompt (labelled γ) and fake
photons (labelled jets): (a) the distribution of Rhad, (b) the distribution of Rη and (c) the distribution of Eratio. From
[90].

calorimeter, the optimization is done nine different |η| regions. In addition, the selections are optimized
separately for converted and unconverted photons. The LOOSE selection provides an excellent efficiency
and moderate fake photon rejection. In the analysis presented in this work it is mainly used for the
preselection to reduce the amount of data that needs to be considered.

The TIGHT selection
The TIGHT selection is optimized to suppress the fake photons from jets containing high-energetic isol-
ated π0. It uses tighter selections on the variables used by the LOOSE selection and additionally includes
the variables defined in the strip-layer (∆E, Eratio, ws3, wstot and Fside). The selection criteria are separ-
ately optimized for seven |η| regions and for converted and unconverted photon candidates. For example,
this takes into account the larger shower width in φ since the electron-positron pair is bent in different
directions by the solenoidal magnetic field. The TIGHT selection is used throughout this work to identify
photons from the Wγγ process.

The ANTITIGHT selection
The ANTITIGHT selection is special compared to the LOOSE and TIGHT selections. Its purpose is to
select fake photons without biasing their properties, in particular the isolation described later, which
will be important to estimate the number of fake photons passing the TIGHT selection (cf. Section 7.1).
This is achieved by requiring that the photon candidates pass all selections imposed on TIGHT photon
candidates except that they have to fail at least one of the selections on Fside, ws3, ∆E and Eratio. The
reason for inverting these variables is that they only operate on the inner strip cells which are excluded
from the isolation calculation. Therefore to first order the isolation is independent from these variables.
In addition to the nominal ANTITIGHT selection, which inverts four selections, two similar definitions
are used for the study of systematic uncertainties later. The first one only inverts three selections, namely
Fside, ws3 and Eratio, and is therefore denoted as L′3. The second definition inverts the selection on all
five strip variables and is denoted as L′5.

5.1.3 Photon isolation energy

Beside the photon identification criteria mentioned above another possibility of separating prompt from
fake photons is the so-called photon isolation. The photon isolation does not operate on the shower
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properties of the photon candidate, but makes use of the event topology instead. The photon isolation
energy of a photon candidate, Eiso

T , is calculated as the sum of the transverse energies of topological
clusters [92] within a cone of ∆R < 0.4 around the cluster center.

In contrast to the sliding window clustering described above, the topological clustering groups neigh-
bouring calorimeter cells which have a significant energy deposition compared to their expected noise.
At first the cells are categorized by significance of their energy deposition |E|/σ, where E is the energy
deposited in the cell and σ is the expected noise. The clustering starts with cells having |E|/σ > 4,
then all neighbouring cells, lateral and longitudinal, with |E|/σ > 2 are added to the cluster. If no more
neighbouring cell exceeding |E|/σ > 2 can be found, cells with |E|/σ > 0 are added. In a last step
the cluster is split into sub-clusters according to local energy maxima. Each local energy maximum
above 500 MeV is used as seed for a new iteration of the topological clustering algorithm. The splitting
step improves the assignment of clusters to incident particles. The cluster energy is determined by the
sum of the energy of all cells contained in the cluster, and its direction is given by the energy weighted
barycenter of the calorimeter cells.

All topological clusters within a cone of ∆R < 0.4 around the cluster center are considered for the
photon isolation energy and the energy of the photon itself is removed. This is done by subtracting the
energy deposited in the central 5×7 (in η-φ) cells around the photon barycenter. At this stage the photon
isolation energy shows a small dependence on the pT of the photon due to lateral leakage of the photon
energy outside the central core. This is corrected by measuring the leakage as function of the photon pT
using simulated samples and removing it from the isolation energy.

Energy depositions from particles from the underlying event or pile-up may spoil the isolation energy
for real photons. Therefore the isolation energy is corrected for these effects using the ambient energy
correction [96], which is based on an in-situ measurement of the ambient transverse energy density from
underlying event and pile-up. It is computed from jets formed by a kt jet-finding [97, 98] algorithm using
topological clusters as input and without an explicit requirement on the jet transverse momentum. Each
jet is assigned an area such that every point inside the jet area is closer to the axis of the current jet than
to any other jet (Voroni tessellation). Then the ambient transverse energy density is taken as the median
of the transverse energy density of the jets computed as the ratio between the energy of the jet and their
area. Finally, the ambient transverse energy inside the photon isolation cone is calculated by multiplying
the area of the cone with the ambient transverse energy density and subtracted from the photon isolation
energy.

5.1.4 Corrections applied to the simulation

It is important that the ATLAS detector simulation models the distribution of the identification variables
well. Comparisons of the identification variables in data and simulation show that some differences
exists. These are corrected with the χ2 method which is described in [99]. A short overview is given
here.

The discrepancy between data and simulation is resolved by shifting the distribution in simulation by a
fixed amount, such that the agreement between data and simulation is maximized. Since the distribution
of the discriminating variables varies with the transverse momentum and the pseudo-rapidity of the
photon the shifts are derived in bins of pT and |η|. The simplest approach is to choose the value of the
shift such, that the mean of the distribution agrees, ∆µ = 〈data〉−〈MC〉. However, the mean of a variable
is very sensitive to the tails of the distribution and so is the correction, ∆µ. Therefore the optimal shift is
determined such that it minimizes the value of a χ2 test between the distributions. The value of χ2 test
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between two histograms, Hdata and HMC, is defined as

χ2 =
∑

b

(Hb
data − Hb

MC)√
σ2

data,b + σ2
MC,b

, (5.3)

where Hb is the value of bin b of the histogram H and σb is the corresponding uncertainty. The optimal
correction, ∆µ, is obtained as the value which minimizes χ2 and is applied to the simulation.

5.1.5 Performance of the photon identification for isolated photons

The photon identification efficiency for isolated photons has been measured in data using three different
methods [91]. In the following, one of the methods and the results will be briefly summarized.

The photon identification efficiency is determined using events with a very small fake-photon con-
tamination selected from radiative decays of the Z boson, i.e. Z → llγ. The selection of the photon
candidates is not based on the variables used for identifying photons described above, but on kinematic
quantities characterizing the three final state particles. Thus the selection allows for an unbiased estimate
of the photon identification efficiency.

Events are selected by requiring two isolated light leptons3 with opposite electric charge and an
isolated photon candidate with Eiso

T < 5 GeV. In radiative Z decays the photon is radiated from one of
the leptons. Since the photon is carrying away momentum, the di-lepton invariant mass is required to
be in a window 40 GeV < mll < 83 GeV below the mass of the Z boson, and the three-body invariant
mass must lie within 80 GeV < mllγ < 96 GeV around the Z mass. A bias on the identification variables
of the photon from overlapping showers in the calorimeter is avoided by requiring a minimal distance
of ∆R > 0.2 (0.4) between the photon and the muons (electrons). The purity of the photon candidates
after applying all selection criteria is estimated in data. It is found to be (98.3 ± 0.2) % in the muon- and
(97.4 ± 0.2) % int the electron channel [91].

The identification efficiency εID is defined as the fraction of photon candidates identified as TIGHT
among all photons. The weighted mean of the data-driven photon identification efficiency measurements
together with the simulation is shown in Figure 5.5 for unconverted photon candidates as function of ET
in four different η regions. In all η regions an overall increase of the efficiency with ET is observed. The
difference between data and simulation is larger for larger η, but mostly below 5 % excluding the region
|η| > 1.81 where the simulation overestimates the efficiency by up to 8 %. New measurements of the
photon identification efficiency using the dataset recorded in 2012 show that the agreement is improved
to be within 2.5 % [100]. The remaining difference is taken as a systematic uncertainty.

5.2 Muons

Muons traverse the ATLAS calorimeter without significant energy loss but deposit energy in the inner
detector and the muon spectrometer. The reconstruction of muons is thus based on tracks reconstructed
in these sub-detectors, which are combined to build the muon candidate. For this analysis, the tracks
in the muon spectrometer are reconstructed using the MuonBoy [101] algorithm, and the combination
with tracks from the inner detector is based on the statistical combination (STACO [102]) algorithm.

Track reconstruction in the muon spectrometer starts from a region of activity (ROA) identified by
the trigger system. Its size is roughly 0.4 × 0.4 in η-φ. All muon chambers overlapping with ROAs
are considered for the reconstruction of straight track segments connecting hits in two adjacent MDT

3 Light lepton only refers to electron and muons, due to experimental difficulties that arise in the reconstruction of τ leptons.
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Figure 5.5: The photon identification efficiency obtained from data and simulation in different rapidity regions.
The green band corresponds to the uncertainty of the measurement in data containing statistical and systematic
sources. For the simulation only statistical uncertainties are shown. From [91].

multi-layers. The close proximity of the hits and the reduced complexity legitimates the use of straight
tracks. In order to reject the contribution of track segments induced by noise the segments have to point
to the interaction point. The next step is to combine the track segments to a muon track taking into
account the influence of magnetic field on the muon. The track parameters are then determined by a fit
to the individual hits comprising the segments used to define the track. This two step procedure, finding
a track by combining straight track segments and measuring its parameters using the individual hits,
makes use of the full available information and at the same time reduces the computational complexity
required for a standard track reconstruction over the large distances covered by the muon system.

The combination of tracks from the inner detector (ID) and the muon spectrometer (MS) yields a
combined muon candidate. Instead of refitting the hits of both tracks, the STACO algorithm treats both
tracks as independent measurements of the same muon and combines their results statistically. The
algorithm starts by making pairs of ID- and MS-tracks based on a loose matching in η-φ. For each
of these pairs the track parameters are the sum of the ID- and MS-track parameters weighted by their
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respective uncertainty:
P =

(
C−1

ID + C−1
MS

)−1
·
(
C−1

ID · PID + C−1
MS · PMS

)
.

Here, P is the parameter vector for the combined track, PID (PMS) is the parameter vector of the ID (MS)
track with the covariance matrices CID (CMS). This definition ensures that each sub-detector is used in
the momentum regime it performs best, i.e. for pT < 80 GeV (pT < 20 GeV in the endcap) the ID
dominates the measurement, while for pT & 100 GeV the MS dominates [103]. The quality of the
combination is determined by the quadratic difference of the initial track parameters to the combined
track parameter weighted by their respective uncertainty:

χ2 = (P − PID)T ·C−1
ID · (P − PID) = (P − PMS)T ·C−1

MS · (P − PMS) .

The match is accepted if the χ2 value is below 30. In case multiple combinations are possible the one
with the lowest χ2 value is chosen. A few additional quality criteria are applied to the inner detector
track to take into account the status of the Pixel- and SCT system in the inner detector; for completeness
they are summarized in appendix A.1.

Besides combined muon candidates another type of muon is reconstructed by the STACO algorithm.
These segment tagged muons are reconstructed from the combination of an inner detector track to a track
segment. Using a track segment instead of a full muon spectrometer track improves the reconstruction
efficiency for muons in poorly instrumented detector regions or at low transverse momenta [103].

5.2.1 Performance of the muon reconstruction

The performance of the muon reconstruction has been measured in data [104]. In the following the
method and the results will be briefly summarized.

The determination of a reconstruction efficiency is based on a sample of events with prompt muons.
The selection of these events must provide a high-purity of real muons on the one hand and, on the other
hand, must not use the tested reconstruction algorithm in order to obtain an unbiased measurement. The
tag-and-probe method provides one way of such a selection. For this method, Z → µ+µ− decays are
selected by requiring two oppositely charged muon candidates whose di-muon invariant mass is close
to that of the Z boson. One of the muons, the so-called tag, is required to be a combined muon, i.e. a
muon where the combination of ID- and MS- tracks was successful. The other muon, denoted probe,
is selected using only information from the inner detector (muon spectrometer) if the efficiency of the
MS-(ID-)track reconstruction is to be measured. The efficiency of reconstructing an MS-track, εMS, can
then be defined as the ratio of probe muons with a reconstructed track to all probe muons:

εMS =
number of probe muons with reconstructed MS track

number of probe muons
.

The efficiency of the track reconstruction for the inner detector, εID, is defined similarly.
The muon reconstruction consist of three distinct steps, the ID-track reconstruction, the MS-track

reconstruction and the matching between ID- and MS-tracks. The total efficiency is obtained by mul-
tiplying the efficiencies of these individual steps. The resulting muon reconstruction efficiency is shown
as a function of pT and η in Figure 5.6. It does not depend on pT, but varies with η. The efficiency drop
observed at |η| ∼ 0 and |η| ∼ 1.2 corresponds to poorly instrumented regions of the muon system. The
agreement between data and simulation is within 2 % except the transition region between barrel and
endcap 1.1 ≤ |η| ≤ 1.3 where it is within 3 %. The simulation is corrected for the observed differences
as explained below.
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Figure 5.6: Reconstruction efficiency for combined muons as a function of pT (a) and η (b). Shown is the recon-
struction efficiency from data and simulation. From [104].

5.2.2 Corrections to the simulation

The simulation describes the data on the level of a few percent. However the remaining differences
would bias the estimation of the acceptance and efficiency for the Wγγ process (cf. Chapter 8). There-
fore the difference between the reconstruction efficiency measured in data and simulation shown in Fig-
ure 5.6 is corrected for by reweighting the distribution from simulation to match the one in data. In addi-
tion, the muon momentum scale and resolution have been measured using the Z pole in Z → µµ events
in data and simulation. Figure 5.7a shows the di-muon invariant mass distribution for isolated combined
muons with pT > 25 GeV measured in data and in the uncorrected simulation. The invariant mass
spectrum in simulation is slightly shifted towards larger masses and the width is smaller than the one
measured in data. The shift is treated by applying a scale correction to the momentum of the muons
from the simulation, and the resolution is worsened by smearing the momentum measurement such that
it matches the one in data. The effect of the corrections can be seen in Figure 5.7b, which shows the
di-muon invariant mass for data and the corrected simulation. A clear improvement, especially in the
ratio of data to simulation, can been seen in the region around the Z pole.

5.3 Jets

Quarks and gluons can not be observed directly, since they fragment and hadronize almost directly after
being produced. This leads to a collimated spray of hadrons, called a jet. Jets are defined using a jet
definition which gives a prescription on how to group particles into jets (the jet algorithm) and how to
assign a four-momentum to the jet (the recombination scheme). Jet definitions can normally be applied
to experimental measurements (e.g. calorimeter clusters or tracks) as well as the output of parton-shower
simulation and partonic calculations [105].

5.3.1 Jet definition

The jet algorithm used to define jets in this analysis is the anti-kt algorithm [106] implemented in the
Athena framework using the FastJet [107, 108] software package. Since the anti-kt algorithm is both

46



5.3 Jets

 [GeV]µµm

70 80 90 100 110

E
ve

nt
s/

G
eV

0

100

200

300

400

500

600

310×
Chain 1, CB muons

Uncorrected simulation

Data 2012

 PreliminaryATLAS
 = 8 TeVs

-1
 L = 20.4 fb∫

 [GeV]µµm
70 80 90 100 110

D
at

a/
M

C

0.95
1

1.05

(a)

 [GeV]µµm

70 80 90 100 110

E
ve

nt
s/

G
eV

0

100

200

300

400

500

600

310×
Chain 1, CB muons

Corrected simulation

Data 2012

 PreliminaryATLAS
 = 8 TeVs

-1
 L = 20.4 fb∫

 [GeV]µµm
70 80 90 100 110

D
at

a/
M

C

0.95
1

1.05

(b)

Figure 5.7: Di-muon invariant mass for isolated muons with pT > 25 GeV for 2012 data and uncorrected (a) and
corrected (b) simulation. The lower panel shows the ratio between data and simulation. From [104].

collinear (i.e. the collinear splitting of a particle leads to the same jets) and infrared safe (i.e. the emission
of soft gluons leads to the same jets) it is the standard jet algorithm used in ATLAS and CMS.

The anti-kt algorithm is a sequential recombination algorithm, meaning the jet is build by repeatedly
combining the closest pairs of objects until a stop condition is met. The combination of two objects
reduces the total number of objects by one. The measure of the distance di j between two objects i and j
is defined as:

di j = min
(
p−2

T,i, p−2
T, j

) ∆R2
i, j

R2 , (5.4)

where pT,i denotes the transverse momentum of object i, R is the distance parameter and ∆Ri, j is given

by ∆R2
i, j =

(
yi − y j

)2
+

(
φi − φ j

)2
. The recombination starts from the pair with the smallest distance di j

and is repeated until the smallest distance is larger than diB = p−2
T,i in which case the object i is declared

as jet. Two objects are combined by adding their four vectors, thus the four-momentum of the jet is
defined as the sum of the four-momenta of all the objects that have been combined to form the jet. As
soon as all objects have been declared as jets the algorithm stops.

Because of the negative exponents in min
(
p−2

T,i, p−2
T, j

)
and the weighting factor

∆R2
i, j

R2 , the anti-kt al-
gorithm starts by combining close-by, large transverse momentum objects, i.e. the jet grows outwards
around hard "seeds" [105]. The resulting jet is almost circular in y − φ space [106] and thus overcomes
the experimental problems the other algorithm of the sequential recombination family (e.g. kt [98] or
C/A [109]) face due to their irregular shape.

The jets used in this analysis were reconstructed with a distance parameter R = 0.4 using topological
clusters built from calorimeter cells as input (cf. 5.1).
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Jet calibration

The largest challenge of jet measurements is the determination of the jet energy scale (JES) calibration
and its uncertainty. The JES correction brings the energy measured in the calorimeter to the energy of
the particles forming the jet. The following section will shortly introduce how the JES corrections was
performed in ATLAS. More details can be found in [110], which presents the JES measurement for the
data collected in 2011 with

√
s = 7 TeV. The procedure for the data used in this analysis is identical.

The JES correction is necessary since the topo-clusters used as input to the jet algorithm are calibrated
at the electromagnetic scale (EM), i.e. the energy measurement of particles interacting electromagnet-
ically with the material in the calorimeter is correct. Due to the non-compensating nature of the ATLAS
calorimeter, the response to hadronic interactions is lower and has to be corrected. In addition, further
corrections are necessary to account for energy deposited in non-instrumented regions of the calorimeter
or particles that are not stopped in the calorimeters or particles that deposit their energy outside of the
jet.

The calibration procedure is based on correction factors derived from Monte Carlo simulation. These
correction factors are derived by comparing the energy of reconstructed jets to the true jet energy4 in
bins of Ejet and ηjet. Afterwards, the remaining differences between data and simulation are assessed by
measuring in-situ the double-ratio

< =

〈
pjet

T /pref
T

〉
data〈

pjet
T /pref

T

〉
MC

(5.5)

exploiting the transverse momentum balance between a jet (pjet
T ) and a reference object (pref

T ). The
overall correction applied to the jets in data is obtained by a weighted average of the results of various
in-situ techniques. The weights are proportional to the inverse of the squared uncertainties of these
measurements.

The in-situ measurements include for example the di-jet balance used to achieve an uniform response
over the full η-range of the ATLAS detector. In this case the reference object is a central jet (i.e.
|η| < 0.8) while the probe jet must be non-central. Another example of such a measurement is the Z–jet
measurement, which provides the overall energy scale. In this case the reference object is the Z boson
balanced by a recoiling probe-jet.

The uncertainty of the JES correction is determined by adding the uncertainty of the absolute cal-
ibration and the in-situ measurements in quadrature. The resulting fractional uncertainty as a function
of pjet

T is shown for two values of η in Figure 5.8. It is as low as 1 % for central jets in the range
55 GeV < pjet

T < 500 GeV and goes up to 6 % for forward low pT jets (pjet
T ' 25 GeV, |η| ' 4.0). For

jets above 1 TeV, the uncertainty increases since the statistical uncertainty of the in-situ measurements
is too high to give reliable results.

The calibration scheme outlined above achieves an average response close to unity for jets that are
well separated from other jets. However, the calorimeter response of jets changes if jets are nearby. In
addition, the jet response depends on the flavor of the initial parton due to changes in the parton shower
and fragmentation. The total uncertainty is almost doubled for low pT jets from semileptonic tt̄ decays,
but is negligible for transverse momenta greater than 200 GeV.

4 The energy of jets is built from stable simulated particles. In general particles with a lifetime of cτ > 10 mm are considered
stable. To ensure the calibration to the visible energy in the detector, muons and neutrinos are excluded from the particles
used to build the jet.
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Figure 5.8: The fractional jet energy scale uncertainty as a function of pjet
T for η = 0.5 (a) and η = 2.0 (b).

From [110].

5.4 Missing transverse momentum

The presence of weakly interacting particles (e.g. neutrinos from leptonic decays of W bosons) in the
final state of the hard-scatter gives rise to a momentum imbalance.The missing transverse momentum
is defined as the momentum imbalance in the transverse plane, i.e. the plane transverse to the beam
axis. In contrast to e+e− colliders only the momentum in the transverse plane is well defined for pp
colliders due to the unknown momentum fraction of the proton the partons involved in the interaction
carry. The vectorial momentum imbalance is determined by the negative vector sum of the momenta of
all particles detected in a collision. The missing transverse momentum vector (comprising only an x-
and y-coordinate) is denoted as Emiss

T with magnitude Emiss
T and azimuthal angle φmiss. The details of

reconstruction and performance of the missing transverse momentum in ATLAS is described in [111].
The missing transverse momentum reconstruction is based on reconstructed and calibrated particles.

It is calculated as the sum of several Emiss
T components, ET, i, each calculated considering only particles

of a specific type, i. The total transverse momentum imbalance can be written as

Emiss
T = Emiss

T, e + Emiss
T, γ + Emiss

T, τ + Emiss
T, µ + Emiss

T, jet + Emiss
T, soft . (5.6)

The particles must be above a certain transverse momentum threshold in order to be considered for
the calculation. This ensures that the particles are only used in a pT regime, where their calibration
is available, e.g. pT > 20 GeV for jets. Since neglecting low pT particles can give rise to a sizable
transverse momentum imbalance the last term in equation (5.6) contains all energy deposition in the
calorimeters and tracks from the inner detector not associated to any reconstructed particle.

49





CHAPTER 6

Event selection

Generally the event selection aims at picking events which originated from the studied process, while
rejecting events from other processes or spurious detector signals. For some inclusive analyses a suf-
ficient background rejection can already be achieved by very basic requirements on e.g. the operating
conditions of the detector. For the analysis presented here, however, the large difference between the
total proton-proton cross-section and the expected Wγγ production cross-section requires a background
rejection on the order of O(108). Given this huge rejection, the selection stability has to be carefully
monitored to ensure, that the changing data taking conditions do not bias the result.

At first, the dataset used for this analysis is presented. The selection criteria are introduced in the
second part of this chapter. The last part of this chapter is devoted to the studies carried out to ensure
that the selection is stable.

6.1 Collision data

The data used for the analysis presented in this thesis have been recorded by the ATLAS detector during
the year 2012 in proton-proton collisions at a center of mass energy

√
s = 8 TeV. The LHC has delivered

an integrated luminosity of 22.8 fb−1 of which the ATLAS experiment recorded 21.3 fb−1 during the
same time. This corresponds to a data-taking efficiency of more than 93 %. The small inefficiency
arises mostly from the time it takes until the tracking detectors operate at their nominal high-voltage
and the detector dead time.

During data-taking some detector component occasionally becomes unavailable rendering it unable
to record data. For example the readout electronics might have to be reset. Although this degrades
the quality of the data, data taking still continues, as not all physics analyses need all components of
the detector to be functional. Therefore all defects are stored such that their impact can be evaluated
afterwards [112]. The time granularity used to store the defects is the so called luminosity block (LB),
which normally lasts sixty seconds and is characterized by stable luminosity and detector conditions.

In this analysis all detector components are required to be fully functional. Technically this is
achieved by only considering data from luminosity blocks without known defects. This list (Good
Runs List [114]) is provided by the ATLAS Data Quality Group [115]. In total about 1 fb−1 of data
is not considered, leading to a total luminosity of 20.3 fb−1 used for this analysis. A summary of the
performance of the LHC and the ATLAS detector is presented in Figure 6.1. It shows the luminosity
delivered, recorded and recorded without detector defects as a function of time.
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Figure 6.1: The total integrated luminosity delivered
by the LHC (green) and recorded by the ATLAS de-
tector (yellow) excluding detector defects (blue) as a
function of time for proton-proton collision at

√
s =

8 TeV during the year 2012. Figure from [113]

A prescaled trigger cannot be used for the se-
lection of the Wγγ process due to the low cross-
section. Therefore the only available triggers are
a single-muon trigger with a threshold of 24 GeV
or a di-photon trigger with a threshold of 40 GeV.
The high thresholds associated with these triggers
will reduce the number of observed events mak-
ing an observation of the Wγγ final state more
difficult. Therefore a new trigger was developed
and studied during the course of this thesis spe-
cifically for the Wγγ analysis. It selects data by
requiring one muon and two photons1. The ad-
vantage over the existing trigger is that the three-
object trigger runs unprescaled with lower trans-
verse momentum thresholds of 18 GeV for the
muon and 10 GeV for the photons.

The benefits of this trigger have been studied
using simulated Wγγ events. The author showed,
that the usage of the three-object trigger increases the number of selected events by 27 % compared
to the available triggers [116]. This is a significant improvement of the total rate, which boosts the
sensitivity of the measurement presented here. In addition, the expected rate of the new trigger has been
studied with pp-collisions recorded in 2011 at

√
s = 7 TeV. Since the expected rate was well below

1 Hz and the improvement for the analysis significant the trigger was endorsed for the 2012 data taking
period. It ran unprescaled for the whole year with an average rate of about 0.7 Hz and is the primary
trigger used for this measurement.

6.2 Analysis selection

The selection criteria employed can be broadly separated into two categories: event-based and object-
based. The event-based criteria ensure that the studied event is a genuine collision event recorded at a
time when the detector was fully operational. The object-based criteria are applied to objects, which are
reconstructed as described in Chapter 5.

6.2.1 Event-based selection criteria

Collision vertex

To ensure that the energy depositions originate from a proton-proton collision, the event is required
to contain a well-measured primary collision vertex [117]. It is defined as the vertex which has the
maximum sum of the pT of the associated tracks among all vertices reconstructed. The primary vertex
is considered as well-measured if at least three tracks with pT > 500 MeV are associated to it.

Detector defects in single events

In addition to the detector defects spanning multiple events described above, data corruption can occur
on an event-by-event basis, for example short noise bursts in the calorimeters. It would be very ineffi-

1 The trigger item is called EF_mu18_2g10_medium.
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cient to reject the whole luminosity block containing such an event. Therefore the status of the major
detector components is stored for each event. For this analysis only completely recorded events not
corrupted by LAr noise bursts or readout problems of the tile calorimeter are considered.

6.2.2 Object-based selection criteria

The object-based selection criteria select the Wγγ final state, where the W bosons decays into a muon
and a neutrino. In addition, one or more jets may be present due to contributions from real radiation
in QCD. The muon, photons and jets are reconstructed from energy deposition in the different detector
subsystems as described in Chapter 5. The neutrino cannot be reconstructed directly, but it gives rise to
a transverse momentum imbalance (cf. Section 5.4).

Spurious jet rejection

The data contain a small fraction of jets which are reconstructed from cosmic ray showers, beam-
induced background or localized noise bursts in the calorimeters. These fake jets will lead to a substan-
tial transverse momentum imbalance although the hard scatter did not contain any invisible particles.
Therefore events containing fake jets with pT > 20 GeV are not considered for this analysis. Details on
the identification of fake jets are given in appendix A.2.

W boson selection

Events are selected by requiring a combined muon (cf. Section 5.2) with pT > 20 GeV and within the
acceptance of the inner detector |η| < 2.5. In addition, the events are required to have Emiss

T > 25 GeV
to account for the neutrino escaping detection. The pT threshold of the muon is chosen such that the
efficiency of the trigger reaches the plateau as this facilitates the treatment of the trigger efficiency.
Events that contain a muon and transverse momentum imbalance from other sources than the decay of
a W boson are suppressed by requiring that the transverse mass mT is above 40 GeV. The transverse
mass of the muon-neutrino system is commonly used at hadron colliders to replace the invariant mass
when invisible particles are involved2. For this analysis it is defined as

mT = 2pµTEmiss
T (1 − cos ∆φ) , (6.1)

where pµT is the transverse momentum of the muon and ∆φ is the difference in azimuthal angle between
the muon and the direction of the missing transverse energy. Figure 6.2a shows the distribution of mT
for simulated W boson and di-jet production. One can clearly see the separation between these two
samples above about 40 GeV.

A selection on the muon isolation as well as the muon impact parameter helps to further reduce events
containing non-prompt muons, e.g. muons from the decay of a B meson. The lifetime of B mesons is
orders of magnitude larger than that of W bosons, which allows them to travel a measurable distance
from the interaction point before they decay. In addition, muons from hadron decays are accompanied
by other hadrons from the decay that leave additional energy deposits in the vicinity of the muon. These
properties of non-prompt muons are exploited as follows: first the transverse impact parameter, d0, and

2 As explained in Section 5.4 the z-component of the momentum imbalance is unknown at hadron colliders rendering the
invariant mass useless if invisible particles are involved.
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Figure 6.2: Transverse mass (a) and relative muon isolation (b) distribution for simulated W boson and di-jet
production. The cut value is indicated by the vertical blue line and the arrow indicates the events that are kept
after the respective selection.

the longitudinal impact parameter, z0, are required to be compatible with the primary vertex

d0 < 3σd0 (6.2)

z0 sin(θ) < 0.5 , (6.3)

where σd0 is the uncertainty of d0 obtained from the track fit and θ is the angle between the muon track
and the beam direction. And secondly, the pT sum of all tracks within a cone with an opening angle of
0.2 in η-φ around the muon track is required to be less than 15 % of the muon momentum. That is

piso
T,µ =

∑
i

pi
T < 0.15pµT , (6.4)

where i runs over all tracks inside the cone.

Figure 6.2b shows how well the muon isolation separates prompt and non-prompt muons. It displays
the relative muon isolation for events with muons passing the kinematic selection and the Emiss

T and
mT requirements outlined above. The separation between non-prompt muons from simulated di-jet
production and prompt muons from the decay of a W boson is clearly visible.

Additional muon veto

Events that contain at least one additional muon with pT > 7 GeV and |η| < 2.5 are rejected if they
are compatible with the primary vertex using the criteria on the transverse and longitudinal impact
parameters as described above. Not considering events with additional muons suppresses events where
the muon stems from the decay of a Z boson or where multiple weak bosons have been produced
simultaneously, for instance WW or WZ production. In contrast to the W boson selection above, segment
tagged muons (cf. Section 5.2) are also considered. This increases the rejection of Z boson decays even
further and does not reject events from Wγγ production.
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Photon selection

Two TIGHT photons with ET > 20 GeV and within |η| < 2.37 are required. Photons in the transition
region between the barrel and endcap calorimeter (1.37 < |η| < 1.52) are excluded, since the additional
non-instrumented material in front of the calorimeter does not allow for a sufficiently precise photon
reconstruction. The ET threshold is set to 20 GeV, to use the same phase-space region as the measure-
ment of Wγγ in the electron decay channel of the W boson. Both photons are required to be isolated,
i.e. Eiso

T < 4 GeV, to obtain a further reduction of non-prompt photons from neutral hadron decays. To
avoid an overlap between the isolation cones of the two photons the distance in η-φ space between them
must be larger than ∆R > 0.4.

As discussed earlier, a significant part of the photons is radiated from the charged lepton. Since
the probability of photon radiation decreases quickly with the angle between the muon and photon
directions, only events where both photons are well separated from the muon are considered. This
ensures that the measured cross-section is not dominated by the well known bremsstrahlung process
and is sensitive to the more interesting gauge boson interactions. The value of the distance cut was
set to ∆R > 0.7 in order to cover a similar phase-space region as measurements of the Wγ and Zγ
cross-section published earlier [88, 118, 119].

Inclusive and exclusive selection

As discussed earlier, the theoretical prediction of the Wγγ final state may be affected by large NNLO
QCD corrections [120]. Since perturbative calculations at NNLO precision in the strong coupling are not
yet available, this cannot be accounted for properly. On the other hand neglecting these large corrections
may lead to a spurious claim for new physics phenomena.

To account for this, the analysis is carried out using two different jet selections. The inclusive selection
does not restrict the number of jets and is therefore susceptible to the large corrections mentioned above.
The exclusive selection requires that no jet is present in the event. In this case the NNLO contribution to
the exclusive cross-section is reduced to virtual two-loop corrections, which are expected to be smaller
as discussed in Chapter 2.

The jets considered in this analysis are required to have pT > 30 GeV, |η| < 4.4 and are required to
be well separated from the muon and the photons, ∆R(j, µ/γ) > 0.3. To further suppress jets originating
from another interaction during the same bunch crossing (i.e. from in-time pile-up) a significant fraction
of the jet energy carried by charged particles is required to originate from the primary interaction. This
is measured using tracking and vertexing information from the inner detector. The sum over the pT
of all tracks associated to the jet originating from the primary vertex must be at least 50 % of the sum
over the pT of all tracks associated to the jet. This jet vertex fraction requirement is only applied to jets
within |η| < 2.4, since tracks can only be reconstructed within the η coverage of the inner detector.

6.2.3 Summary

From the events the ATLAS detector recorded in 2012, 112 events remain after the inclusive selection
described above has been applied. After the additional jet veto, which defines the exclusive selection,
54 events are selected. The number of events rejected by the individual selection criteria and the number
of events remaining are listed in Table 6.1 for both selections. The selection only keeps about 1 × 10−5 %
of the recorded events. The rejection is dominated by the trigger requirements which alone rejects about
7 × 108 events.
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Selection Events remaining Events rejected

Recorded (egamma stream) 732026805 —
Good Runs List 701620359 30406446
Collision vertex 700616152 1004207
Trigger 1340764 699275388
Detector status 1337941 2823
Spurious jet veto 1332289 5652
µ selection 175236 1157053
Emiss

T , mT selection 69123 106113
Additional muon veto 63575 5548
One photons 4116 59459
Two photons 112 4004

Inclusive selection 112 —
Exclusive selection 54 58

Table 6.1: The number of events remaining and rejected after the application of the different selection criteria.

6.3 Selection stability

A selection has to be very carefully monitored. For example already a small change in the muon re-
construction caused by the varying data taking conditions will affect the cross-section measurement if
it remains unnoticed. Therefore the event yield, i.e. the number of events per integrated luminosity, has
been studied as function of different observables that characterize the data-taking.

The ATLAS data-taking is organized in periods, which represent time windows of continuous run-
ning. During 2012, eleven periods have been defined, of which ten have been used in this analysis. The
event yield normalized to one fb−1 for these ten periods is shown in Figure 6.3 after the inclusive (a) and
the exclusive (b) selection. The data shows no hints for a time dependence. To quantify this qualitative
observation a χ2-test has been used to test the compatibility of the data with a time independent event
yield. Values of χ2/NDF = 8.1/9 for the inclusive and χ2/NDF = 4.3/9 for the exclusive selection have
been found. They confirm the initial observation of a time-independent selection efficiency.

The stability of the selection was monitored using the average number of interactions per bunch
crossing (〈µ〉), as a measure for the pile-up. Figure 6.4 shows the event yield per fb−1 for the inclusive (a)
and exclusive (b) selection as a function of 〈µ〉. Again, a χ2-test was confirms the data are independent of
〈µ〉, with a value of χ2/NDF = 3.0/4 for the inclusive and χ2/NDF = 3.8/4 for the exclusive selection.
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Figure 6.3: The event yield as function of the data-taking period after the inclusive (a) and exclusive (b) selection
has been applied.
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Figure 6.4: The event yield as function of the average number of interaction per bunch crossing, 〈µ〉, after the
inclusive (a) and exclusive (b) selection has been applied.
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CHAPTER 7

Background estimation

The object reconstruction and the event selection is a compromise between the selection efficiency
of events from the signal process and the rejection of events from other processes. It is in general not
possible to select a pure sample of signal events with a reasonable efficiency. The remaining contribution
from background processes has to be estimated and then subtracted from the number of observed events
to obtain a meaningful measurement of the cross-section.

For the measurement presented in this thesis, the background events that remain after the selection
described in Chapter 6 can be broadly classified into three categories:

• Events that contain mis-identified photons. The dominant background source are W(γ)+jets
events where one or both of the selected photon candidates stem from the decay of a neutral
meson produced as part of a jet. For the photon to pass the identification criteria, the meson has to
carry most of the jet momentum. For this rare topology, the fragmentation functions of quarks and
gluons into hadrons are poorly constrained by experiments. Therefore estimating this background
contribution using simulated events is not feasible due to the large uncertainties associated with
the fragmentation functions. Instead it is estimated using the data as detailed in Section 7.1.

• Events where the muon comes from the fragmentation of a heavy-flavour quark. Although these
events do not contain genuine Emiss

T , the large production cross-section of γγ+jets compared to
Wγγ final states results in a sizable amount of background events. As above, the use of simulated
events to estimated this background contribution is not appropriate, since the modelling of fake
Emiss

T in the simulation is difficult. Therefore it is also estimated from data. The method and
results of this estimation are described in Section 7.2.

• Events that contain two photons and a muon that do not originate from a Wγγ process. For
example Zγγ events, where one of the muons is not reconstructed or tt̄ events with two real
photons. The contribution from this type of background processes is estimated using simulated
events. This is justified, because it only contains real photons and muons. The details for this
background estimation are given in Section 7.3.

Finally, the measured number of signal and background events will be presented in Section 7.4 together
with the comparison of kinematic properties between the data and simulated Wγγ events.
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Figure 7.1: (a): Typical distribution of the transverse isolation energy for real and fake photons. (b): Illustration
of the idea of the template-fit in one dimension.

7.1 Mis-identified photon background

Jets can fake a photon signature in rare cases, giving rise to fake photons. Events that contain fake
photons cannot be suppressed entirely by applying tighter selection criteria on the photon. Therefore the
number of events that contain one or two fake photons and pass all selection criteria has to be estimated.
Due to the large uncertainties associated with the simulation of this rare fake-photon topology, the
estimation is done using a data-driven method. It exploits that the distribution of the transverse isolation
energy is different for real and fake photons, where the latter tend to be less isolated.

Typical isolation distributions of real and fake photons are shown in Figure 7.1a. The distributions
are clearly distinct, but because of the large overlap they cannot be used to separate real from fake
photons on an event-by-event basis, without removing most of the real photon contribution. Instead, a
probabilistic approach, the template-fit, is adapted to estimate the contribution of fake photons in data. If
the distributions of the transverse isolation energy for real and fake photons are known by some auxiliary
measurement, their respective normalization can be varied such that the best agreement with the data is
obtained. Since the isolation distributions are considered as fixed and only their normalization is varied,
they are called templates. This idea is illustrated in Figure 7.1b, where an example using toy-data and
the isolation distributions of Figure 7.1a is shown. For the normalization of the isolation distributions
chosen here, the sum of both describes the toy data best. In this example, 25 % of all events can be
accounted to a fake photon.

Since the final-state considered in this analysis consists of two photons, the template-fit method has to
be extended to two dimensions. This method was first developed for the ATLAS di-photon cross-section
measurement [121, 122]. At first, the general method is described. Afterwards, the determination
of the templates and corrections to account for the contamination of the fake-photon templates with
real photons are discussed. At last, the results of the method and the assessment of the statistical and
systematic uncertainties are provided.
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7.1 Mis-identified photon background

7.1.1 General method

The selection of the photon candidates described in Section 6.2, contains a requirement on the transverse
isolation energy, Eiso

T < 4 GeV. Since this method exploits the differences of the isolation distribution
between real and fake photons, which are most prominent at larger values of Eiso

T , the isolation require-
ment is relaxed for the estimation of the fake photon background contribution. Thus all events passing
the nominal selection, excluding the isolation requirement of the two photon candidates, are considered
for the method. These events can be divided into four different categories according to the origin of
the photon candidates. Events with two real photons are denoted as γγ, while events with one photon
candidate stemming from a jet are denoted γj (jγ) when the leading (subleading) photon is real. The last
category consists of events where both photons stem from a jet. These events are denoted jj throughout
this document. By using this categorization, the two-dimensional Eiso

T distribution, I(Eiso,1
T , Eiso,2

T ), can
be modelled by the sum of four isolation templates, F, each normalized with the number of events in
the respective category, W,

I(Eiso,1
T , Eiso,2

T ) =WγγFγγ(Eiso,1
T , Eiso,2

T ) + WγjFγj(E
iso,1
T , Eiso,2

T )+

+WjγFjγ(Eiso,1
T , Eiso,2

T ) + WjjFjj(E
iso,1
T , Eiso,2

T ) .
(7.1)

When properly normalized, the templates can be considered as two-dimensional probability density
functions (p.d.f.) of the transverse isolation energies.

Equation 7.1 can be simplified using the observation that the isolation energy of the two photons
is independent for events with at most one fake photon [122]. This allows to write the corresponding
p.d.f.’s as the product of two one-dimensional p.d.f.’s, i.e. Fγγ = Fγ,1 · Fγ,2. For events with two fake
photons the isolation energy of the two photons is not independent due to the potential color connection
between the jets which fake the photons. Thus the corresponding p.d.f. cannot be factorized in order to
take into account the correlation. Hence, Equation 7.1 can be re-written as:

I(Eiso,1
T , Eiso,2

T ) =WγγFγ,1(Eiso,1
T , Eiso,2

T )Fγ,2(Eiso,1
T , Eiso,2

T )

+WγjFγ,1(Eiso,1
T , Eiso,2

T )Fj,2(Eiso,1
T , Eiso,2

T )

+WjγFj,1(Eiso,1
T , Eiso,2

T )Fγ,2(Eiso,1
T , Eiso,2

T )

+WjjFjj(E
iso,1
T , Eiso,2

T ) ,

(7.2)

where Fγ,1 and Fγ,2 are the one-dimensional real photon isolation p.d.f.’s for the leading and subleading
photon, Fj,1 and Fj,2 are the one-dimensional isolation p.d.f.’s for a jet faking the leading or the sub-
leading photon, respectively, and Fjj is the two-dimensional jj isolation p.d.f. used when both photon
candidates are fake.

The signal (Wγγ) and background (Wγj, Wjγ, Wjj) yields can be obtained by fitting I(Eiso,1
T , Eiso,2

T ) to
the data, i.e. by maximizing the agreement between the observed two-dimensional isolation distribution
and I(Eiso,1

T , Eiso,2
T ). This is done by searching the values of ~θ = (Wγγ,Wγj,Wjγ,Wjj) for which the

likelihood L(~θ | ~x1, ~x2, . . .) is a maximum, given the observed data ~xi = (Eiso,1
T, i , E

iso,2
T,i ), where i runs over

all observed events. The likelihood contains two terms:

L(~θ | ~x1, ~x2, . . .) = PWtot(N) ·
N∏

i=0

Ftot(~xi|~θ) (7.3)
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with

Wtot = Wγγ + Wγj + Wjγ + Wjj (7.4)

Ftot(E
iso,1
T , Eiso,2

T ) =
I(Eiso,1

T , Eiso,2
T )!

I(Eiso,1
T , Eiso,2

T )dEiso,1
T dEiso,2

T

. (7.5)

Here, Ftot(E
iso,1
T , Eiso,2

T ) is the normalized, two-dimensional Eiso
T distribution.

The first term in Equation 7.3, PWtot(N), is the Poisson probability of observing N events when Wtot
events were expected. It is sensitive to the overall normalization. The second term,

∏N
i=0 Ftot(~xi|~θ),

describes the shape of the isolation distribution and is sensitive to the relative contribution of the different
event categories.

As explained above the data considered for the fit is selected without the Eiso
T < 4 GeV requirement

for the two photons. The result of the fit is therefore the number of events for each category which
pass the full selection without considering the photon isolation. The cross-section will be presented in
a phase-space region with isolated photons, the fraction of events which fulfill Eiso

T < 4 GeV has to be
obtained. Since the isolation p.d.f.’s are known, the number of events considered for the calculation of
the cross-section can be easily obtained, as

Wsig = W ·

4 GeV"
−∞

F dEiso,1
T dEiso,2

T . (7.6)

With this approach the estimation of the fake photon background contribution has been reduced to the
determination of the isolation distribution for real and fake photons. The method used to determine the
templates is not relevant as long as the template describes the data well. Thus it is possible to determine
the templates for real photons from simulation, while the templates for fake photons are determined
from data. Consequently the fake photon background estimation does not rely on the description of fake
photons in the simulation.

7.1.2 Determination of the templates

The maximum likelihood fit in the form given above is an unbinned fit, i.e. the templates F must be
available in their functional form. The advantage of an unbinned is that it performs better than binned
fits if the number of events is small, whereas the functional form of the templates has to be extracted
from the histogrammed data. This is done by with a fit assuming a functional form which has been
found to describes the data well.

Real photon templates

The photon isolation p.d.f.’s Fγ,1 and Fγ,2 are determined using simulated Wγγ events. All events
passing the analysis selection without the Eiso

T requirement are considered. The Eiso
T distribution is found

to be well described by a Crystal-Ball line-shape [123], which is therefore used as the functional form
of the template. Figure 7.2a and (b) shows the Eiso

T distribution for the leading (a) and subleading (b)
photon. In addition, the fitted Crystal-Ball line-shape, which describes the simulation well, is shown.
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Figure 7.2: The Eiso
T distribution for the leading (left) and subleading (right) photon selected using the inclusive

selection from simulated Wγγ events (top) and data (bottom). The solid line shows the photon isolation p.d.f.’s.
The corresponding distributions for the exclusive selection are shown in Figure A.5 and A.6.
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Figure 7.3: The two-dimensional Eiso
T distribution for the jj-p.d.f. selected using the inclusive selection, (a) in the

AA sample, and (b), the corresponding smoothed p.d.f. Fjj. The two-dimensional Eiso
T distribution obtained using

the exclusive selection and the corresponding p.d.f. are shown in Figure A.7.
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7 Background estimation

Fake photon templates

The isolation p.d.f. for jets that fake a photon signature Fj,1 (Fj,2) is determined from data control regions
enriched in events where the leading (subleading) photon candidate is a fake photon. In order to obtain
such a control region, the TIGHT (T) identification requirement for the photon candidate under study is
replaced by the ANTITIGHT (A) requirement. As explained in Section 5.1, the ANTITIGHT selection was
specially designed to select fake photons without biasing the calorimeteric isolation. In the following,
events with both photons passing the TIGHT identification requirement are denoted as TT, while events
with the leading (subleading) photon candidate passing TIGHT and the other one passing ANTITIGHT
will be denoted as TA (AT).

The events used for the extraction of the isolation p.d.f. are required to pass all selections up to the
photon identification, but for the leading (subleading) candidate the AT (TA) sample is used instead
of the TT sample. The events are selected using the unprescaled single muon triggers with the lowest
transverse momentum threshold1, since the nominal trigger requires the photon candidates to pass a
quality selection which biases the ANTITIGHT definition.

The Eiso
T distributions of γj and jγ events are modelled by a Novosibirsk function[124]. The Eiso

T dis-
tributions for both samples are shown in Figure 7.2c and (d) together with the template.

Finally, the two-dimensional jj-p.d.f. is derived from data using the AA sample, i.e. both photon
candidates are required to fulfill the ANTITIGHT criteria. Given the limited statistics available, the two-
dimensional Eiso

T distribution is smoothed using an adaptive kernel estimate technique implemented in
the RooFit framework [125]. The two-dimensional Eiso

T distribution and the resulting smoothed p.d.f.
are shown in Figure 7.3.

7.1.3 Signal-leakage corrections

The control regions used for the jet template extraction contain a small but non-negligible amount of
real photons. This signal-leakage into the control regions has to be corrected for, otherwise it would
change the templates such that the number of events with two real photons would be underestimated.
The fraction of real photons passing the ANTITIGHT selection can be estimated using simulated events
and then taken into account by correcting the yields accordingly. The data used to obtain the fake photon
templates contains real and fake photons. Therefore the isolation templates do not coincide with the fake
photon p.d.f.’s, but instead are the sum of real and fake photon p.d.f.’s. This is taken into account by
re-expressing the templates obtained from the control regions, Fb,1, Fb,2 and Fbb, as the sum of the real-
and fake photon p.d.f’s

Fb,i =αiFγ,i + (1 − αi)Fj,i i ε {1, 2} , (7.7)

Fbb =(1 − α′1 − α
′
2 − α

′
3)Fjj + α′1Fγ,1Fj,2 + α′2Fj,1Fγ,2 + α′3Fγ,1Fγ,2 , (7.8)

where α1 is the fraction of γγ events in the AT control region and α2 is the same fraction in the TA
control region. The fraction of events containing real photons in the AA control region is denoted as α′1
for events where the subleading photon is real, α′2 for events where the leading photon is real and α′3 for
events with two real photons.

To use the fit with the templates obtained from the control regions as explained before, the two di-
mensional isolation distribution of equation (7.2) has to be written in terms of the measured background

1 EF_mu24i_tight OR EF_mu36_tight
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7.1 Mis-identified photon background

templates. After reordering the different terms, one obtains

WtotFtot = wγγFγ,1Fγ,2 + wγjFγ,1Fb,2 + wjγFb,1Fγ,2 + wjjFbb (7.9)

with

wγγ = Wγγ

−
α′3

1 − α′1 − α
′
2 − α

′
3

Wjj

−
α1

1 − α1

(
Wγj −

α′1
1 − α′1 − α

′
2 − α

′
3

Wjj

)
−

α2

1 − α2

(
Wjγ −

α′2
1 − α′1 − α

′
2 − α

′
3

Wjj

)
wγj =

1
1 − α1

(
Wγj −

α′1
1 − α′1 − α

′
2 − α

′
3

Wjj

)
wjγ =

1
1 − α2

(
Wjγ −

α′2
1 − α′1 − α

′
2 − α

′
3

Wjj

)
wjj =

1
1 − α′1 − α

′
2 − α

′
3

Wjj .

The fraction of real photon events α can be written as a function of the yields W together with the
efficiency of the ANTITIGHT selection from simulated events

α1 =

NAT
γγ

NTT
γγ


MC

Wγγ

NAT , α2 =

NTA
γγ

NTT
γγ


MC

Wγγ

NTA (7.10)

α′1 =

NAA
γj

NTT
γj


MC

Wγj

NAA , α′2 =

NAA
jγ

NTT
jγ


MC

Wjγ

NAA , α′3 =

NAA
γγ

NTT
γγ


MC

Wγγ

NAA . (7.11)

Here NX
i j,MC is the number of events of category i j in the sample X measured in Monte Carlo simulated

events and NX is the number of events in the sample X measured in the data.
The inputs used for the signal-leakage corrections are shown in Table 7.1 for simulated Wγγ events

and in Table 7.2 for simulated Wγ events. For the former, the results from Sherpa and AlpGen are
shown, while for the latter only AlpGen was available, as explained in Section 4.1. The ANTITIGHT
ratios obtained from different Monte Carlo samples agree within their statistical uncertainties. Table 7.3
lists the number of events measured in the control regions using the inclusive and exclusive selection.

7.1.4 Results of the template-fit method

The results of the two-dimensional fit, performed on the 181 (78) events in the TT sample selected
using the inclusive (exclusive) selection, are shown in Table 7.4. The event yields in the signal region
are provided as well. Projections of the resulting two-dimensional Eiso

T distributions on the transverse
isolation energies of the two photon candidates are shown in Figure 7.4. As explained above events
with two real photons, i.e. the γγ component, does not correspond to the Wγγ signal at this stage, since
events from other process can contain two real photons as well.
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coefficient
inclusive exclusive

Sherpa AlpGen Sherpa AlpGen(
NAT
γγ

NTT
γγ

)
MC

0.035 ± 0.003 0.030 ± 0.003 0.034 ± 0.005 0.035 ± 0.005(
NTA
γγ

NTT
γγ

)
MC

0.059 ± 0.004 0.061 ± 0.004 0.066 ± 0.007 0.070 ± 0.008(
NAA
γγ

NTT
γγ

)
MC

0.003 ± 0.001 0.001 ± 0.001 0.004 ± 0.002 0.002 ± 0.001

Table 7.1: Input for the signal-leakage correction derived from simulated Wγγ events using the inclusive selection.
The results are shown for the two Monte Carlo generators available. The uncertainties shown are statistical only.
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Figure 7.4: Projection of the two-dimensional isolation distributions on the transverse isolation energy of the
leading (left) and subleading (right) photon candidate for the inclusive (top) and exclusive (bottom) selection.
The black dots represent the data selected using the inclusive selection. The black line shows the result of the fit
and the colored lines show the contributions from the different event categories.

66



7.1 Mis-identified photon background

coefficient inclusive exclusive(
NAA
γj

NTT
γj

)
MC

0.025 ± 0.010 0.029 ± 0.015(
NAA

jγ

NTT
jγ

)
MC

0.040 ± 0.011 0.050 ± 0.018

Table 7.2: Inputs for the signal-leakage correction derived from simulated Wγ + jets events with the AlpGen
generator. The uncertainties shown are statistical only.

control region number of events
inclusive exclusive

AT 49 26
TA 59 27
AA 21 12

Table 7.3: Number of events in the control regions used for the calculation of the signal-leakage corrections.

7.1.5 Estimate of the statistical uncertainties

The statistical uncertainty on the event yields is calculated using the Minos algorithm [126] taking into
account both, non-linearities of the likelihood function and correlations between the parameters. To
better understand how the Minos algorithm estimates the uncertainty it is advisable to shorty recall the
traditional approach. The minimum of the negative log-likelihood function, − lnL(θ), is characterized
by a specific value of the parameter, denoted as θ̂. This value is called the maximum-likelihood es-
timator (MLE) of the parameter θ, since it maximises the likelihood, L, or conversely minimizes the
negative log-likelihood, − lnL. The uncertainty on the parameter is given by the value of θ, which
changes the negative log-likelihood by 0.5. That is the uncertainty on θ, σθ, is given by

σθ = θ′ − θ̂ , (7.12)

category inclusive exclusive
W Wsig W Wsig

γγ 92 ± 16 76 ± 14 46 ± 10 39 ± 9
γj 36 ± 13 17 ± 6 19 ± 8 8 ± 4
jγ 29 ± 11 11 ± 4 9 ± 7 3 ± 3
jj 20 ± 9 5 ± 2 10 ± 6 3 ± 2

Table 7.4: Results of the 2D fit method. For each category the result of the fit and the number of events where both
photons pass the isolation criterion is given. The uncertainties are statistical only. Details on how the statistical
uncertainties are obtained can be found below.
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7 Background estimation

where θ′ fulfills

0.5 = lnL(θ̂) − lnL(θ′) . (7.13)

The condition of Equation 7.13 is fulfilled by two values of θ, giving the lower uncertainty and upper
uncertainty on θ̂.

The Minos algorithm extends this procedure to likelihoods with more than one parameter. Then the
likelihood has the form L(θ,~ν), where θ is the parameter whose uncertainty is to be evaluated, and ~ν are
the remaining parameters. The maximum of the likelihood is now characterized by L(θ̂, ~̂ν), where θ̂ and
~̂ν are the MLEs of θ and ~ν, respectively. Now the condition of Equation 7.13 changes to

0.5 = lnL(θ̂, ~̂ν) − lnL(θ′, ˆ̂
~ν) . (7.14)

The "double-hat", ˆ̂
~ν, indicates that the log-likelihood is minimized after the tested value of θ has been

fixed. Since the value of the negative log-likelihood will always be smaller after it has been minimized
with respect to the other parameters, the Minos algorithm yields larger uncertainty intervals.

Extensive studies have been done during the course of this thesis to understand the validity of the
Minos uncertainties and to assess the bias of the parameter estimates due to the small number of events
available. The studies are based on the evaluation of a large number of pseudo-experiments. Each
pseudo-experiment consist of two steps: at first pseudo-data are generated and then the pseudo-data are
fitted.

The generation of the pseudo-data is done by sampling the two dimensional isolation distribution
which minimizes the likelihood with respect to the data. The number of generated events is fluctuated
according to a Poisson distribution whose mean is set to the number of events measured in data.

Each of these pseudo-datasets is then fitted as described above, and the event yields with their corres-
ponding uncertainties are extracted. Since the parameter values that have been used in the generation of
the pseudo-data are known (exactly the parameter that minimize the likelihood with respect to the data,
i.e. the results given in Table 7.4) the fit performance can be evaluated. This is quantified by the pull pW

which is calculated for each event yield W as

pW =
Wpe −Wgen

σpe
, (7.15)

where Wgen is the value used in the generation of the pseudo-data and Wpe ± σpe is the fit result.

The distribution of pulls for a sufficiently large number of pseudo-experiments is expected to be
a Gaussian distribution with mean zero and width one, provided that the parameter estimation is not
biased and the uncertainty σpe is correctly calculated. Since the estimation of parameters using the
maximum likelihood method is only unbiased in the limit of infinite number of events, the obtained
pull distribution may not be Gaussian. Any deviation from a Gaussian pull distribution is taken as an
additional uncertainty, as follows. If the mean of the pull distribution is shifted from zero, the resulting
uncertainty σbias is calculated as

σbias = µpull · σfit , (7.16)

where µpull is the mean of the pull distribution and σfit is the uncertainty of the fit as given by Minos. If
the width of the pull distribution is different from one, the uncertainty of the fit is given by

σwidth = σpull · σfit , (7.17)
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Figure 7.5: Pull distributions for the four event yields in the signal region from 10000 pseudo-experiments. In
addition the mean, width and goodness-of-fit, as χ2/NDF, of a Gaussian function fitted to these distributions is
shown. The same distributions for the exclusive selection are shown in Figure A.8.

where σpull is the width of the pull distribution and σfit is the same as above. The total uncertainty on
the event yield N is the square-root of the quadratic sum of the two terms,

σN =

√
σ2

bias + σ2
width . (7.18)

Figure 7.5 shows the pull distribution of the event yields in the signal region after generating 10000
pseudo-experiments. The distributions are fitted with a Gaussian function with mean µ and width σ

whose values are also given in the figure. For all these distributions the width of the Gaussian is com-
patible with one within uncertainties, although they show a small tendency towards negative values.

The three background components γj, jγ and jj show non-Gaussian tails towards negative values.
This behaviour comes from the small statistics available in the control regions. This has been verified by
performing the same pseudo-experiments as above, but generating fifty times more events than observed
in data per pseudo-experiment. The pull distributions obtained in this case are shown in Figure 7.6. As
expected, the Gaussian behaviour is restored, confirming that the bias is caused by the limited number
of events.

The mean and the sigma parameters of a Gaussian function fitted to the pull distribution can only be
used if the pull distribution is described well be a Gaussian function. Since this is not the case, the mean
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Figure 7.6: Pull distributions for the four event yields in the signal region from 10000 pseudo-experiments using
fifty times more events than observed in data per pseudo-experiment.

and the width of the pull distribution are obtained differently. The mean is taken as the 50 %-quantile,
i.e. the median, of the distribution. The lower and upper one sigma uncertainty values are taken as the
15.8 %-quantile and 84.1 %-quantile, respectively. To avoid asymmetric uncertainties the larger of the
two deviations is taken as the uncertainty.

The resulting statistical uncertainties are summarized in Table 7.4. The relative uncertainties range
from 17 % in case of the γγ-events up to 48 % for the jj-category. The maximum corrections to the
uncertainties given by Minos is applied in the jj-category and is below 10 %.

7.1.6 Estimate of the systematic uncertainties

In addition to the statistical uncertainties it is important to correctly estimate the size of the systematic
uncertainties the template-fit method is exposed to. These include uncertainties due to choices that have
been made, for example the functional form used to model the background templates, or using the values
from the Sherpa generator instead of AlpGen. Moreover, it also includes the effect of the small number
of events in the control regions limiting the knowledge of the templates.

More specifically the following sources of systematic uncertainties have been considered:

• limited statistics in the control regions
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7.1 Mis-identified photon background

• functional form used for modelling the background distribution

• definition of the control regions

• dependence on Monte Carlo generator

• statistical uncertainty on signal-leakage

The effect of each source of systematic uncertainty is evaluated using pseudo-experiments very similar
to what was described above. Now, however, the distribution used for the pseudo-data generation and
the subsequent fit are not the same. In general this will lead to a bias and an increased width of the pull
distribution, reflecting the additional uncertainty. If the equations described above are used to determine
the systematic uncertainty of one effect, the statistical uncertainty will be considered twice. Therefore
the statistical uncertainty is subtracted from the uncertainty obtained by pseudo-experiments, i.e.

σsyst =

√
(σbias + σwidth)2 − σ2

stat , (7.19)

where σbias and σstat are the uncertainties obtained from the pull distribution, σstat is the statistical
uncertainty as described above and σsyst is the resulting systematic uncertainty. In the following, the
procedure for each systematic uncertainty is described, and the results are provided.

In this section, only some figures for the inclusive selection will be shown. The remaining figures are
available in Appendix A.3. The results obtained for the exclusive selection are qualitatively similar and
can be found in Appendix A.4.

Limited control regions statistics

This uncertainty arises from the imperfect knowledge of the functional form of the templates due to
the limited number of events in the control regions as well as in the Monte Carlo samples. In order
to estimate it, the pseudo-data is generated using the nominal functional form and is fitted using a
functional form obtained by varying the parameters within their uncertainties. The pull distributions for
these pseudo-experiments are shown in Figure 7.7. This relative systematic uncertainty amounts to 5 %
on the γγ-yield and about 30 % on the

Background model

The choice of the functional form of the fake photon template Fb is arbitrary, hence the uncertainty
related to the specific choice needs to be estimated. This uncertainty is evaluated by using templates
with a different functional form to fit the pseudo-datasets generated using the nominal choice. The
two alternate functions considered are a Crystal-Ball line-shape [123] and the sum of a Gaussian and
a Novosibirsk [124] function with the same mean parameter. The corresponding pull distributions are
shown in Figure 7.8 and Figure A.1, respectively. The effect of this uncertainty is small, as can be seen.
This uncertainty hardly affects the number of events in the γγ category, but amounts to just below 10 %
for the background events.

Selection of the control regions

The choice of the ANTITIGHT photon selection may influence the fake photon templates Fb and Fbb. In
order to estimate the impact of this choice, two alternate ANTITIGHT definition have been tested. The
first inverts the selections on three instead of four strip variables (L′3). The second inverts the selection
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Figure 7.7: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to limited
control region statistics (see text) for the inclusive selection. The corresponding distributions for the exclusive
selection can be found in Figure A.9.

one all five strip variables (L′5). More details on these alternative ANTITIGHT definitions have been
given in Section 5.1.

Alternative functional forms of the fake photon templates have been extracted from the data in the
control regions obtained using the alternate ANTITIGHT definitions. These templates have been used
in the generation of the pseudo-data, which was fitted using the nominal templates. The corresponding
pull distributions are shown in Figure A.2 and in Figure 7.9 for the L′5 and L′3 ANTITIGHT definitions,
respectively. The effect of this uncertainty on the yield amounts to 2 % for the γγ category and about
10 % for the background category.

Monte Carlo generator dependence

Since the real-photon templates, Fγ,1 and Fγ,2, are taken events simulated with the SherpaMonte Carlo
generator, the effect of a different Monte Carlo program used to obtain the templates has to be tested. The
pseudo-data for this test is generated using the templates obtained from events simulated with AlpGen.
This also takes into account differences in the description of the signal-leakage parameters shown in
Table 7.1. The corresponding pull distributions are shown in Figure A.3 for the inclusive selection and
Figure A.14 for the exclusive selection. The uncertainty is around 1 % on Wsig

γγ and 10 % on Wsig
bkg.
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Figure 7.8: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
choice of the background model for the inclusive selection. The pseudo-data has been generated using the nominal
template and it has been fitted using a Crystal-Ball function as fake photon template, Fb. The corresponding
distributions for the exclusive selection can be found in Figure 7.8.

Signal-leakage inputs

The parameters used to correct the leakage of real photons into the fake photon control region have
associated uncertainties, whose effect on the fit result needs to be tested. The events in the control
regions NAT, NTA and NAA and the leakage parameters α are subject to statistical fluctuations. In
addition the systematic uncertainty on the photon identification efficiency [91] are taken into account.
The corresponding pull distributions are shown in Figure A.4 for the inclusive selection and Figure A.15
for the exclusive selection. The uncertainty amounts to roughly 8 % for the background yield and does
hardly affect the yield of γγ events.

Resulting systematic uncertainties

The systematic uncertainties on the event yields in the signal region are given in Table 7.5 for the
inclusive selection and in Table 7.6 for the exclusive selection. These values are obtained by carrying
out pseudo-experiments and analyzing the corresponding pull distributions as described above. The
statistical uncertainty dominates the determination of the number of events containing two real photons.
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Figure 7.9: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
definition of the fake photon control region for the inclusive selection. The pseudo-data has been generated
with a template obtained using the L′3 control region definition and was fitted using the nominal template. The
corresponding distribution for the exclusive selection can be found in Figure A.13.

For events containing fake photons, the statistical and systematic uncertainties are of the same size. The
dominant systematic effect is the uncertainty on the background templates due to the small number of
events observed in the control regions.

7.2 Non-prompt muon background

The non-prompt muon background events arise from muons produced in the fragmentation of a quark.
A data-driven approach known as the 2-D sideband method2 is used to estimate the non-prompt muon
background contribution in this work. At first the method will be introduced, and afterwards the results
of the non-prompt muon background estimation are presented.

2 Sometimes also called the ABCD method.
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7.2 Non-prompt muon background

source Wsig
γγ Wsig

γj
Wsig

jγ
Wsig

jj

Central Value 76 ± 14 (stat.) 17 ± 6 (stat.) 11 ± 4 (stat.) 5 ± 2 (stat.)

Control Region Statistics ±4 ±5 ±3 ±1

Background Model 0 ±2 0 ±1

CR Definition ±2 ±3 ±1 ±2

MC Generator ±1 ±2 0 0

Signal-Leakage Inputs 0 ±1 0 ±1

total systematic uncertainty ±4 ±7 ±4 ±2

Table 7.5: Systematic uncertainties on the number of events in each category for the inclusive selection.

source Wsig
γγ Wsig

γj
Wsig

jγ
Wsig

jj

Central Value 39 ± 9 (stat.) 8 ± 4 (stat.) 3 ± 3 (stat.) 3 ± 2 (stat.)

Control Region Statistics ±3 ±3 ±2 ±1

Background Model 0 ±1 ±1 0

CR Definition ±2 0 0 ±1

MC Generator ±1 ±1 ±1 0

Signal-Leakage Inputs 0 ±1 0 ±1

total systematic uncertainty ±4 ±4 ±2 ±1

Table 7.6: Systematic uncertainties on the number of events in each category for the exclusive selection.
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7.2.1 General method
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Figure 7.10: A sketch presentation of the signal region
(A) and three control regions (B, C and D) used in the
2-D sideband method. Hypothesized signal and back-
ground distributions are indicated.

The 2-D sideband method is a powerful tool to
obtain the number of background events in the
signal region that can be used if certain conditions
are met. The method has been used in the meas-
urement of the Wγ cross-section [88] (among oth-
ers). The main advantages are that the back-
ground properties can be measured directly in the
data and that no precise knowledge of the signal
is required. This section will describe the imple-
mentation of the method in this analysis.

The method uses two sidebands to estimate the
number of background events in the signal region.
A sideband is defined by reverting one of the se-
lection criteria used to obtain the signal region.
For example, a requirement of piso

T,µ > 0.15 · pµT in-
stead of piso

T,µ < 0.15 · pµT would define a sideband
in the muon isolation. Using a second selection
criterion allows to define four regions: one that
coincides with the signal region (i.e. both selec-
tions are passed), and three control regions where
either one or both of the selections are inverted.

In general, the events where the muon comes from the decay of a real W boson are characterized by
a isolated muon and high missing transverse energy (Emiss

T ). Hence the control regions are defined by
inverting the muon isolation and the Emiss

T requirements. Figure 7.10 shows a sketch of the four regions
and their definitions. In addition, a hypothesized signal and background distribution is overlaid.

Under the assumption that the selection requirement on Emiss
T is independent from the muon isolation

for non-prompt muons, the number of events with non-prompt muons, N, observed in the four regions,
satisfies

NA

NB
=

NC

ND
. (7.20)

Therefore one can write the number of non-prompt muon events in region A, NF
A, as

NF
A =

NBNC

ND
. (7.21)

This only holds if no other background process contributes to the four regions. In general this is not
true and has to be considered. Therefore the number of events measured in each region is corrected
for the number of events that other background processes contribute. This number is estimated from
simulated events from Wγ, Zγ and tt̄ production. Now the number of non-prompt muons in region A
may be expressed as

NF
A =

(
NC − NEW

C

)
·

NB − NEW
B

ND − NEW
D

 (7.22)

where NEW
i is the number of events in region i from Wγ, Zγ and tt̄ production.

Monte Carlo studies show that the amount of real muons from Wγγ in the control regions is small
but not negligible. To account for this, the number of events is corrected using the signal-leakage of
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7.2 Non-prompt muon background

real muons into the control regions as determined from simulated Wγγ events. Therefore 7.22 may be
written

NF
A =

(
NC − NEW

C − cCNS
A

)
·

 NB − NEW
B − cBNS

A

ND − NEW
D − cDNS

A

 , (7.23)

where ci is the signal leakage into region i, with i ∈ {A, B, C}. It is derived from Monte Carlo as

ci =

NWγγ
i

NWγγ
A


MC

. (7.24)

A central assumption of this method is that the two variables used to define the sidebands are inde-
pendent for background events. Since a selection of a pure sample of background events in the four
regions is not possible, this assumption has to be tested on simulated events. In order to quantify the
effect of a small correlation between the isolation and the Emiss

T requirement an additional factor, R, is
introduced. It is defined as

R =
NF

D · N
F
B

NF
A · N

F
C

(7.25)

and derived from simulated events. If R is close to 1.0, the distribution of the two variables is uncorrel-
ated, while other values indicate the contrary. Since the simulated Wγγ sample does not contain enough
events in the control regions to derive R, a sample of simulated di-photon events has been used, because
it is expected to have the same background properties.

The R factor is set to 1.0 for the calculation of the central value of the non-prompt muon background
contribution. The estimation of the R factor is not reliable in simulation due to large statistical uncer-
tainties in the simulation. A conservative systematic uncertainty is applied by varying the R factor from
one to the value obtained from simulated events.

The analytical solution of equation (7.23) for the number of events with non-prompt muons in the
signal region NF

A is:

NF
A = NA − NEW

A −
E · (−1 +

√
1 + F)

G
(7.26)

with E, F and G defined as

E = NC − NEW
C + cC(NA − NEW

A ) −
cB

R
(ND − NEW

D ) −
cD

R
(NB − NEW

B ) (7.27)

F =
4

E2 (
cBcC

R
− cC)((NA − NEW

A )(NC − NEW
C ) −

1
R

(NB − NEW
B )(ND − NEW

D )) (7.28)

G = 2(
cBcC

R
− cD) (7.29)

7.2.2 Definition of the control regions

In order to enhance the fraction of muons stemming from B-meson decays the events in region C and D
are required to contain muons well separated from the primary vertex. Therefore the transverse impact
parameter significance of the muon track is required to be dsig

0 =
d0

σ(d0) > 4. Since the final selection
contains an requirement on the transverse mass, mT, in addition to the Emiss

T requirement, the definition
of the control regions C and D is slightly changed, such that it inverts the mT requirement in addition.
The exact definition of the four regions is summarized in Table 7.7.
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7 Background estimation

Requirement A (Signal region) B C D

Muon isolation isolated non-isolated isolated non-isolated
Emiss

T [GeV] > 25 > 25 < 25 < 25
mT [GeV] > 40 > 40 < 40 < 40
dsig

0 < 3 < 3 > 4 > 4

Table 7.7: Definition of signal (A) and control regions (B, C, D) using muon isolation, missing transverse energy
and transverse mass. The significance of the muon transverse impact parameter, dsig

0 is inverted in control regions
C and D to enrich the muon contribution from the decay of heavy flavor mesons.

A B C D

Wγ 35.4 ± 2.5 0.4 ± 0.2 < 0.1 < 0.1
Zγγ 4.0 ± 0.2 ± < 0.1 0.1 ± 0.1 < 0.1
tt̄ 8.3 ± 2.7 3.7 ± 1.9 < 0.1 0.9 ± 0.9
τνγγ 1.0 ± 0.1 0.1 ± 0.1 < 0.1 < 0.1
WW, WZ, ZZ 2.658 ± 0.6 < 0.1 < 0.1 < 0.1

Total EW events (NEW) 51.8 ± 3.7 4.1 ± 1.9 0.1 ± 0.1 0.9 ± 0.9
Observed events 112 46 13 52

Table 7.8: The number of observed events in data and the contribution from Wγ, Zγ and tt̄ processes (NEW) pre-
dicted from simulated events in regions A, B, C and D for the inclusive selection. The estimation from simulated
events is normalized to the process cross-section and luminosity.

7.2.3 Results

The number of events observed in each of the control regions as well as the number of events expec-
ted from Monte Carlo are summarized in Table 7.8 and Table 7.9 for the inclusive and the exclusive
selection, respectively. Table 7.10 shows the signal-leakage parameters used to calculate the fake-muon
background contribution in region A. Since the signal-leakage into regions C and D is zero, the cal-
culation of G in Equation 7.29 diverges. This is a artifact of the mathematical methods and can be
circumvented by setting cC and cD to zero before solving equation (7.23). This yields then

NF
A =

(
NC − NEW

C

) (
cBNA −

(
NB − NEW

B

))
cB

(
NC − NEW

C

)
−

(
ND − NEW

D

) (7.30)

Using the results from Table 7.8 and 7.10, the number of fake-muon events in the signal region and
its uncertainty due to the limited number of events available in data and the simulated samples can be
calculated.

In order to evaluate the systematic uncertainty due to correlations between the muon isolation and
Emiss

T and mT, their correlation has been checked using a sample of di-photon events simulated with
Sherpa. The muon isolation distribution for non-prompt muons from this sample of simulated events
can be seen in Figure 7.11 for all four regions. If no correlations between the muon isolation and
Emiss

T and mT exists, the distribution for both regions should be identical. Given the large statistical
uncertainties this seems plausible. The R factor of 1.50 ± 0.75 is also compatible with one within the
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7.3 Other backgrounds

A B C D

Wγ 20.5 ± 1.9 0.1 ± 0.1 < 0.1 < 0.1
Zγ 2.8 ± 0.2 < 0.1 < 0.1 < 0.1
tt̄ < 0.1 < 0.1 < 0.1 < 0.1
τνγγ 0.4 ± 0.1 < 0.1 < 0.1 < 0.1
WW, WZ, ZZ 1.0 ± 0.3 < 0.1 < 0.1 < 0.1

Total EW events (NEW) 24.6 ± 2.0 0.1 ± 0.1 < 0.1 < 0.1
Observed data 54 5 3 3

Table 7.9: The number of observed events in data and the contribution from Wγ, Zγ and tt̄ processes (NEW)
predicted from simulated events in regions A, B, C and D for the exclusive selection. The estimation from
simulated events is normalized to the process cross-section and luminosity.

inclusive selection exclusive selection

cB 0.006 ± 0.002 0.001 ± 0.001
cC < 0.001 < 0.001
cD < 0.001 < 0.001

Table 7.10: Signal leakage parameters obtained from simulated Wγγ events.

uncertainties. Nevertheless the difference between the nominal estimate (i.e. NF
A|R=1) and the estimate

using the larger R-factor (i.e. NF
A|R=1.5) is taken as a systematic uncertainty. Therefore the final estimate

of the number of fake-muon background events is NF
A = 10.5 ± 3.8 (stat.) ± 3.5 (sys.) for the inclusive

selection, and NF
A = 4.8 ± 4.5 (stat.) ± 1.6 (sys.) for the exclusive selection.

7.3 Other backgrounds

Events from other processes than Wγγ containing a real muon and two photons that do not stem from a
jet are estimated using the simulation. The processes considered are in decreasing order of importance:

Zγγ production This process has the same signature as the signal process, if one of the two muons
from the decay of the Z boson is out of the acceptance of the ATLAS detector and thus gives rise
to missing transverse momentum.

t t̄ production The top quark decays almost always into a b quark and a W bosons. One of the W boson
decays into a muon and a neutrino, while the other decays into an electron and a neutrino, and the
electron is mis-identified as a photon.

WW, WZ, ZZ production Typically the photons are mis-identified electrons and the muon either
stems from a genuine W → µν decay or from the decay of a τ lepton.

W(→ τν)γγ production This process has the same signature as the signal process if the τ lepton
decays into a muon and two neutrinos.

The number of events from each of these processes passing the inclusive and exclusive selection is
summarized in Table 7.11. The systematic uncertainties on the background estimates for these processes
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Figure 7.11: Muon isolation distribution for the different regions from simulated di-photon events. In addition,
the R-value is given.

process number of events

inclusive exclusive

Zγγ 4.1 ± 0.2 (stat.) ± 0.2 (sys.) 2.9 ± 0.2 (stat.) ± 0.2 (sys.)
W(→ τν)γγ 1.0 ± 0.1 (stat.) ± 0.1 (sys.) 0.4 ± 0.1 (stat.) ± 0.1 (sys.)

tt̄ 3.7 ± 2.0 (stat.) ± 0.8 (sys.) < 0.1
WW, WZ, ZZ 2.6 ± 0.6 (stat.) ± 0.4 (sys.) 0.9 ± 0.3 (stat.) ± 0.1 (sys.)

total 11 ± 2 (stat.) ± 1 (sys.) 4.2 ± 0.4 (stat.) ± 0.3 (sys.)

Table 7.11: Number of background events with a real muon and two real photons passing the inclusive and
exclusive selection.

are derived in the same way as described in Section 8.3 for the efficiency estimate. Basic properties of
the simulated background processes are listed in Appendix A.5.

7.4 Total background estimate

With the results of the background estimates, the number of measured signal events Nsig can be calcu-
lated by subtracting the number of background events from the number of candidate events measured in
the data. The result is shown in Table 7.12 for the inclusive and exclusive selection. The purity, i.e. the
fraction of Wγγ events in the selected sample, is (50 ± 20) % for the inclusive, and (60 ± 20) % for the
exclusive selection.

7.5 Comparisons between data and simulations

The validity of the background estimation is assessed by comparing kinematic properties between data
and the simulation. Thus the shape of the properties for the different background components must be
known. However, the method used for the background estimation only yields the overall normalization
of the background events as a result. One possibility to obtain information about the shape is to carry out
the background estimation in several bins of the corresponding variable. This is not feasible due to low
statistics available for this analysis. Instead the shape is taken from control regions for the data-driven
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number of events

inclusive exclusive

Data 112 54

Fake photon background 34 ± 8 (stat.) ± 9 (sys.) 15 ± 6 (stat.) ± 6 (sys.)
Non-prompt muon background 10 ± 4 (stat.) ± 4 (sys.) 5 ± 5 (stat.) ± 2 (sys.)

Other background 11 ± 2 (stat.) ± 1 (sys.) 4.2 ± 0.4 (stat.) ± 0.3 (sys.)

Nbkg 55 ± 9 (stat.) ± 10 (sys.) 24 ± 7 (stat.) ± 6 (sys.)

Nsig 57 ± 14 (stat.) ± 10 (sys.) 31 ± 10 (stat.) ± 6 (sys.)

Table 7.12: The number of events passing the full selection and the number of events for the different background
contributions. In addition the measured signal determined as Nobs − Nbkg is presented.

background estimates and from simulated events for the background estimates based on Monte Carlo
simulation.

The shape of the kinematic distributions for events that contain one or more fake photons is taken
from the same control region used to derive the templates used in the 2D isolation fit. For example
the AT control region is used to determine the shape for events where the leading photon is fake. The
kinematic distributions for the non-prompt muon background events are obtained from a control region
B of the ABCD method, i.e. non-isolated muons. The distributions are normalized and then scaled
according to the data-driven background estimate. The statistical uncertainty due to the limited number
of events in the control regions is taken as shape uncertainty and added in quadrature to the uncertainty
on the overall normalization.

The transverse momentum distribution for the leading photon and the di-photon invariant mass distri-
bution, are shown in Figure 7.12 for the inclusive selection. In the upper panel the background estimates
are shown as stacked histograms. The normalization of the signal component is scaled to match the num-
ber of observed signal events in data. The Emiss

T and N jets distributions for the inclusive selection are
shown in Figure 7.13. The agreement between data and simulation is generally good and the small
differences can be attributed to fluctuations. This indicates that the background estimates provide reas-
onable results and can be used in the calculation of the cross-section. In addition, the good agreement,
especially at high momenta and invariant masses, shows that no signs of physics beyond the Standard
Model are present in the observed data. Kinematic distributions for the exclusive selection can be found
in Appendix A.6.
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Figure 7.12: The transverse momentum distribution of the leading photon (a) and the di-photon invariant mass (b)
in the signal region for the inclusive selection. The prediction from the simulation is shown as a stacked histogram
with the uncertainties indicated by the yellow hatched band. The rightmost bin is an overflow bin. The prediction
for the Wγγ process is normalized to the number of signal events observed in data.
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Figure 7.13: The Emiss
T (a) and Njets (b) distribution for the inclusive selection in the signal region. The prediction

from the simulation is shown as a stacked histogram with the uncertainties indicated by the yellow hatched band.
The rightmost bin is an overflow bin. The prediction for the Wγγ process is normalized to the number of signal
events observed in data.
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CHAPTER 8

Cross-section measurement

In particle physics cross-section measurements are an important test of the Standard Model. Any de-
viation from the predicted cross-section might point to contributions of physics beyond the Standard
Model, that affect the process under study. In addition, the Wγγ process is an irreducible background
for the HW associated production with a subsequent H → γγ decay, and the cross-section measurement
helps to constrain this background.

Experimentally, the cross-section can be determined using the well known equation

σ =
Nobs − Nbkg

A · ε · B · Lint
. (8.1)

Here, Nobs − Nbkg is the difference between the observed number of selected events and the estimated
number of background events and hence corresponds to the number of signal events observed. The
acceptance, A, corrects for the events that fall outside the geometric and kinematic constraints of the
selection. The selection efficiency, ε, describes which percentage of the events within the acceptance
are actually reconstructed. The branching ratio, B, is the fraction of W boson that decay into muons.
Since only W boson that subsequently decay into a muon and a muon-neutrino are considered in this
analysis, the branching ratio is set to one, B = 1, and the cross-section for the pp → µνγγ is presented
as the result. Finally, Lint is the integrated luminosity that is used to collect Nobs events.

In this chapter the components necessary for the calculation of the cross-section, the results obtained
from the measurement and the comparison of the cross-section to Standard Model predictions will be
presented.

8.1 Definition of the cross-section

This thesis presents the measurement of the Wγγ production cross-section in two restricted phase-space
regions, which are identical to the inclusive and exclusive selection defined in Chapter 6. Thus the
extrapolation of the measured to the total cross-section is omitted and the theoretical uncertainties of
the acceptance correction do not come into play. To facilitate the comparison to theory calculations an
extended fiducial cross-section σext-fid will be measured. For this measurement the phase-space region
is extended such that it includes photons that fall into region 1.37 < |η| < 1.52 and a different isolation
requirement, εh < 0.5, for the photons that is better suited for particle level calculations. The relative
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8 Cross-section measurement

Muon
pµT > 20 GeV
|ηµ| < 2.5
pνT > 25 GeV

W boson mT > 40 GeV

Photon

Eγ
T > 20 GeV
|ηγ| < 2.37

∆R(µ, γ) > 0.7
∆R(γ, γ) > 0.4

εh < 0.5

Table 8.1: Definition of the extended fiducial phase-space region for the evaluation of the cross-section.

Jet

anti-kt R = 0.4
pjet

T > 30 GeV∣∣∣ηjet
∣∣∣ < 4.4

∆R(µ, jet) > 0.3
∆R(γ, jet) > 0.3

Table 8.2: Definition of particle level jets for the exclusive selection.

photon isolation, εh, is defined as

εh =
Eiso

Eγ
, (8.2)

where Eiso is the energy deposited by other particles than the photon in a cone with radius, R = 0.4,
around the photon. The extended fiducial phase-space region used for the cross-section measurement is
summarized in Table 8.1.

For the measurement using the exclusive selection, the definition of the extended fiducial phase-space
region is modified such, that no additional particle-level jet with pT > 30 GeV and |η| < 4.4 is allowed.
In addition, the jet is required to be well separated from the muon, ∆R(µ, jet) > 0.3, and the photons,
∆R(γ, jet) > 0.3. The jet definition used is summarized in Table 8.2.

8.2 Acceptance correction

The acceptance correction extrapolates the cross-section measured in the fiducial phase-space region to
the extended fiducial phase-space region. It is defined as the fraction of events in the fiducial volume Nfid
with respect to all events in the extended fiducial volume Next-fid, i.e.

A =
Npart

fid

Npart
ext-fid

. (8.3)

The additional superscript, part, indicates that the acceptance correction is done entirely at particle
level and has to be determined using from simulated Wγγ events. The central value of the acceptance
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8.3 Efficiency correction

Source (%) inclusive exclusive

PDF ± 0.1 ± 0.1
Scales ± 1.5 ± 3.9
Parton Shower ± 0.9 ± 1.9

Total ± 1.8 ± 4.4

Table 8.3: The systematic uncertainties on the acceptance correction for the inclusive and exclusive selection.

corrections is derived using events simulated by the Sherpa program.
The acceptance correction is only susceptible to so-called theory uncertainties, which are independent

of the detector. The uncertainties arise from the uncertainties on the PDF, the choice of the factorization
and renormalization scale, µF and µR, respectively, and the modelling of the parton shower. The PDF
uncertainties are evaluated using the difference between the nominal and an alternate PDF. The nominal
choice is CT10 [29], and as alternate PDF MSTW2008 [28] was chosen. The scale uncertainties are
taken as the maximum change in the acceptance correction derived from events simulated with different
scales. The factorization and renormalization scale are independently varied by a factor of two around
their nominal value with the constraint 0.5 ≤ µF/µR ≤ 2.0, to exclude the two extreme choices. The
difference between the acceptance correction calculated using events simulated by Sherpa and AlpGen
is used as the uncertainty due to the parton shower modelling. Since the programs were configured with
different PDFs to describe the proton structure, the events in the AlpGen sample are reweighted to the
PDF used in the Sherpa sample using LhaPdf [127]. This avoids double-counting the uncertainty due
to the choice of the PDF.

The value of the acceptance correction from the fiducial to the extended fiducial volume for the
inclusive selection is

Aincl = (89.2 ± 0.3 (stat.) ± 1.8 (sys.)) % .

For the exclusive selection it results in

Aexcl = (89.8 ± 0.4 (stat.) ± 4.4 (sys.)) % .

The total systematic uncertainty is obtained as the square root of the quadratic sum of the individual
uncertainties. The breakdown of the uncertainties is given in Table 8.3. The dominant uncertainty for
both selections is the scale dependence. In general the exclusive selection is more susceptible to these
theory uncertainties due to the additional selection on the jets.

8.3 Efficiency correction

The efficiency correction ε transforms the cross-section from the detector to the particle level. It includes
corrections for inefficiencies of the trigger and reconstruction algorithms, as well as inefficiencies due
to the detector resolution. Thus the efficiency correction is given as the number of events passing the
fiducial selection at detector level, Ndet

fid , divided by the number of events in the fiducial phase-space
region at particle level, Npart

fid , i.e.

ε =
Ndet

fid

Npart
fid

. (8.4)

Similarly to the acceptance, the efficiency is determined using simulated Wγγ events. Therefore it
relies on the correct description of the actual reconstruction efficiency and energy scale and resolution
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8 Cross-section measurement

in the simulation. Although the simulation is corrected such that it reproduces the data as explained
in Chapter 5, a difference between data and simulation might remain due to the uncertainty on the
corrections. Therefore the uncertainties on the simulation corrections are propagated to an uncertainty
on the efficiency.

The individual sources of uncertainties on the efficiency correction considered are

Trigger efficiency The trigger used for this analysis requires that one muon above a transverse mo-
mentum threshold of pT > 18 GeV and two photons with pT > 10 GeV are present. The efficiency
of all three requirements is considered to be independent and can therefore be estimated separ-
ately. The muon trigger efficiency in data is estimated using events that contain a Z → µ+µ−

decay. It is compared to the trigger efficiency obtained from Monte Carlo simulation and the re-
sidual differences are corrected in the simulation. The uncertainty associated with this corrections
is considered as the systematic uncertainty due to the muon trigger. The photon trigger efficiency
is determined from data using events from radiative Z boson decays, i.e. Z → l+l−γ, and is found
to be (99.63 ± 0.06) % [128]. The uncertainty on the efficiency of the photon trigger is applied as
systematic uncertainty.

Muon momentum scale and resolution As mentioned in Section 5.2, the momentum scale and the
resolution of muons obtained from simulation are adjusted to match the ones observed in data. The
main systematic uncertainties of these corrections arise from a possible momentum dependence
on the correction. Since the corrections are derived from Z → µ+µ− events, the majority of the
muons has a transverse momentum between 20 GeV and 50 GeV. The momentum dependence
has been tested with muons from lower di-muon mass resonances, e.g. J/ψ → µ+µ− [104]. The
difference was found to be small and a systematic uncertainty of 0.2 % has been assigned.

Muon reconstruction efficiency The reconstruction efficiency of muons observed in data and simu-
lation is slightly different. The residual differences are corrected for in the simulation. The sys-
tematic uncertainties associated to this correction originates mainly from residual backgrounds in
the Z → µ+µ− sample used to derive the corrections, and from the definition of the probe muons
used in the tag-and-probe analysis (cf. Section 5.2). It was found that a systematic uncertainty of
0.2 % is sufficient to cover the difference [129].

Photon energy scale and resolution The agreement of the energy scale and resolution of photons
between data and simulation is measured indirectly using electrons from Z → e+e− decays. The
main systematic uncertainty of this measurement is the imperfect knowledge of the amount of
material in front of the calorimeters and varies from about −2 % to 1 % [130].

Photon identification efficiency The photon identification efficiency has been determined in data
using several methods. These methods include the use of radiative Z boson decays and extrapol-
ation from electron to photon showers, among others. The main systematic uncertainties arise
from the limited statistics available to derive the identification efficiency in data and the imperfect
knowledge of the amount of material in front of the calorimeter. In addition, the background con-
tamination and the difference between the methods yield systematic uncertainties of similar size.
In total the uncertainty is 2.5 % for photons with transverse momentum below 40 GeV and 1.5 %
for those above with the exception of unconverted photons with pT > 40 GeV and |η| > 1.81,
whose uncertainty is 2.5 %. The uncertainty is fully correlated between the two photons of the
Wγγ final state, if they are both in the same detector region and of the same category, i.e. both
converted or unconverted. Otherwise the uncertainty is split into different categories whose cor-
relations are assessed individually. For example the uncertainty due to additional material in front
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8.3 Efficiency correction

of the calorimeter is fully correlated among all measurements in the same η bin. The combined
uncertainty due to the differences between data and simulation for the photon identification effi-
ciency is given as

σID =

√
σ2
γ,1σ

2
γ,2 + 2C · σγ,1 · σγ,2 , (8.5)

where σγ,i is the uncertainty for the leading and subleading photon, respectively, and C is the
correlation between both uncertainties.

Jet energy scale and resolution As explained in Section 5.3, the jet energy scale uncertainty is
between 1 % and 6 % depending on the jet momentum and rapidity. The jet energy resolution
is measured in data, and the simulation is corrected to match the resolution in data. The dominant
systematic uncertainties of this measurement are the differences between two independent meas-
urements and residual differences between the data and the simulation. The systematic uncertainty
on the resolution varies between 10 % and 20 %.

Missing transverse momentum imbalance scale The uncertainty on the scale of the transverse
momentum imbalance is composed of several parts. First, the energy scale and resolution un-
certainties on the muon, photon and jets are propagated to the calculation of the Emiss

T . In ad-
dition, the scale and resolution uncertainty due to the soft energy term is considered. The soft
energy term covers the contribution of particles with transverse momentum below 20 GeV, which
are not included by other uncertainties. Its uncertainty is assessed by studying the agreement
of Emiss

T between data and simulation in leptonic decays of Z bosons with no additional jet with
pT > 20 GeV. The uncertainty on the soft term from these studies is found to be 3.6 % for the
scale, and 2.3 % for the resolution of the soft term.

Pileup description Since the distribution of average interactions per bunch-crossing, 〈µ〉, was not
known at the time the Monte Carlo simulation started, a triangular distribution was assumed to
cover the different scenarios for the expected LHC performance. As the 〈µ〉-distribution is known
now, after the data-taking has finished, the simulated events are reweighted to obtain the distribu-
tion in data. The uncertainty associated with this reweighting is taken as systematic uncertainty
on the pile-up description of the simulation.

For each of the above mentioned uncertainty sources, the efficiency is calculated according to Equa-
tion 8.4 for the nominal value and for the values corresponding to one standard-deviation in both direc-
tions. The larger difference to the nominal value is taken as systematic uncertainty

The resulting efficiency correction for the inclusive selection is

εincl = (47.7 ± 0.8 (stat.) ± 2.0 (sys.)) % .

For the exclusive selection it amounts to

εexcl = (46.4 ± 1.2 (stat.) ± 2.4 (sys.)) % .

All sources of uncertainty are considered as uncorrelated, and the total uncertainty is the square root of
the quadratic sum of all sources. A breakdown of the uncertainties is given in Table 8.4. The dominant
systematic uncertainty is the uncertainty due to the modelling of the photon identification efficiency. It
amounts to ±1.5 % for both channels. As expected, the jet energy scale uncertainty is only significant
in the exclusive channel (±1.1 %), where it is the second largest uncertainty. This can be understood,
since the jet veto is very sensitive to the energy measurement of the jets due to the steeply falling pT
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8 Cross-section measurement

Source (%) inclusive exclusive

Emiss
T soft term resolution ± 0.3 ± 0.4

Emiss
T soft term scale ± 0.4 ± 0.3

Jet energy resolution ± 0.3 ± 0.4
Jet energy scale ± 0.1 ± 1.1
Jet pileup suppression ± 0.0 ± 0.1
Muon efficiency ± 0.1 ± 0.1
Muon energy scale ± 0.1 ± 0.2
Muon resolution ID ± 0.1 ± 0.1
Muon resolution MS ± 0.0 ± 0.0
Photon efficiency ± 1.5 ± 1.5
Photon energy resolution ± 0.1 ± 0.3
Photon energy scale ± 0.5 ± 0.6
Pileup modelling ± 0.2 ± 0.4
MC generator ± 0.8 ± 1.0

Total ± 2.0 ± 2.4

Table 8.4: The relative systematic uncertainties on the efficiency correction for the inclusive and exclusive selec-
tion.

distribution. In total the relative systematic uncertainty is 3.9 % (4.7 %) for the inclusive (exclusive)
selection and thus considerably smaller than the uncertainties on the background estimates presented in
the previous chapter.

8.4 Cross-section extraction

The extended fiducial cross-section is calculated considering only W → µν decays of the W boson. As
discussed in Section 8.1, the extended fiducial cross-section is defined as

σ
pp→W(→µν)γγ
ext-fid =

Nµνγγ
obs − Nbkg

A · ε · Lint
, (8.6)

where Nµνγγ
obs is the total number of events observed after the selection described in Chapter 6. Nbkg is

the number of background events estimated as described in Chapter 7 and A and ε are the acceptance
and efficiency corrections described earlier in this chapter. The integrated luminosity is obtained with
the procedure described in Section 3.2 and amounts to (20.3 ± 0.6) fb−1. All inputs needed for the
cross-section extraction are summarized in Table 8.5.

The result of the extended fiducial cross-section for the pp→ W(→ µν)γγ process with two isolated
photons with ET > 20 GeV measured at

√
s = 8 TeV is

σ
pp→W(→µν)γγ
ext-fid = (6.5 ± 1.6 (stat.) ± 1.1 (sys.) ± 0.2 (lumi.)) fb−1 .

When no jets with pT > 30 GeV and |η| < 4.4 are allowed the cross-section is reduced to

σ
pp→W(→µν)γγ
ext-fid = (3.6 ± 1.2 (stat.) ± 0.8 (sys.) ± 0.1 (lumi.)) fb−1 .
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Input inclusive exclusive

Nobs
µνγγ 112 54

Nbkg
µνγγ 55 ± 9 (stat.) ± 10 (sys.) 24 ± 7 (stat.) ± 6 (sys.)

A (89.2 ± 0.3 (stat.) ± 1.8 (sys.)) % (89.8 ± 0.4 (stat.) ± 4.4 (sys.)) %
ε (47.7 ± 0.8 (stat.) ± 2.0 (sys.)) % (46.4 ± 1.2 (stat.) ± 2.4 (sys.)) %
Lint (20.3 ± 0.6) fb−1

Table 8.5: The values used for the calculation of the cross-section.

8.5 Comparison to Standard Model predictions

The results are compared to Standard Model predictions at next-to-leading order in perturbative QCD.
The predictions are obtained using VbfNlo1[35]. It allows to specify arbitrary cuts and is thus well
suited to calculate the cross-section in the extended fiducial phase-space region used in this measure-
ment. The calculation has been done using the MSTW2008 NLO PDF set, interfaced to VbfNlo using
the LhaPdf library. The factorization and renormalization scales have been set to the invariant mass of
the Wγγ system. A detailed listing of all settings used to calculate the cross-section can be found in
Appendix A.7.

Uncertainties on the theory calculation

As uncertainties on the theory prediction, the factorization and renormalization scale uncertainties, the
parton distribution function uncertainty and the uncertainty on the value of the strong coupling constant
αS have been considered. The factorization and renormalization scale uncertainties are evaluated by
varying them independently by a factor two. The two extreme cases µR = 4µF and µF = 4µR are
excluded. The difference from the nominal cross-section is taken as the uncertainty. The combination
of the factorization and normalization uncertainties are in the following referred to as scale dependence.

The MSTW2008 parton distribution functions are obtained by a global fit to multiple datasets of hard-
scattering data [28]. The experimental uncertainty on these datasets is propagated to the fit parameters
used to determine the PDF. After diagonalizing the covariance matrix of the parameters, the up-and-
down variations of each orthogonal eigenvector are used to obtain a modified version of the nominal
PDF, called an error set. Since the parametrization used for MSTW2008 contains 20 free parameters,
the PDF contains 40 error PDFs, one up and one down variation of each parameter.

The uncertainty on the PDF is propagated to the uncertainty on the theory calculation by calculating
the cross-section for each of the 40 error PDFs. The difference between the up-and-down variation
of one eigenvector i is used as uncertainty by this eigenvector. By construction the eigenvectors are
independent, and the total uncertainty is obtained by the quadratic sum of the uncertainties of all eigen-
vectors. Using the symmetric prescription of the uncertainty [131] this yields

∆σ =
1
2

√√√ 20∑
i=1

(σi
+ − σ

i
−)2 , (8.7)

where i runs over all eigenvectors and σi
+ (σi

−) is the cross-section obtained when using the up (down)
variation of eigenvector i. The factor 1/2 appears since the difference between the up and the down

1 Version 2.7.0beta4
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8 Cross-section measurement

Theory uncertainties [%]

inclusive exclusive

Scale dependence 7.3 3.4
PDF 2.2 1.8
αS 1.9 1.0

Total 7.9 4.9

Table 8.6: The breakdown of the uncertainties on the theory calculation of the cross-section of the W(→ µν)γγ
process for the inclusive and exclusive cross-section.

variation corresponds to twice the uncertainty. The error sets used for the calculation correspond to the
90 % confidence level on the eigenvectors to be consistent with the current policy within the ATLAS
collaboration.

The value of αS(MZ) has to be obtained from experimental measurements, thus it is subject to exper-
imental uncertainties. The impact of the uncertainties on the theory prediction is evaluated as follows.
The MSTW2008 PDF set provides two PDFs in which the value of αS(MZ) is changed according to its
90 % confidence level. The cross-section is calculated using each of these PDFs and the largest change
is taken as uncertainty. The ALFA_S parameter, which defines the value of the strong coupling at the
Z mass used in the VbfNlo calculation is set to the same value used by the MSTW2008 PDF.

The breakdown of all sources of theory uncertainties is given in Table 8.6. The dominant uncertainty
is the scale dependence. This indicates that the inclusion of higher orders in the strong coupling constant
will have a measurable impact on the prediction. The PDF and αS uncertainties are on the order of 2 %
and small compared to the scale dependence.

The total result of the parton level cross-section calculation for the W(→ µν)γγ process obtained from
VbfNlo, is for the inclusive channel

σVbfNlo
ext-fid = (3.0 ± 0.2) fb ,

and for the exclusive channel
σVbfNlo

ext-fid = (1.8 ± 0.1) fb .

8.5.1 Parton-to-particle level corrections

Since VbfNlo is a parton level Monte Carlo program, the calculated cross-section has to be corrected
to the particle level to allow for a meaningful comparison with data. The correction from parton to
particle level will mostly affect the photon isolation and the jet definition, due to the fragmentation and
hadronization of quarks and gluons. It is applied as a multiplicative correction factor,

σ
theory
ext-fid = σVbfNlo

ext-fid ·C
parton→particle , (8.8)

where σtheory
ext-fid is the theory prediction for the cross-section at particle level, σVbfNlo

ext-fid is the parton level
cross-section obtained from VbfNlo and Cparton→particle is the parton to particle level correction.

The photon isolation correction covers differences of the isolation of photons between parton and
particle level. This is necessary since the parton shower and hadronization turns the original quark or
gluon into a broad object. Even if the parton falls outside the isolation cone of the photons it might
well be that some of the particles produced in the hadronization fall inside and spoil the isolation of the
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8.5 Comparison to Standard Model predictions

Parton-to-particle level correction

inclusive exclusive

Cparton→particle 1.11 ± 0.01 (stat.) ± 0.01 (sys.) 1.11 ± 0.02 (stat.) ± 0.03 (sys.)

Table 8.7: The parton to particle level corrections factors for jet production and photon isolation as obtained from
Sherpa.

photon. In addition the different parton and particle level input to the jet algorithm is corrected for. At
parton level the quark or gluon present in the final state due to real emissions from NLO diagrams is
used as input. At particle level the jet algorithm operates on the stable particles after the fragmentation
and hadronization of the parton. Since the inclusive extended fiducial phase-space region has no explicit
dependence on jets, this will only affect the prediction for the exclusive measurement.

Cparton→particle is determined using Wγγ events simulated by Sherpa. Since Sherpa is a multi-leg
generator, the real emissions of quarks and gluons are simulated at parton level and, after the subsequent
parton shower, at particle level. Therefore it is well suited to derive the correction. The correction is
defined as the ratio of events inside the extended fiducial phase-space region between particle and parton
level,

Cparton→particle =
Nparticle

ext-fid

Nparton
ext-fid

. (8.9)

Here, Nparton
ext-fid is the number of events falling inside the extended fiducial phase-space region at parton

level, and Nparticle
ext-fid is the number of events inside the extended fiducial phase-space region at particle

level.
The value of the correction factor depends on the modelling of the parton shower. Therefore the

correction factor has also been derived using events simulated with AlpGen, which uses a different
parton shower model. The difference between the correction factor obtained from Sherpa and AlpGen
is used as systematic uncertainty. The result for Cparton→particle is given in Table 8.7 for the inclusive and
exclusive extended fiducial phase-space region.

After applying the corrections described above, the particle level cross-section for the W(→ µν)γγ
process in the extended fiducial phase-space region for the inclusive selection is

σ
theory
ext-fid = (3.4 ± 0.3) fb

and for the exclusive selection
σ

theory
ext-fid = (1.9 ± 0.1) fb .

8.5.2 Cross-section comparison

The measured production cross-sections for the extended fiducial phase-space region given in Table 8.1
are compared to anNLO prediction made by the VbfNlo generator. The results are listed in Table 8.8 for
the inclusive and exclusive selection, respectively. The measured cross-sections are found to be higher
than the VbfNlo predictions. The probability that a discrepancy like the one observed or worse happens
due to fluctuations, i.e. the p-value, is 7.5 % for the inclusive and 11.3 % for the exclusive measurement.
Although both measurements have small p-values this does not allow to conclude that the Standard
Model prediction is not in agreement with the data. Both measurements are fully correlated since
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8 Cross-section measurement

σ
pp→W(→µν)γγ
ext-fid [fb] σ

theory
ext-fid[fb]

inclusive 6.5 ± 1.6 (stat.) ± 1.1 (sys.) ± 0.2 (lumi.) 3.4 ± 0.3

exclusive 3.6 ± 1.2 (stat.) ± 0.8 (sys.) ± 0.1 (lumi.) 1.9 ± 0.1

Table 8.8: Measured cross-section for the pp → W(→ µν)γγ process at
√

s = 8 TeV in the extended fiducial
phase-space region defined in the text. Also shown are the Standard Model predictions from VbfNlo calculated at
NLO. The predictions by VbfNlo are corrected to the particle level using the parton to particle level corrections
described in the text.

the extended fiducial phase-space region of the exclusive selection is a proper subset of the inclusive
selection. Another possible reason for the difference is that the VbfNlo program does not include the
fragmentation of quarks or gluons to photons. This effectively lowers the predicted cross-section. In
addition, higher order QCD corrections are expected to have a non-negligible effect on the predicted
cross-section even for the exclusive selection.

This is the first direct measurement of the three weak gauge boson production cross-section pp →
W(→ µν)γγ. It is in reasonable agreement with the Standard Model. Therefore the measurement is used
to constrain physics beyond the Standard Model as discussed in the next chapter.
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CHAPTER 9

Limits on anomalous quartic gauge couplings

The cross-section measurements presented in Chapter 8 show that the observed cross-section and the
theory predictions are statistically consistent. Therefore, the measurement is used to place constraints
on new physics using the framework of anomalous quartic gauge couplings discussed in Section 2.4.
The constraints will be presented as 95 % frequentist CLS confidence level intervals on the couplings of
the dimension-8 operators that introduce anomalous couplings for the WWγγ vertex.
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Figure 9.1: Predicted cross-section as function of
the di-photon invariant mass for the SM (black line)
and the operator FT,0 with a coupling of fT,0 /Λ4 =

54 TeV−4 (red line).

The limits on anomalous couplings are set using the
exclusive selection. As discussed earlier, the theory
prediction for the Wγγ process suffers from potentially
large NNLO corrections (cf. Section 2.3) leading to ar-
tificially small predictions if only NLO corrections are
considered. Hence, the discrepancy between data and
prediction that results from disregarded NNLO correc-
tions could be mistaken for a new physics signal or
could lead to limits on anomalous couplings that do
not reflect the current knowledge [120]. The contribu-
tion of NNLO corrections to a final state without jets is
restricted to pure-virtual two-loop corrections, which
are expected to be small.

For the limit setting an optimized phase-space re-
gion is used. Only events above a certain di-photon
invariant mass threshold are considered, because de-
viations between the Standard Model and new phys-
ics phenomena are expected to occur at high ener-
gies compared to the typical energies of the Standard
Model. This is exemplified due to the cross-section
as a function of the di-photon invariant mass shown in
Figure 9.1 for the Standard Model and the operator FT,0 with a coupling of fT,0 /Λ4 = 54 TeV−4. The
excess of the cross-section by the anomalous coupling is clearly visible above about 300 GeV, while for
small masses the contribution from the Standard Model exceeds the new physics signal.

Since many different operators that modify the WWγγ vertex exist, the frequentist confidence in-
tervals are not directly set on the couplings of those operators. Instead, the measurement is used to
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9 Limits on anomalous quartic gauge couplings

calculate an upper limit on the cross-section of new physics phenomena. This can be converted into a
frequentist confidence interval on the coupling of a specific operator by evaluating at which value of
the anomalous coupling the predicted cross-section of the operator exceeds the limit. In this thesis, the
limits on one particular operator, FT,0, will be presented. The VbfNlo program is used to calculate the
cross-section prediction for the anomalous couplings.

The chapter is organized as follows: At first, the statistical method used to determine the frequentist
confidence intervals is discussed. Then, the inputs to the methods and the optimization of the phase-
space are shown. At last, the resulting frequentist confidence intervals are presented.

9.1 Statistical method

Frequentist confidence intervals of a parameter are constructed in such a way that they include the true
value of the parameter with a probability greater as or equal than to a desired level. This probability
is called the coverage probability and is conventionally set to 95 %. The intervals are constructed with
a procedure according to Neyman [132], which is described below. The discussion in this section
follows [1].

9.1.1 Neyman construction

The Neyman construction starts from a probability density function (p.d.f.), f (x | θ), that describes the
probability of observing the value x, given the parameter θ, whose confidence interval is to be determ-
ined. For each value of θ the intervals [x1, x2] that contain 95 % of the total probability are given by∫ x2

x1

f (x | θ) dx = 0.95 . (9.1)

The intervals [x1, x2] are not unique, typical choices are the central interval constructed such that the
probabilities below x1 and above x2 are equal. Another choice, more suited for upper limit setting, is
the one-sided interval for which the probability below x1 is set to zero.

The concept of the Neyman construction is illustrated in Figure 9.2 which shows the central inter-
vals [x1, x2] for some parameters θ as horizontal lines. The union of all those intervals for every para-
meter value of θ is called the confidence belt. The confidence interval on θ is determined by drawing a
vertical line at the observed value xobs. The intersection of this line with the confidence belt yields the
confidence interval

[
θ95 % CL

min , θ95 % CL
max

]
. By construction, this interval contains the true value, θ0, with a

probability of 95 %.
Typically some function of the measured value is used instead of the measured value itself. The

function is called a test statistic. In this analysis, the CLS prescription of the test statistic is used. It is
defined using the p-values of a background-only and a new physics hypothesis. The p-value is defined
as the probability that a fluctuation yields a discrepancy as large or larger than the one observed in data.
Typically, the signal hypothesis is parametrized using a parameter µ that is proportional to the signal
cross-section. Therefore the background-only hypothesis is given by µ = 0. The CLS test statistic is
defined as

CLS =
pµ
p0
. (9.2)

Here, p0 is the p-value of the background-only hypothesis, and pµ is the p-value of the new-physics
hypothesis with a strength parameter µ. The parameter point µ1 is excluded at a 95 % confidence level
if CLS(µ1) < 5 %. The more traditional use of CLS+B as the test statistic will lead to an exclusion if the

94



9.1 Statistical method

possible data x

45 50 55 60 65 70

θ
p
a
ra

m
e
te

r 

70

72

74

76

78

80

82

84

obsx

95% CL

minθ

95% CL
maxθ

Figure 9.2: Illustration of the Neyman construction. The solid horizontal lines indicate the 95 % confidence
intervals for a specific value of θ. The vertical dashed line indicates the observed data, and the horizontal dashed
lines indicate the 95 % confidence interval for the parameter θ.

experiment has no sensitivity to the tested model and the data fluctuated downward. Therefore the CLS
test statistic puts a penalty of p0 on the p-value of the signal hypothesis.

The p-value is evaluated using the profile likelihood ratio, since it simplifies the treatment of system-
atic uncertainties. They are often introduced in terms of nuisance parameters, i.e. parameters whose
values are known with some limited accuracy, but the actual value of these nuisance parameters is not
of interest. One example for this kind of parameters is the jet energy scale. The profile likelihood ratio,
λp, is defined via the ratio of the profile likelihood Lp to the (traditional) likelihood L,

λp = −2 ln
Lp(µ | x)
L(µ̂, ν̂ | x)

. (9.3)

Here, x is the data, µ is the parameter of interest and ν are the nuisance parameters. µ̂ and ν̂ are the
maximum likelihood estimators, i.e. the values of µ and ν which maximize the likelihood L(µ, ν | x).
The profile likelihood is defined as

Lp(µ | x) = L(µ, ˆ̂ν | x) , (9.4)

where the nuisance parameters ˆ̂ν maximize the likelihood for fixed µ. The p-values inferred from the
profile likelihood ratio do not provide proper coverage for all values of the nuisance parameters, but for
cases of practical interest the coverage is sufficient [133].

95



9 Limits on anomalous quartic gauge couplings

9.1.2 Likelihood for the measurement

At this stage, everything for the calculation of the confidence intervals is in place, except the likelihood.
For each parameter value µ that is tested, the CLS statistic is evaluated by calculating p0 and pµ. If the
value of the CLS test statistic is below 5 %, µ is outside of the confidence interval. The only missing
piece is the functional form of the likelihood L, which is used to calculate p-values using the profile
likelihood ratio λp. The likelihood gives the probability for a particular µ given the data.

For this measurement, the likelihood is generally given by the probability of observing Nobs events,
when Nexp events were expected. That is, it equals the Poisson probability

L = PNexp(Nobs) =
NNobs

exp

Nobs!
e−Nexp . (9.5)

The number of expected events is the sum of events from background, Wγγ and new-physics processes,

Nexp = Nbkg + NWγγ + NaQGC︸            ︷︷            ︸
(1+µ)·NWγγ

. (9.6)

Here, NaQGC is the number of events from processes involving anomalous quartic couplings, NWγγ is
the number of events from the Wγγ process predicted by the Standard Model, and Nbkg is the number of
events from other Standard Model processes. The topology of events from the Standard Model Wγγ pro-
cess and possible new physics phenomena from anomalous quartic gauge couplings are expected to be
very similar, i.e. new physics phenomena only enhance the number of events at high masses. Therefore
the acceptance and efficiency corrections are similar and the number of events can be combined to

NWγγ + NaQGC = (1 + µ) · NWγγ , (9.7)

where µ is the signal-strength parameter. If the most likely value of µ for a given Nobs, µ̂, is close to
0, no new physics signal is present. If on the other hand, µ̂ is much larger than 0, an excess of events
compared to the Standard Model prediction is observed. In agreement with the notation used above, the
null hypothesis that no new phenomena contribute to the observed data, is given by µ = 0, which yields
the Standard Model prediction NWγγ.

As described above, the strategy of this measurement is to set an upper limit on the cross-section
of a potential new physics signal and then calculate confidence intervals on the coupling parameters.
Therefore NWγγ is replaced by the cross-section formula given in 8.6, yielding

Nexp = Nbkg + (1 + µ) ·
(
σ

pp→W(→µν)γγ
SM · A · ε · Lint

)
, (9.8)

where σpp→W(→µν)γγ
SM is the predicted cross-section for the Standard Model process and A, ε and Lint are

the acceptance, efficiency and the integrated luminosity, respectively. At this stage, the likelihood would
describe the measurement if all terms that enter the calculation of Nexp are known without uncertainty.
This is never the case for a real measurement. Therefore, the uncertainties have to be incorporated into
the likelihood to obtain a meaningful result.

The uncertainties are integrated into the likelihood by adding additional parameters from auxiliary
measurements, for example, the integrated luminosity measurement. The result of this measurement
is Lint = (20.3 ± 0.6) fb−1, which in the frequentist interpretation is equivalent to the statement that
the interval

[
19.7 fb−1, 20.9 fb−1

]
includes the true value with a 68 % probability. Since the number of

expected events obviously depends on the true value of the luminosity, Lint is replaced with Ltrue
int in
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Equation 9.8. The same argument can be applied to the other terms, leading to

Nexp = Ntrue
bkg + (1 + µ) ·

(
σ

pp→W(→µν)γγ,true
SM · Atrue · εtrue · Ltrue

int

)
. (9.9)

The knowledge about the true parameter values obtained from the auxiliary measurements is included
in the likelihood by additional constraint terms

G
(
Ltrue

int

∣∣∣ Lmeas
int , σLint

)
, (9.10)

where G denotes the Gaussian p.d.f. with mean Lmeas
int and width σLint .

For each auxiliary measurement such a constraint is added to the likelihood such that the likelihood,
L(µ,~ν |Nobs) for the parameter of interest µ, given that Nobs events have been observed, can be written
as

L
(
µ,~ν

∣∣∣ Nobs
)

= PNexp (Nobs) ·
∏
ν ∈ ~ν

G
(
νtrue

∣∣∣ νmeas, σν
)
. (9.11)

Here, ~ν is a vector that contains all nuisance parameters ν.
The likelihood describes the measurement presented in this work. It is used to calculate the p-value

for a certain value of µ given the observed data. The p-values are calculated using the profile likelihood
ratio λp as described in the next section.

9.1.3 P-value determination

In the limit of large numbers of observed events, the p-value can be calculated according to Wilk’s the-
orem [134]. It states that for large N, the likelihood ratio is distributed like a χ2-distribution with one
degree of freedom. Therefore, the value of µ that corresponds to a p-value of 5 % can be derived using
the well known cumulative distribution function of the χ2-distribution. However, for this analysis the
asymptotic formula cannot be used, as the number of expected events is to small to justify the approx-
imations used in Wilk’s theorem. Instead, the p-value is calculated using pseudo-experiments. For each
tested value of µ, the likelihood is used to randomly draw the number of (pseudo-)observed events. This
is repeated 100000 times per parameter point and as a result the distribution of λµp is obtained. One
example for such a distribution is shown in Figure 9.3 together with the value of the profile likelihood
ratio obtained from data. The p-value, pµ, is the fraction of events with larger profile likelihood ratios
than the one observed in data. The pseudo-experiments that end up in the tail can be thought of as
measurements of a model with a hypothesized signal strength µ, where as many as or less events than
measured in data are observed due to a downwards fluctuation.

The generation of pseudo-experiments is repeated for every tested value of µ. In addition, pseudo-
experiments are carried out with a value of µ = 0 to obtain the p-value for the null hypothesis, p0,
needed for the calculation of CLS. If the CLS value for a fixed value of µ is smaller than 5 %, the point
is outside the confidence interval, and inside otherwise.

9.2 Inputs and optimization

The inputs needed for the calculation of the frequentist 95 % CLS upper limit on the cross-section
are similar to those needed in the computation of the cross-section. The only difference is that the
phase-space used in the limit setting procedure includes a selection on the invariant mass of the di-
photon system. As explained earlier, this enhances the sensitivity to anomalous quartic couplings, whose
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Figure 9.3: Profile likelihood ratio distribution for 100000 pseudo-experiments generated with a fixed value of
µ (red histogram) and the value of the profile likelihood ratio obtained from data (black line). The hatched area
indicates the fraction of pseudo-experiments that yield a profile likelihood ratio equal or larger than that obtained
in data.

contribution is expected at high mass. This additional requirement affects especially the central values
and uncertainties of the background estimation and the reconstruction efficiency.

The expected number of background events is extrapolated into the high mass region, since the small
number of events does not allow to redo the background estimates. The extrapolation is done using the
di-photon invariant mass distribution obtained from a control region for the data-driven backgrounds
and from simulation for the other backgrounds. Details on how the shape of the kinematic distributions
is obtained can be found in Section 7.4. An additional systematic uncertainty of 100 % is assigned due
to the uncertainties inherent to the extrapolation.

The acceptance and efficiency corrections are derived as described in Section 8.2 and Section 8.3
as a function of the minimum di-photon invariant mass requirement. The resulting distributions are
shown in Figure 9.4. The acceptance correction shows no significant dependence on the minimum
mγγ requirement, whereas the efficiency correction shows a strong dependence. A potential explanation
is the photon identification efficiency, which rises for larger photon transverse momenta. A requirement
on large mγγ shifts the average photon transverse momentum to higher values and therefore increases
the overall identification efficiency.

The dataset used for the calculation of the confidence intervals is the same as for the cross-section
measurement. Thus the luminosity and its uncertainty are the same as in the previous chapter, Lint =

20.3 ± 0.6 fb−1. The uncertainties on the theory prediction show only a small dependence on the
di-photon invariant mass. The scale dependence of the mγγ distribution is shown in Figure 2.6a in
Chapter 2. Therefore, a conservative uncertainty of 15 % will be used for the determination of the
confidence interval.
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Figure 9.4: The acceptance (left) and efficiency correction (right) as a function of the minimum requirement on the
di-photon invariant mass. The statistical uncertainties are indicated as black lines and the systematic uncertainties
are indicated as red bars.

9.2.1 Optimization of the phase-space

The phase-space used to set the limits on the cross-section is optimized by a scan of the expected 95 %
CLS confidence interval on the anomalous coupling fT,0 /Λ4 as a function of the minimum mγγ require-
ment. The optimization is performed without knowledge about the observed data. This is important
in order to avoid choosing a phase-space region that artificially tightens the limit due to a statistical
fluctuation in the data. The calculation of the expected limit is identical to that of the observed limit, but
instead of the number of observed events, Nobs, the number of expected events, Nexp, is used. Therefore,
the expected limit gives the median limit that can be obtained by this particular measurement, if only
the known Standard Model processes contribute.

The confidence interval on fT,0 /Λ4 is calculated in two steps. At first, the expected upper limit on
the cross-section of anomalous couplings, σ95 %

aQGC, is calculated using the statistical methods described
above. Afterwards, the value of fT,0 /Λ4 at which the additional cross-section of the operator, σT,0,
equals the upper limit is determined, i.e.

σT,0

(
fT,0
Λ4

)
= σ95 %

aQGC . (9.12)

The calculation of the cross-section for a single parameter point using VbfNlo takes from a few
hours to a few days depending on the precision of the results needed. Therefore it is not possible to
calculate the cross-section for the whole parameter space. Instead, the cross-section is parametrized
as a function of the value of the anomalous coupling. Figure 9.5 shows the predicted cross-section
for the Wγγ process in the extended-fiducial phase-space defined in Section 8.1 for various parameters
of fT,0 /Λ4. The uncertainty on the cross-section is the uncertainty due to the numerical calculation
reported by VbfNlo. The cross-section shows a clear parabolic dependence on the value of the coupling
parameter. This justifies the parametrization with a second order polynomial, which is fitted to the
cross-section. The estimated parameters are given in the figure as well as the χ2/NDF value, which
confirms that the fit describes the cross-section well. The parabola is not fully symmetric around zero
due to interference effects. Using the parabolic parametrization of σT,0 it is easy to find the value of
fT,0 /Λ4 that satisfies Equation 9.12.

The scan of the expected limit is done in steps of 20 GeV of the minimum mγγ requirement. For each
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Parameter Relative uncertainty

Nbkg 0.02 ±116 %
σ

theory
ext-fid 0.06 fb ±15 %
Lint 20.3 fb−1 ±2.8 %
A 0.90 ±11 %
ε 0.82 ±11 %

Nobs 0 —

Table 9.1: The parameters used to extract the upper 95 % CLS limit on the cross-section from the process that
modifies the quartic gauge coupling of the WWγγ vertex.

step the parametrization of the cross-section is obtained from a parabolic fit. Instead of using pseudo-
experiments, the p-value is calculated using the asymptotic formulas. The better coverage obtained
by using pseudo-experiments does not justify the extra computational cost, since the absolute value of
the expected limit will not be used later. The expected 95 % CLS confidence interval on fT,0 /Λ4 as a
function of the minimum mγγ requirement is shown in Figure 9.6. For a given value of mγγ, everything
above the upper and below the lower line is excluded.

The optimization shows that a high minimum mγγ requirement yields the best expected limits. How-
ever, in this phase-space region the number of expected events from background processes is zero, which
makes it difficult to include the uncertainty in a proper way into the statistical method. In addition, the
sample of simulated Wγγ events that is used to derive the acceptance and efficiency corrections has not
enough events above mγγ ∼ 300 GeV to provide a reliable estimate. Since the change in the expected
limit on fT,0 /Λ4 between mγγ > 300 GeV and mγγ > 500 GeV is small, the limits will be set with a
minimum di-photon invariant mass requirement of mγγ > 300 GeV.

9.3 Results without unitarization

The parameters used to obtain 95 % CLS upper limits on the cross-section from processes that give rise
to anomalous quartic WWγγ couplings are given in Table 9.1. The limit is obtained in the extended-
fiducial region defined in Chapter 8 with the additional requirement that the di-photon invariant mass
mγγ is above 300 GeV. The observed values of the CLS test statistic as a function of the signal strength
parameter µ of a hypothesized anomalous quartic gauge couplings are shown in Figure 9.7. In addition,
the expected value and its uncertainty is shown. Every value of µ that leads to a CLS value below 0.05
is excluded with a confidence level of 95 %.

The upper 95 % CLS limit on the cross-section from processes giving rise to anomalous quartic coup-
lings, σaQGC, is the point where the observed CLS value goes below 0.05. This point is determined by
linear interpolation between the two closest µ values. It is found to be

σ95 % C.L.
excluded = 0.19 fb . (9.13)

The expected limit which is given by the intersection of the median expected CLS value with the hori-
zontal line CLS = 0.05 is

σ
95 % C.L., expected
excluded = (0.23 +0.08

−0.04) fb (9.14)

and thus slightly weaker. This is expected since no data was observed in the phase-space region used
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Figure 9.5: Cross-section of the Wγγ process in the extended-fiducial region as function of the anomalous quartic
coupling fT,0 /Λ4. A fit with a parabola is overlaid.
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Figure 9.7: The value of the CLS test statistic as a function of the signal strength parameter µ of a hypothesized
model. The observed values as well as the expected values are shown. The green band indicates the ± 1σ
uncertainty on the expected CLS values. All values of µ yielding CLS < 0.05 (indicated by the red horizontal line)
are excluded with a confidence level of 95 %.

for the limit setting. The observed and the expected limit are compatible within one standard deviation.
The upper limit on the cross-section of processes involving anomalous WWγγ couplings can be ex-

pressed in terms of the coupling of the operator FT,0 by using the parametrization from Figure 9.5. The
limit is visualized in Figure 9.8, where the ratio of the excluded cross-section to that predicted by the
FT,0-operator is shown as a function of the coupling parameter fT,0 /Λ4. The couplings for which the
ratio is larger than 1.0 are excluded at 95 % confidence level. The observed confidence interval is

−22.5 TeV−4 <
fT,0
Λ4 < 22.2 TeV−4 .

The median expected limit and its uncertainty band are also shown in Figure 9.8. The expected confid-
ence interval is

(−24.7 +2.9
−5.3) TeV−4 <

fT,0
Λ4 < (24.3 +5.3

−2.9) TeV−4 .

The observed and the expected confidence intervals agree within one standard deviation.

9.4 Results with unitarization

As discussed in Section 2.4, the current limit on the couplings are so weak that unitarity might be
violated at scales well below 8 TeV and therefore in the reach of the LHC. The unitarity bound as a
function of the coupling, fT,0 /Λ4, displayed in Figure 2.10a in Chapter 2 shows that for couplings
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parameters around 20 TeV−4, the unitarity bound is at
√

ŝ = 0.6 TeV. Thus a dipole form-factor,1 +
s

Λ2
FF

−2

, (9.15)

is applied to ensure unitarity. The form-factor scale, ΛFF, is chosen as the smallest scale for which
unitarity is conserved up to

√
ŝ = 8 TeV, for an anomalous coupling which equals the expected limit

given above. The calculation of the scale is done by a tool provided by the VbfNlo authors [56], already
described earlier. The resulting form-factor scale is found to be ΛFF = 0.622 TeV−4.

Since the dipole form-factor depends on the scale of the interaction, s, it can not be applied as a
multiplicative factor to the differential cross-section as function of the di-photon invariant mass. Instead,
the theory predictions have to be recalculated with dipole form-factor applied. This requires that the
parametrization of the cross-section as function of the coupling and the optimization of the phase-space
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Figure 9.9: (a): The parametrization of the cross-section as function of the coupling fT,0 /Λ4 for the FT,0 operator.
The cross-section has been calculated with a dipole form-factor with ΛFF = 622 GeV. (b): The expected limit on
fT,0 /Λ4 as function of the minimum di-photon invariant mass requirement calculated using a dipole form-factor
with ΛFF = 622 GeV.

region used for the limit setting have to be redone. One example of the parametrization obtained for
events with mγγ > 300 GeV is shown in Figure 9.9a. The suppression of the cross-section compared to
the case without form-factor is clearly visible. For example for a hypothesized coupling of fT,0 /Λ4 =

100 TeV−4, the expected cross-section decreases from around 4 fb to only 0.1 fb when applying the
dipole form-factor unitarization.

Since the form-factor might change the optimal phase-space region for the calculation of the limit,
the phase-space is optimized as described above using the parametrization obtained from the theory
predictions with the dipole form-factor applied. The resulting expected limit on fT,0 /Λ4 is shown in
Figure 9.9b as a function of the minimum di-photon invariant mass requirement. As before, the optimal
phase-space for the limit is given by an additional mγγ > 300 GeV requirement.

The observed and median expected 95 % CLS confidence interval on the coupling fT,0 /Λ4 of the
FT,0 operator, obtained using a dipole form-factor unitarization with a scale of ΛFF = 622 GeV are visu-
alized in Figure 9.10. It shows the ratio of the excluded to the predicted cross-section of the FT,0 op-
erator. Everything above one is excluded at a 95 % confidence level. The confidence interval observed
is

−527 TeV−4 <
fT,0
Λ4 < 508 TeV−4 .

The median expected limit and its uncertainty band are also shown in Figure 9.8. The expected confid-
ence interval is

(−576 +67
−123) TeV−4 <

fT,0
Λ4 < (558 +123

−67 ) TeV−4 .

The observed and the expected confidence intervals agree within one standard deviation. The observed
limit obtained using the unitarized prescription of the FT,0 operator is around a factor 20 weaker than
the one obtained without applying unitarization.

9.5 Comparison to previous measurements

Anomalous quartic couplings have been previously constrained in several measurements carried out at
LEP [45–48] and TeVatron [49], but these do not cover the FT,0 operator considered in this analysis.
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Recently, the CMS Collaboration published the first ever 95 % confidence interval on fT,0 /Λ4 [55],
obtained from a measurement of the three boson production processes WWγ and WZγ. The published
confidence interval is only presented without unitarization applied. It is found to be −25 TeV−4 <

fT,0 /Λ4 < 24 TeV−4 and thus slightly weaker than the confidence interval presented in this work.
In summary, the measurement of the Wγγ production cross-section is found to be in agreement with

the Standard Model predictions. It has therefore been used to constrain physics beyond the Standard
Model. A model-independent approach, consisting of effective Lagrangians that give rise to anomalous
quartic couplings, was conducted to quantify the deviations from the Standard Model excluded by this
measurement. The coupling of one exemplary effective operator, FT,0, has been constrained by an upper
limit of about

∣∣∣ fT,0 /Λ4
∣∣∣ < 22 TeV−4. This limit improves the previous limit by around 2 TeV−4. In

addition, the upper limit on the coupling has been derived using a dipole form-factor with a scale of
ΛFF = 622 GeV to ensure the unitarity up to

√
ŝ = 8 TeV, the center-of-mass energy at which the

data was recorded. In this case the 95 % frequentist CLS upper limit obtained is around
∣∣∣ fT,0 /Λ4

∣∣∣ <
515 TeV−4.
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CHAPTER 10

Summary

After two years of LHC data taking no evidence for physics beyond the Standard Model has been found.
This thesis presents a complementary approach to the searches for direct production of new particles. A
yet unmeasured three weak gauge boson production process is used for a generic test of the electroweak
gauge structure.

The first measurement of the three vector boson production process, pp → µνγγ, is presented in
this study. The measurement was performed using 20.3 fb−1 of proton-proton collision data at

√
s =

8 TeV recorded with the ATLAS detector. The cross-section was extracted in two restricted phase-
space regions and compared to predictions at next-to-leading order QCD. The events are selected by
requiring a W boson that decays into a muon and its neutrino in association with two isolated photons
with transverse energies above 20 GeV. The main challenge of this work was the estimation of the
background contributions, primarily from jets which fake a photon signature or non-prompt muons
from the decay of a heavy-flavor hadron.

These backgrounds have been estimated using data-driven methods. The fake photon background is
determined using the 2D template fit method, which exploits the difference of the transverse energy in
a cone around the photon candidates. The non-prompt muon background is estimated by defining three
control-regions used to constrain the number of events with non-prompt muons. From 112 selected
candidate events, 57 ±14 (stat.) ±10 (sys.) signal events remain after the subtraction of the backgrounds.

The cross-section has been calculated in two restricted phase-space regions well covered by the
ATLAS detector. The inclusive phase-space poses no requirement on jets, while in the exclusive phase-
space a veto on anti-kt jets with transverse momentum above 30 GeV is applied. The cross-section is
found to be (6.5 ±1.6 (stat.) ±1.1 (sys.) ±0.2 (lumi.)) fb, and (3.6 ±1.2 (stat.) ±0.8 (sys.) ±0.1 (lumi.)) fb
in the inclusive and exclusive phase-space regions, respectively. The measured cross-sections are com-
patible with predictions at next-to-leading order QCD by the VbfNlo program, but slightly larger, which
can be attributed to non-negligible higher order perturbative effects and the missing inclusion of frag-
mentation photons for the prediction.

The measurement in the exclusive phase-space is used to constrain anomalous quartic gauge boson
couplings. In this thesis the coupling parameter of one exemplary operator has been constraint. An
optimization of the sensitivity has been performed, and only events at large di-photon invariant masses
are considered. No evidence for physics beyond the Standard Model is observed. The 95 % frequent-
ist CLS limits obtained for the coupling parameter, is found to be −22.5 TeV−4 <

fT,0
Λ4 < 22.2 TeV−4

improving previous limits published by the CMS collaboration. A second limit is derived using a
dipole form-factor to avoid unitarity violation at high energies. In this case the obtained limit is
−527 TeV−4 <

fT,0
Λ4 < 508 TeV−4.
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APPENDIX A

Supplementary material

A.1 Additional quality criteria for muons

This section lists the add additional quality criteria that are applied to the inner detector track of a
combined muon to take into account the status of the Pixel- and SCT-systems. The following quality
criteria are applied [135]:

• At least one hit in the pixel detector, except the track crossed a module which is known to be
defect.

• At least four hits in the SCT detector. If the track crosses SCT modules which are known to be
defect, this SCT module is assigned as a hit.

• At most three modules which are known to be defect are crossed by the track.

• If a TRT track is expected (in the region 0.1 < |η| < 1.9) it must be sufficiently well measured.

A.2 Fake jet identification

To suppress jets from cosmic-ray showers, beam-induced background or short localized noise bursts in
the calorimeter, the following variables are used [136]:

fEM: The fraction of the total jet energy deposited in the electromagnetic compartment of the calori-
meter.

fHEC: The fraction of the total jet energy deposited in the hadronic endcap calorimeter.

fmax: The maximum energy fraction deposited in a single calorimeter layer.

〈Q〉: The weighted average of the quality measure Qcell of all cells that constitute a jet. The cell-level
quality is a function of the difference between the measured pulse-shape to a nominal pulse-shape
obtained from simulation of the calorimeter front-end electronics.

f LAr
Q

: The fraction of cells constituting the jet, which are in the LAr calorimeters that have a bad quality
pulse-shape.
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f HEC
Q

: The fraction of cells constituting the jet, which are in the HEC that have a bad quality pulse-
shape.

fch: The charged energy fraction of the total jet energy. This is determined from the transverse mo-
mentum sum of tracks within a cone of ∆R ≤ 0.4 around the jet direction.

Eneg: Sum of the energy of all cells constituting the jets which have negative energy.

The selections applied to all jets with transverse momentum above 20 GeV are listed in Table A.1.

Source Selection criteria

Non-collision background
( fEM < 0.05 and fch < 0.05 and |η| < 2) or
( fmax < 0.05 and |η| < 2) or
( fEM < 0.05 and |η| > 2) or

Coherent noise bursts fEM > 0.95 and f LAr
Q > 0.8 and

in the electromagnet calorimeters 〈Q〉 > 0.8 and |η| < 2.8

Noise bursts in the ( fHEC > 0.5 and
∣∣∣∣ f Q

HEC

∣∣∣∣ > 0.5 and
hadronic endcap calorimeters 〈Q〉 > 0.8) or

∣∣∣Eneg
∣∣∣ > 60 GeV

Table A.1: Selection criteria used to suppress jets from different background sources.
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A.3 Figures for the study of systematic uncertainties using the inclusive selection

A.3 Figures for the study of systematic uncertainties using the
inclusive selection
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Figure A.1: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
choice of the background model for the inclusive selection. The pseudo-data has been generated using the nominal
template and it has been fitted using the sum of a Gaussian and a Novosibirsk function with the same mean
parameter, as fake-photon template Fb. The corresponding distributions for the exclusive selection can be found
in Figure A.10.
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Figure A.2: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
definition of the fake-photon control region for the inclusive selection. The pseudo-data has been generate us-
ing a template obtained using the L′5 control region definition and was fitted using the nominal template. The
distributions for the exclusive selection are shown in Figure A.12.
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A.3 Figures for the study of systematic uncertainties using the inclusive selection
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Figure A.3: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
choice of the Monte Carlo generator for the inclusive selection. The corresponding distributions for the exclusive
selection can be found in Figure A.14.
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Figure A.4: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
signal-leakage correction for the inclusive selection. The corresponding distributions for the exclusive selection
can be found in Figure A.15.
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A.4 Figures for the photon background estimates using the exclusive
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Figure A.5: The Eiso
T distribution and the photon isolation p.d.f.’s for the leading (a) and subleading (b) photon

from simulated Wγγ events selected using the exclusive selection. The distribution for the inclusive selection is
shown in Figure 7.2
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Figure A.6: The jet Eiso
T distribution for the leading (c) and subleading (d) photon candidate extracted from the data

using the exclusive selection. The solid line shows the resulting jet isolation p.d.f.’s Fj,1 and Fj,2. The distribution
and the template for the inclusive selection is shown in Figure 7.2.
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Figure A.7: The two-dimensional Eiso
T distribution for the jj-p.d.f. selected using the exclusive selection.

(a): Eiso
T distribution in the AA sample. (b): Corresponding smoothed p.d.f. Fjj. The two-dimensional Eiso

T distri-
bution obtained using the inclusive selection and the corresponding p.d.f. are shown in Figure 7.3
.
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Figure A.8: Pull distributions for the four event yields in the signal region from 10000 pseudo-experiments. In
addition the mean, width and goodness-of-fit of a Gaussian fitted to these distributions is shown. The same
distributions for the inclusive selection are shown in Figure 7.5.
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Figure A.9: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to limited
control region statistics.
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Figure A.10: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
choice of the background model for the exclusive selection. The pseudo-data has been generated using the nominal
template and it has been fitted using the sum of a Gaussian and a Novosibirsk function with the same mean
parameter, as fake-photon template Fb. The corresponding distributions for the inclusive selection can be found
in Figure A.10.
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Figure A.11: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
choice of the background model for the exclusive selection. The pseudo-data has been generated using the nominal
template and it has been fitted using a Crystal-Ball function as fake-photon template Fb. The corresponding
distributions for the inclusive selection can be found in Figure A.11.
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Figure A.12: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
definition of the fake-photon control region for the exclusive selection. The pseudo-data has been generated
with a template obtained using the L′5 control region definition and was fitted using the nominal template. The
corresponding distribution for the inclusive selection can be found in Figure A.12.
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Figure A.13: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
definition of the fake-photon control region for the exclusive selection. The pseudo-data has been generated
with a template obtained using the L′3 control region definition and was fitted using the nominal template. The
corresponding distribution for the inclusive selection can be found in Figure 7.9.
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Figure A.14: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
choice of the Monte Carlo generator for the exclusive selection. The corresponding distribution for the inclusive
selection can be found in Figure A.3.
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Figure A.15: Pull distributions from pseudo-experiments used to evaluate the systematic uncertainty due to the
signal-leakage correction for the exclusive selection. The corresponding distribution for the inclusive selection
can be found in Figure A.4.
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A.5 Simulation of background processes

The simulation of background processes is used for two different purposes in this thesis. First, it is
used to develop and validate the methods used for the data-driven background estimates. Secondly, the
contribution of irreducible background processes is directly estimated from Monte Carlo simulations.
Table A.2 lists the background process and which program was used to simulate them.

Process Generator N σ [fb] Lint [fb−1]

pp→ Wγ + X AlpGen 23 × 106 1.3 × 105 180
pp→ W + X AlpGen 31 × 106 3.6 × 107 0.85
pp→ Zγγ + X Sherpa 1.2 × 106 417 2877
pp→ tt̄ + X Mc@Nlo 9 × 106 130 × 103 70
pp→ t + X Mc@Nlo 3.4 × 106 50 × 103 69
pp→ W(→ τν)γγ + X Sherpa 350 × 103 162 2155
pp→ W+W− + X Mc@Nlo 1.6 × 106 4.9 × 103 322
pp→ WZ + X Sherpa 2.7 × 106 9.8 × 103 277
pp→ ZZ + X Powheg 5.3 × 106 580 9100

Table A.2: The processes, the program used for simulation, the total number of events, the cross-section and the
corresponding integrated luminosity of the simulated background processes used in this thesis.
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A.6 Kinematic distributions in the signal region for the exclusive
selection
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Figure A.16: The transverse momentum distribution of the leading photon (a) and the di-photon invariant mass (b)
in the signal region for the exclusive selection. The prediction from the simulation is shown as a stacked histogram
with the uncertainties indicated by the yellow hatched band. The rightmost bin is an overflow bin. The prediction
for the Wγγ process is normalized to the number of signal events observed in data.
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Figure A.17: The Emiss
T (a) and transverse momentum (b) distribution of the muon for the exclusive selection

in the signal region. The prediction from the simulation is shown as a stacked histogram with the uncertainties
indicated by the yellow hatched band. The rightmost bin is an overflow bin. The prediction for the Wγγ process
is normalized to the number of signal events observed in data.
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A.7 VbfNlo parameters

! Main input file for vbfnlo

! General parameters of the calculation
!-------------------------------------------
PROCESS = 500 ! Identifier for process
LOPROCESS_PLUS_JET = false ! switch: LO process with 1 additional jet
LEPTONS = 98 ! final state leptons
LO_ITERATIONS = 3 ! number of iterations for LO calculation
NLO_ITERATIONS = 3 ! number of iterations for real-emissions calc.
LO_POINTS = 24 ! number of points for LO calculation (= 2^..)
NLO_POINTS = 24 ! number of points for real-emissions calc. (= 2^..)
LO_GRID = "grid2_1" "grid2_2" "grid2_3" "grid2_4" ! names of gridfiles for LO calculation
NLO_GRID = "grid3_1" "grid3_2" "grid3_3" "grid3_4" ! names of gridfiles for real emissions calculation
PHTN_GRID = "grid4_1" "grid4_2" "grid4_3" "grid4_4" ! names of gridfiles for photon emission calculation
FLOOP_GRID = "grid5_1" "grid5_2" "grid5_3" "grid5_4" ! names of gridfiles for fermion loop calculation
NLO_SWITCH = true ! switch: nlo/lo calculation
EWCOR_SWITCH = false ! Whether electoweak corrections are included
FERMIONLOOP = 3 ! Contribution of gluon-induced fermionic loops for diboson processes
ECM = 8000d0 ! collider center-of-mass energy
BEAM1 = 1 ! type of beam 1 (1=proton, -1 = antiproton)
BEAM2 = 1 ! type of beam 2 (1=proton, -1 = antiproton)
ID_MUF = 4 ! ID for factorization scale
ID_MUR = 4 ! ID for renormalization scale
MUF_USER = 100.d0 ! user defined factorization scale, if MUF is set to 0
MUR_USER = 100.d0 ! user defined renormalization scale, if MUR is set to 0
XIF = 1.0d0 ! scale factor xi for mu_F (not mu^2!!)
XIR = 1.0d0 ! scale factor xi for mu_R
! Physics parameters
!------------------------
HMASS = 126.0d0 ! Higgs mass
HTYPE = 0 ! Type of Higgs produced:

! 0 SM Higgs with mass HMASS
MODEL = 1 ! model: 1 for SM, 2 for MSSM
HWIDTH = -999d0 ! Higgs width (set to -999d0 for internal calculation)
TOPMASS = 172.4d0 ! Top mass
BOTTOMMASS = 4.855d0 ! Bottom Pole mass
CHARMMASS = 1.65d0 ! Charm Pole mass
TAU_MASS = 1.77684D0 ! Tau mass
ALFA_S = 0.1176d0 ! Strong coupling constant
EWSCHEME = 3 ! Choose scheme for electroweak parameters (1,2,3,4)
EW_APPROX = 0 ! Approximation used when calculating electroweak
FERMI_CONST = 1.16637d-5 ! Fermi Constant
ALFA = 7.2973525376d-3 ! Fine-structure constant
SIN2W = 0.23119d0 ! Weak mixing angle
WMASS = 80.398d0 ! W mass
ZMASS = 91.1876d0 ! Z mass
ANOM_CPL = false ! Anomalous couplings
KK_MOD = false ! Warped Higgsless Model
SPIN2 = false ! Spin-2 model
! Parameters for the LHA event output
!-----------------------------------------
LHA_SWITCH = false ! Les Houches interface only for LO calculation
LHA_FILE = event.lhe ! Name of Les Houches output file
HEPMC_SWITCH = false ! HepMC interface only for LO calculation
HEPMC_FILE = event.hepmc ! Name of HepMC output file
UNWEIGHTING_SWITCH = false ! weighted/unweighted (T/F) events for LHA
PRENEVUNW = 1000 ! number of events to calculate pre-maximal weight
TAUMASS = false ! Include mass of the tau lepton(s) in the LHA file for VBF processes
! PDF set parameters
!------------------------
PDF_SWITCH = 1 ! which pdfs to use: 1 = lhapdf, 0 = hard-wired cteq (default)
! choose pdfset and pdfmember here. Look at the LHAPDF manual for details.
LO_PDFNAME = MSTW2008lo90cl.LHgrid
NLO_PDFNAME = MSTW2008nlo90cl.LHgrid
LO_PDFMEMBER = 0
NLO_PDFMEMBER = 0

Table A.3: Generation parameters for the VbfNlo program.g

127





Bibliography

[1] J. Beringer et al., Review of Particle Physics, Phys. Rev. D86 (2012 and 2013 partial update for
the 2014 edition) 010001, doi: 10.1103/PhysRevD.86.010001.

[2] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys.Lett. B716 (2012) 1–29, doi: 10.1016/
j.physletb.2012.08.020, arxiv: 1207.7214 [hep-ex].

[3] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment
at the LHC, Phys.Lett. B716 (2012) 30–61, doi: 10.1016/j.physletb.2012.08.021, arxiv:
1207.7235 [hep-ex].

[4] ATLAS Collaboration, Measurements of Wγ and Zγ production in pp collisions at
√

s = 7 TeV
with the ATLAS detector at the LHC, Phys.Rev. D87 (2013) 112003, doi: 10.1103/PhysRevD.
87.112003, arxiv: 1302.1283 [hep-ex].

[5] CMS Collaboration, Measurement of the Wγ and Zγ inclusive cross sections in pp collisions at
√

s = 7 TeV and limits on anomalous triple gauge boson couplings (2013), arxiv: 1308.6832
[hep-ex].

[6] ATLAS Collaboration, Measurement of ZZ production in pp collisions at
√

s = 7 TeV and
limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, JHEP 1303 (2013) 128,
doi: 10.1007/JHEP03(2013)128, arxiv: 1211.6096 [hep-ex].

[7] A. Belyaev et al., Strongly interacting vector bosons at the CERN LHC: Quartic anomalous
couplings, Phys.Rev. D59 (1999) 015022, doi: 10.1103/PhysRevD.59.015022, arxiv: hep-
ph/9805229 [hep-ph].

[8] Press release from the Royal Swedish Academy of Science, 8th Oct. 2013, url: http://www.
nobelprize.org/nobel_prizes/physics/laureates/2013/press.pdf.

[9] S. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579.

[10] A. Salam, Weak and Electromagnetic Interactions, Conf.Proc. C680519 (1968) 367–377.

[11] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264.

[12] F. Halzen and A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle
Physics, 1984, isbn: 9780471887416.

[13] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory, Boulder, Colo.:
Westview Press, 2007 XXII, 842 S. isbn: 978-0-201-50397-5 ; 0-201-50397-2.

[14] N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys.Rev.Lett. 10 (1963) 531–533, doi:
10.1103/PhysRevLett.10.531.

129

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevD.87.112003
http://dx.doi.org/10.1103/PhysRevD.87.112003
http://arxiv.org/abs/1302.1283
http://arxiv.org/abs/1308.6832
http://arxiv.org/abs/1308.6832
http://dx.doi.org/10.1007/JHEP03(2013)128
http://arxiv.org/abs/1211.6096
http://dx.doi.org/10.1103/PhysRevD.59.015022
http://arxiv.org/abs/hep-ph/9805229
http://arxiv.org/abs/hep-ph/9805229
http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/press.pdf
http://www.nobelprize.org/nobel_prizes/physics/laureates/2013/press.pdf
http://dx.doi.org/10.1103/PhysRevLett.10.531


Bibliography

[15] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction,
Prog.Theor.Phys. 49 (1973) 652–657, doi: 10.1143/PTP.49.652.

[16] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev.
Lett. 13 (9 Aug. 1964) 321–323, doi: 10.1103/PhysRevLett.13.321.

[17] P. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12.2 (1964) 132–
133, issn: 0031-9163, doi: 10.1016/0031-9163(64)91136-9.

[18] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (16 Oct.
1964) 508–509, doi: 10.1103/PhysRevLett.13.508.

[19] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Global Conservation Laws and Massless
Particles, Phys. Rev. Lett. 13 (20 Nov. 1964) 585–587, doi: 10.1103/PhysRevLett.13.585.

[20] P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145 (4
May 1966) 1156–1163, doi: 10.1103/PhysRev.145.1156.

[21] T. W. B. Kibble, Symmetry Breaking in Non-Abelian Gauge Theories, Phys. Rev. 155 (5 Mar.
1967) 1554–1561, doi: 10.1103/PhysRev.155.1554.

[22] R. Ellis, W. Stirling and B. Webber, QCD and Collider Physics, Cambridge Monographs on
Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, 2003, isbn:
9780521545891.

[23] J. M. Campbell, J. Huston and W. Stirling, Hard Interactions of Quarks and Gluons: A Primer
for LHC Physics, Rept.Prog.Phys. 70 (2007) 89, doi: 10.1088/0034-4885/70/1/R02, arxiv:
hep-ph/0611148 [hep-ph].

[24] L. Lipatov, The parton model and perturbation theory, Sov.J.Nucl.Phys. 20 (1975) 94–102.

[25] V. Gribov and L. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov.J.Nucl.Phys.
15 (1972) 438–450.

[26] G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B126 (1977) 298,
doi: 10.1016/0550-3213(77)90384-4.

[27] Y. L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and
e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov.Phys.JETP 46
(1977) 641–653.

[28] A. Martin et al., Parton distributions for the LHC, Eur. Phys. J. C63 (2009) 189–285, doi: 10.
1140/epjc/s10052-009-1072-5, arxiv: 0901.0002 [hep-ph].

[29] H.-L. Lai et al., New parton distributions for collider physics, Phys.Rev. D82 (2010) 074024,
doi: 10.1103/PhysRevD.82.074024, arxiv: 1007.2241 [hep-ph].

[30] F. Aaron et al., Combined Measurement and QCD Analysis of the Inclusive e± p Scattering Cross
Sections at HERA, JHEP 1001 (2010) 109, doi: 10.1007/JHEP01(2010)109, arxiv: 0911.0884
[hep-ex].

[31] U. Baur et al., Wγγ production at the Fermilab Tevatron collider: Gauge invariance and radi-
ation amplitude zero, Phys.Rev. D56 (1997) 140–150, doi: 10.1103/PhysRevD.56.140, arxiv:
hep-ph/9702364 [hep-ph].

[32] U. Baur, D. Wackeroth and M. M. Weber, Radiative corrections to Wγγ production at the LHC,
PoS RADCOR2009 (2010) 067, arxiv: 1001.2688 [hep-ph].

130

http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1103/PhysRev.145.1156
http://dx.doi.org/10.1103/PhysRev.155.1554
http://dx.doi.org/10.1088/0034-4885/70/1/R02
http://arxiv.org/abs/hep-ph/0611148
http://dx.doi.org/10.1016/0550-3213(77)90384-4
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://dx.doi.org/10.1103/PhysRevD.82.074024
http://arxiv.org/abs/1007.2241
http://dx.doi.org/10.1007/JHEP01(2010)109
http://arxiv.org/abs/0911.0884
http://arxiv.org/abs/0911.0884
http://dx.doi.org/10.1103/PhysRevD.56.140
http://arxiv.org/abs/hep-ph/9702364
http://arxiv.org/abs/1001.2688


Bibliography

[33] G. Bozzi et al., W±γγ production with leptonic decays at NLO QCD, Phys. Rev. D83 (2011)
114035, arxiv: 1103.4613 [hep-ph].

[34] S. Frixione, Isolated photons in perturbative QCD, Phys.Lett. B429 (1998) 369–374, doi: 10.
1016/S0370-2693(98)00454-7, arxiv: hep-ph/9801442 [hep-ph].

[35] K. Arnold et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons,
Comput.Phys.Commun. 180 (2009) 1661–1670, doi: 10.1016/j.cpc.2009.03.006, arxiv:
0811.4559 [hep-ph], url: http://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=
overview.

[36] V. Hankele and D. Zeppenfeld, QCD corrections to hadronic WWZ production with leptonic
decays, Phys.Lett. B661 (2008) 103–108, doi: 10.1016/j.physletb.2008.02.014, arxiv:
0712.3544 [hep-ph].

[37] F. Campanario et al., QCD corrections to charged triple vector boson production with leptonic
decay, Phys.Rev. D78 (2008) 094012, doi: 10.1103/PhysRevD.78.094012, arxiv: 0809.0790
[hep-ph].

[38] G. Bozzi et al., NLO QCD corrections to W+W−γ and ZZγ production with leptonic decays,
Phys.Rev. D81 (2010) 094030, doi: 10.1103/PhysRevD.81.094030, arxiv: 0911.0438 [hep-ph].

[39] G. Bozzi et al., NLO QCD corrections to W±Zγ production with leptonic decays, Phys.Lett.
B696 (2011) 380–385, doi: 10.1016/j.physletb.2010.12.051, arxiv: 1011.2206 [hep-ph].

[40] R. W. Brown, K. Kowalski and S. J. Brodsky, Classical Radiation Zeros in Gauge Theory Amp-
litudes, Phys.Rev. D28 (1983) 624, doi: 10.1103/PhysRevD.28.624.

[41] F. Campanario et al., Precise predictions for Wγγ+jet production at hadron colliders, Phys.Lett.
B704 (2011) 515–519, doi: 10.1016/j.physletb.2011.09.072, arxiv: 1106.4009 [hep-ph].

[42] F. Campanario et al., Di-boson and Tri-boson production at the LHC (2013), arxiv: 1307.2261
[hep-ph].

[43] W. Buchmueller and D. Wyler, Effective lagrangian analysis of new interactions and flavour
conservation, Nuclear Physics B 268.3-4 (1986) 621–653, issn: 0550-3213, doi: 10.1016/0550-
3213(86)90262-2.

[44] O. Eboli, M. Gonzalez-Garcia and J. Mizukoshi, pp → j je±µ±νν and j je±µ∓νν at O(α6
em) and

O(α4
emα

2
S) for the study of the quartic electroweak gauge boson vertex at CERN LHC, Phys.Rev.

D74 (2006) 073005, doi: 10.1103/PhysRevD.74.073005, arxiv: hep-ph/0606118 [hep-ph].

[45] ALEPH Collaboration, Constraints on anomalous QGCs in interactions from 183 to 209 GeV,
Physics Letters B 602.1 - 2 (2004) 31–40, issn: 0370-2693, doi: 10.1016/j.physletb.2004.
09.041.

[46] DELPHI Collaboration, Measurement of the e+e− → W+W−γ cross-section and limits on an-
omalous quartic gauge couplings with DELPHI, Eur. Phys. J. C31 (2003) 139–147, doi: 10.
1140/epjc/s2003-01350-x, arxiv: hep-ex/0311004 [hep-ex].

[47] L3 Collaboration, Study of the W+W−γ process and limits on anomalous quartic gauge boson
couplings at LEP, Phys.Lett. B527 (2002) 29–38, doi: 10.1016/S0370- 2693(02)01167- X,
arxiv: hep-ex/0111029 [hep-ex].

[48] OPAL Collaboration, Measurement of the W+W−γ cross-section and first direct limits on an-
omalous electroweak quartic gauge couplings, Phys.Lett. B471 (1999) 293–307, doi: 10.1016/
S0370-2693(99)01357-X, arxiv: hep-ex/9910069 [hep-ex].

131

http://arxiv.org/abs/1103.4613
http://dx.doi.org/10.1016/S0370-2693(98)00454-7
http://dx.doi.org/10.1016/S0370-2693(98)00454-7
http://arxiv.org/abs/hep-ph/9801442
http://dx.doi.org/10.1016/j.cpc.2009.03.006
http://arxiv.org/abs/0811.4559
http://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=overview
http://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=overview
http://dx.doi.org/10.1016/j.physletb.2008.02.014
http://arxiv.org/abs/0712.3544
http://dx.doi.org/10.1103/PhysRevD.78.094012
http://arxiv.org/abs/0809.0790
http://arxiv.org/abs/0809.0790
http://dx.doi.org/10.1103/PhysRevD.81.094030
http://arxiv.org/abs/0911.0438
http://dx.doi.org/10.1016/j.physletb.2010.12.051
http://arxiv.org/abs/1011.2206
http://dx.doi.org/10.1103/PhysRevD.28.624
http://dx.doi.org/10.1016/j.physletb.2011.09.072
http://arxiv.org/abs/1106.4009
http://arxiv.org/abs/1307.2261
http://arxiv.org/abs/1307.2261
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1103/PhysRevD.74.073005
http://arxiv.org/abs/hep-ph/0606118
http://dx.doi.org/10.1016/j.physletb.2004.09.041
http://dx.doi.org/10.1016/j.physletb.2004.09.041
http://dx.doi.org/10.1140/epjc/s2003-01350-x
http://dx.doi.org/10.1140/epjc/s2003-01350-x
http://arxiv.org/abs/hep-ex/0311004
http://dx.doi.org/10.1016/S0370-2693(02)01167-X
http://arxiv.org/abs/hep-ex/0111029
http://dx.doi.org/10.1016/S0370-2693(99)01357-X
http://dx.doi.org/10.1016/S0370-2693(99)01357-X
http://arxiv.org/abs/hep-ex/9910069


Bibliography

[49] D0 Collaboration, Search for anomalous quartic WWγγ couplings in dielectron and missing
energy final states in pp̄ collisions at

√
s = 1.96 TeV, Phys.Rev. D88 (2013) 012005, doi: 10.

1103/PhysRevD.88.012005, arxiv: 1305.1258 [hep-ex].

[50] G. Belanger et al., Bosonic quartic couplings at LEP-2, Eur. Phys. J. C13 (2000) 283–293, doi:
10.1007/s100520000305, arxiv: hep-ph/9908254 [hep-ph].

[51] T. Han, Workshop Summary, Workshop Summary of the Anomalous Quartic Gauge Couplings
Workshop 2013 in Dresden, 2nd Oct. 2013, url: https://indico.desy.de/getFile.py/
access?contribId=19&sessionId=7&resId=1&materialId=slides&confId=7512.

[52] E. Fermi, Versuch einer Theorie der Betastrahlen, Zeitschrift für Physik Bd. 88 (1934) 161.

[53] F. L. Wilson, Fermi’s Theory of Beta Decay, American Journal of Physics 36.12 (1968) 1150–
1160, doi: http://dx.doi.org/10.1119/1.1974382.

[54] CMS Collaboration, Study of exclusive two-photon production of W+W− in pp collisions at
√

s = 7 TeV and constraints on anomalous quartic gauge couplings, JHEP 1307 (2013) 116,
doi: 10.1007/JHEP07(2013)116, arxiv: 1305.5596 [hep-ex].

[55] CMS Collaboration, A Search for WWγ and WZγ production in pp Collisions at
√

s = 8 TeV.,
CMS-PAS-SMP-13-009, CERN, 2013, url: https://cds.cern.ch/record/1563302.

[56] VBFNLO utility to calculate form factors, Version 1.2.1, July 2013, url: http://www.itp.kit.
edu/~vbfnloweb/wiki/doku.php?id=download:formfactor.

[57] V. D. Barger et al., Strong W+W+ scattering signals at pp supercolliders, Phys.Rev. D42 (1990)
3052–3077, doi: 10.1103/PhysRevD.42.3052.

[58] L. Evans and P. Bryant, LHC Machine, JINST 3 (2008), ed. by L. Evans S08001, doi: 10.1088/
1748-0221/3/08/S08001, url: http://cds.cern.ch/record/1129806.

[59] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J. Instrum.
3 (2008) S08003. 437 p, url: http://cds.cern.ch/record/1129811.

[60] CMS Collaboration, The CMS experiment at the CERN LHC. The Compact Muon Solenoid
experiment, J. Instrum. 3 (2008) S08004. 361 p, url: http://cds.cern.ch/record/1129810.

[61] ALICE Collaboration, The ALICE experiment at the CERN LHC. A Large Ion Collider Experi-
ment, J. Instrum. 3 (2008) S08002. 259 p, url: http://cds.cern.ch/record/1129812.

[62] LHCb Collaboration, The LHCb Detector at the LHC, J. Instrum. 3.LHCb-DP-2008-001. CERN-
LHCb-DP-2008-001 (2008) S08005, url: http://cds.cern.ch/record/1129809.

[63] ATLAS Collaboration, Expected performance of the ATLAS experiment: detector, trigger and
physics, CERN-OPEN-2008-20 (2009), arxiv: 0901.0512 [hep-ex], url: https://cds.cern.
ch/record/1125884.

[64] S. van der Meer, Calibration of the effective beam height in the ISR, 1968.

[65] C. Rubbia, Measurement of the luminosity of pp collider with a (generalized) Van der Meer
Method, CERN-pp-Note-38, CERN, Nov. 1977.

[66] G. Aad et al., Improved luminosity determination in pp collisions at
√

s = 7 TeV using the ATLAS
detector at the LHC, Eur. Phys. J. C73 (2013) 2518, doi: 10.1140/epjc/s10052-013-2518-3,
arxiv: 1302.4393 [hep-ex].

[67] S. Agostinelli et al., GEANT4: A Simulation toolkit, Nucl.Instrum.Meth. A506 (2003) 250–303,
doi: 10.1016/S0168-9002(03)01368-8.

132

http://dx.doi.org/10.1103/PhysRevD.88.012005
http://dx.doi.org/10.1103/PhysRevD.88.012005
http://arxiv.org/abs/1305.1258
http://dx.doi.org/10.1007/s100520000305
http://arxiv.org/abs/hep-ph/9908254
https://indico.desy.de/getFile.py/access?contribId=19&sessionId=7&resId=1&materialId=slides&confId=7512
https://indico.desy.de/getFile.py/access?contribId=19&sessionId=7&resId=1&materialId=slides&confId=7512
http://dx.doi.org/http://dx.doi.org/10.1119/1.1974382
http://dx.doi.org/10.1007/JHEP07(2013)116
http://arxiv.org/abs/1305.5596
https://cds.cern.ch/record/1563302
http://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=download:formfactor
http://www.itp.kit.edu/~vbfnloweb/wiki/doku.php?id=download:formfactor
http://dx.doi.org/10.1103/PhysRevD.42.3052
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://cds.cern.ch/record/1129806
http://cds.cern.ch/record/1129811
http://cds.cern.ch/record/1129810
http://cds.cern.ch/record/1129812
http://cds.cern.ch/record/1129809
http://arxiv.org/abs/0901.0512
https://cds.cern.ch/record/1125884
https://cds.cern.ch/record/1125884
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/1302.4393
http://dx.doi.org/10.1016/S0168-9002(03)01368-8


Bibliography

[68] Thomson Reuters, Web of Knowledge, Oct. 2013, url: http://apps.webofknowledge.com.

[69] Sherpa Manual, Oct. 2013, url: http://sherpa.hepforge.org/doc/SHERPA-MC-1.4.1.html.

[70] S. Catani et al., QCD matrix elements + parton showers, JHEP 0111 (2001) 063, arxiv: hep-
ph/0109231 [hep-ph].

[71] F. Caravaglios et al., A New approach to multijet calculations in hadron collisions, Nucl.Phys.
B539 (1999) 215–232, doi: 10 . 1016 / S0550 - 3213(98 ) 00739 - 1, arxiv: hep - ph / 9807570
[hep-ph].

[72] B. Andersson, The Lund model, Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 7 (1997) 1–471.

[73] T. D. Gottschalk, An Improved Description of Hadronization in the QCD Cluster Model for e+e−

Annihilation, Nucl.Phys. B239 (1984) 349, doi: 10.1016/0550-3213(84)90253-0.

[74] B. Webber, A QCD Model for Jet Fragmentation Including Soft Gluon Interference, Nucl.Phys.
B238 (1984) 492, doi: 10.1016/0550-3213(84)90333-X.

[75] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 0902 (2009) 007, doi: 10.1088/
1126-6708/2009/02/007, arxiv: 0811.4622 [hep-ph].

[76] S. Hoeche et al., QCD matrix elements and truncated showers, JHEP 0905 (2009) 053, doi:
10.1088/1126-6708/2009/05/053, arxiv: 0903.1219 [hep-ph].

[77] J.-C. Winter, F. Krauss and G. Soff, A Modified cluster hadronization model, Eur. Phys. J. C36
(2004) 381–395, doi: 10.1140/epjc/s2004-01960-8, arxiv: hep-ph/0311085 [hep-ph].

[78] M. L. Mangano et al., ALPGEN, a generator for hard multiparton processes in hadronic colli-
sions, JHEP 0307 (2003) 001, arxiv: hep-ph/0206293 [hep-ph].

[79] G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfer-
ing gluons (including supersymmetric processes), JHEP 0101 (2001) 010, doi: 10.1088/1126-
6708/2001/01/010, arxiv: hep-ph/0011363 [hep-ph].

[80] M. Bahr et al., Herwig++ Physics and Manual, Eur. Phys. J. C58 (2008) 639–707, doi: 10.
1140/epjc/s10052-008-0798-9, arxiv: 0803.0883 [hep-ph].

[81] J. Butterworth et al., JIMMY4: Multiparton Interactions in Herwig for the LHC, Oct. 2013, url:
http://projects.hepforge.org/jimmy/.

[82] T. Sjostrand et al., High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Com-
mun. 135 (2001) 238–259, doi: 10.1016/S0010-4655(00)00236-8, arxiv: hep-ph/0010017
[hep-ph].

[83] T. Sjostrand, S. Mrenna and P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys.
Commun. 178 (2008) 852–867, doi: 10.1016/j.cpc.2008.01.036, arxiv: 0710.3820 [hep-ph].

[84] S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower simula-
tions, JHEP 0206 (2002) 029, arxiv: hep-ph/0204244 [hep-ph].

[85] S. Alioli et al., A general framework for implementing NLO calculations in shower Monte Carlo
programs: the POWHEG BOX, JHEP 1006 (2010) 043, doi: 10.1007/JHEP06(2010)043, arxiv:
1002.2581 [hep-ph].

[86] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C70 (2010) 823–
874, doi: 10.1140/epjc/s10052-010-1429-9, arxiv: 1005.4568 [physics.ins-det].

[87] ATLAS Collaboration, Performance of pile-up subtraction for jet shapes, ATLAS-CONF-2013-
085, CERN, 2013, url: http://cds.cern.ch/record/1572979.

133

http://apps.webofknowledge.com
http://sherpa.hepforge.org/doc/SHERPA-MC-1.4.1.html
http://arxiv.org/abs/hep-ph/0109231
http://arxiv.org/abs/hep-ph/0109231
http://dx.doi.org/10.1016/S0550-3213(98)00739-1
http://arxiv.org/abs/hep-ph/9807570
http://arxiv.org/abs/hep-ph/9807570
http://dx.doi.org/10.1016/0550-3213(84)90253-0
http://dx.doi.org/10.1016/0550-3213(84)90333-X
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
http://dx.doi.org/10.1088/1126-6708/2009/05/053
http://arxiv.org/abs/0903.1219
http://dx.doi.org/10.1140/epjc/s2004-01960-8
http://arxiv.org/abs/hep-ph/0311085
http://arxiv.org/abs/hep-ph/0206293
http://dx.doi.org/10.1088/1126-6708/2001/01/010
http://dx.doi.org/10.1088/1126-6708/2001/01/010
http://arxiv.org/abs/hep-ph/0011363
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://dx.doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/0803.0883
http://projects.hepforge.org/jimmy/
http://dx.doi.org/10.1016/S0010-4655(00)00236-8
http://arxiv.org/abs/hep-ph/0010017
http://arxiv.org/abs/hep-ph/0010017
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://arxiv.org/abs/hep-ph/0204244
http://dx.doi.org/10.1007/JHEP06(2010)043
http://arxiv.org/abs/1002.2581
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://arxiv.org/abs/1005.4568
http://cds.cern.ch/record/1572979


Bibliography

[88] ATLAS Collaboration, Measurements of Wγ and Zγ production in pp collisions at
√

s= 7 TeV
with the ATLAS detector at the LHC, arXiv:1302.1283. CERN-PH-EP-2012-345 (Feb. 2013),
submitted to PRD, url: https://cds.cern.ch/record/1513670.

[89] ATLAS Collaboration, ATLAS Computing: Technical Design Report, ATLAS-TDR-017, CERN-
LHCC-2005-022 (2005), url: https://cds.cern.ch/record/837738.

[90] ATLAS Collaboration, Expected photon performance in the ATLAS experiment, ATL-PHYS-
PUB-2011-007, CERN, Apr. 2011, url: https://cdsweb.cern.ch/record/1345329.

[91] ATLAS Collaboration, Measurements of the photon identification efficiency with the ATLAS
detector using 4.9 fb−1 of pp collision data collected in 2011, ATLAS-CONF-2012-123, CERN,
Aug. 2012, url: https://cds.cern.ch/record/1473426.

[92] W. Lampl et al., Calorimeter Clustering Algorithms: Description and Performance, ATL-LARG-
PUB-2008-002, CERN, Apr. 2008, url: https://cds.cern.ch/record/1099735.

[93] M. Aharrouche et al., Energy linearity and resolution of the ATLAS electromagnetic barrel
calorimeter in an electron test-beam, Nucl.Instrum.Meth. A568 (2006) 601–623, doi: 10.1016/
j.nima.2006.07.053, arxiv: physics/0608012 [physics].

[94] M. Aharrouche et al., Measurement of the response of the ATLAS liquid argon barrel calorimeter
to electrons at the 2004 combined test-beam, Nucl.Instrum.Meth. A614 (2010) 400–432, doi:
10.1016/j.nima.2009.12.055.

[95] ATLAS Collaboration, Electron and photon reconstruction and identification in ATLAS: expec-
ted performance at high energy and results at 900 GeV, CERN, 2010, url: http://cdsweb.
cern.ch/record/1273197.

[96] ATLAS Collaboration, Measurement of the inclusive isolated prompt photon cross section in
pp collisions at sqrt(s) = 7 TeV with the ATLAS detector, Phys.Rev. D83 (2011) 052005, doi:
10.1103/PhysRevD.83.052005, arxiv: 1012.4389 [hep-ex].

[97] S. D. Ellis and D. E. Soper, Successive combination jet algorithm for hadron collisions, Phys.
Rev. D 48 (Apr. 1993) 3160–3166. 15 p, arxiv: 9305266 [hep-ph].

[98] S. Catani et al., Longitudinally invariant Kt clustering algorithms for hadron hadron collisions,
Nucl.Phys. B406 (1993) 187–224, doi: 10.1016/0550-3213(93)90166-M.

[99] J. Saxon and H. H. Williams, Neural Networks for Photon Identification in H → γγ, ATL-
COM-PHYS-2013-305, CERN, Mar. 2013, url: https://cds.cern.ch/record/1524081.

[100] Photon ID e/gamma recommendation for Moriond, Internal presentation., 2013, url: https:
//indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&

confId=231190.

[101] R. Nicolaidou et al., Muon identification procedure for the ATLAS detector at the LHC using
Muonboy reconstruction package and tests of its performance using cosmic rays and single
beam data, J. Phys Conf. Ser. 219.3 (2010) 032052, doi: 10.1088/1742-6596/219/3/032052.

[102] S. Hassani et al., A muon identification and combined reconstruction procedure for the ATLAS
detector at the LHC using the (MUONBOY, STACO, MuTag) reconstruction packages,
Nucl.Instrum.Meth. A572 (2007) 77–79, doi: 10.1016/j.nima.2006.10.340, url: http:
//inspirehep.net/record/754679.

[103] ATLAS Collaboration, Muon reconstruction efficiency in reprocessed 2010 LHC proton-proton
collision data recorded with the ATLAS detector, ATLAS-CONF-2011-063, CERN, Apr. 2011,
url: https://cds.cern.ch/record/1345743.

134

https://cds.cern.ch/record/1513670
https://cds.cern.ch/record/837738
https://cdsweb.cern.ch/record/1345329
https://cds.cern.ch/record/1473426
https://cds.cern.ch/record/1099735
http://dx.doi.org/10.1016/j.nima.2006.07.053
http://dx.doi.org/10.1016/j.nima.2006.07.053
http://arxiv.org/abs/physics/0608012
http://dx.doi.org/10.1016/j.nima.2009.12.055
http://cdsweb.cern.ch/record/1273197
http://cdsweb.cern.ch/record/1273197
http://dx.doi.org/10.1103/PhysRevD.83.052005
http://arxiv.org/abs/1012.4389
http://arxiv.org/abs/9305266
http://dx.doi.org/10.1016/0550-3213(93)90166-M
https://cds.cern.ch/record/1524081
https://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=231190
https://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=231190
https://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=231190
http://dx.doi.org/10.1088/1742-6596/219/3/032052
http://dx.doi.org/10.1016/j.nima.2006.10.340
http://inspirehep.net/record/754679
http://inspirehep.net/record/754679
https://cds.cern.ch/record/1345743


Bibliography

[104] ATLAS Collaboration, Preliminary results on the muon reconstruction efficiency, momentum
resolution, and momentum scale in ATLAS 2012 pp collision data, ATLAS-CONF-2013-088,
CERN, Aug. 2013, url: https://cds.cern.ch/record/1580207.

[105] G. P. Salam, Towards Jetography, Eur. Phys. J. C67 (2010) 637–686, doi: 10.1140/epjc/
s10052-010-1314-6, arxiv: 0906.1833 [hep-ph].

[106] M. Cacciari, G. P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 0804
(2008) 063, doi: 10.1088/1126-6708/2008/04/063, arxiv: 0802.1189 [hep-ph].

[107] M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C72 (2012) 1896,
doi: 10.1140/epjc/s10052-012-1896-2, arxiv: 1111.6097 [hep-ph].

[108] M. Cacciari and G. P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys.Lett. B641
(2006) 57–61, doi: 10.1016/j.physletb.2006.08.037, arxiv: hep-ph/0512210 [hep-ph].

[109] Y. L. Dokshitzer et al., Better jet clustering algorithms, JHEP 9708 (1997) 001, arxiv: hep-
ph/9707323 [hep-ph].

[110] ATLAS Collaboration, Jet energy measurement and its systematic uncertainty in proton-proton
collisions at

√
s = 7 TeV with the ATLAS detector (Aug. 2013), submitted to Eur. Phys. J. C.

[111] ATLAS Collaboration, Performance of Missing Transverse Momentum Reconstruction in ATLAS
studied in Proton-Proton Collisions recorded in 2012 at 8 TeV, ATLAS-CONF-2013-082, CERN,
Aug. 2013, url: http://cds.cern.ch/record/1570993.

[112] T. Golling et al., The ATLAS Data Quality Defect Database System, arXiv:1110.6119. EFI-11-
30 (Oct. 2011), Comments: 6 pages, 3 figures, submitted to EPJ C, url: https://cds.cern.
ch/record/1394173.

[113] Luminosity Public Results, 7th Oct. 2013, url: https://twiki.cern.ch/twiki/bin/view/
AtlasPublic/LuminosityPublicResults.

[114] GoodRunList, url: http://atlasdqm.web.cern.ch/atlasdqm/grlgen/All_Good/data12_
8TeV.periodAllYear_DetStatus-v61-pro14-02_DQDefects-00-01-00_PHYS_StandardGRL_

All_Good.xml.

[115] M. Baak et al., Data Quality Status Flags and Good Run Lists for Physics Analysis in ATLAS,
ATL-COM-GEN-2009-015, CERN, Mar. 2009, url: https://cds.cern.ch/record/1168026.

[116] V. Scharf, muon + 2gamma trigger proposal, internal presentation, 9th Feb. 2012, url: https:
//indico.cern.ch/getFile.py/access?contribId=10&resId=0&materialId=slides&

confId=177265.

[117] K. Prokofiev for the ATLAS Collaboration, Reconstruction of primary vertices in pp collisions
at energies of 900 GeV and 7 TeV with the ATLAS detector, arXiv:1010.1483. SNSN-323-63,
Oct. 2010, url: https://cds.cern.ch/record/1298557.

[118] ATLAS Collaboration, Measurement of Wγ and Zγ production in proton-proton collisions at
√

s = 7 TeV with the ATLAS Detector, J. High Energy Phys. 09.arXiv:1106.1592. CERN-PH-
EP-2011-079 (June 2011) 072. 46 p, url: https://cds.cern.ch/record/1357549.

[119] ATLAS Collaboration, Measurement of Wγ and Zγ production cross sections in pp collisions
at
√

s = 7 TeV and limits on anomalous triple gauge couplings with the ATLAS detector, Phys.
Lett. B 717.arXiv:1205.2531. CERN-PH-EP-2012-059 (May 2012) 49–69. 24 p, url: https:
//cds.cern.ch/record/1448274.

135

https://cds.cern.ch/record/1580207
http://dx.doi.org/10.1140/epjc/s10052-010-1314-6
http://dx.doi.org/10.1140/epjc/s10052-010-1314-6
http://arxiv.org/abs/0906.1833
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://arxiv.org/abs/1111.6097
http://dx.doi.org/10.1016/j.physletb.2006.08.037
http://arxiv.org/abs/hep-ph/0512210
http://arxiv.org/abs/hep-ph/9707323
http://arxiv.org/abs/hep-ph/9707323
http://cds.cern.ch/record/1570993
https://cds.cern.ch/record/1394173
https://cds.cern.ch/record/1394173
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults
http://atlasdqm.web.cern.ch/atlasdqm/grlgen/All_Good/data12_8TeV.periodAllYear_DetStatus-v61-pro14-02_DQDefects-00-01-00_PHYS_StandardGRL_All_Good.xml
http://atlasdqm.web.cern.ch/atlasdqm/grlgen/All_Good/data12_8TeV.periodAllYear_DetStatus-v61-pro14-02_DQDefects-00-01-00_PHYS_StandardGRL_All_Good.xml
http://atlasdqm.web.cern.ch/atlasdqm/grlgen/All_Good/data12_8TeV.periodAllYear_DetStatus-v61-pro14-02_DQDefects-00-01-00_PHYS_StandardGRL_All_Good.xml
https://cds.cern.ch/record/1168026
https://indico.cern.ch/getFile.py/access?contribId=10&resId=0&materialId=slides&confId=177265
https://indico.cern.ch/getFile.py/access?contribId=10&resId=0&materialId=slides&confId=177265
https://indico.cern.ch/getFile.py/access?contribId=10&resId=0&materialId=slides&confId=177265
https://cds.cern.ch/record/1298557
https://cds.cern.ch/record/1357549
https://cds.cern.ch/record/1448274
https://cds.cern.ch/record/1448274


Bibliography

[120] F. Campanario and S. Sapeta, WZ production beyond NLO for high-pT observables, Phys.Lett.
B718 (2012) 100–104, doi: 10.1016/j.physletb.2012.10.013, arxiv: 1209.4595 [hep-ph].

[121] G. Aad et al., Measurement of the isolated di-photon cross-section in pp collisions at
√

s = 7
TeV with the ATLAS detector, Phys.Rev. D85 (2012) 012003, doi: 10.1103/PhysRevD.85.
012003, arxiv: 1107.0581 [hep-ex].

[122] G. Aad et al., Measurement of isolated-photon pair production in pp collisions at
√

s = 7
TeV with the ATLAS detector, JHEP 1301 (2013) 086, doi: 10.1007/JHEP01(2013)086, arxiv:
1211.1913 [hep-ex].

[123] Gaiser, J.E., Charmonium Spectroscopy from Radiative Decays of the J/Psi and Psi-Prime, PhD
thesis: Stanford University, Aug. 1982 178.

[124] J. Lees et al., Measurement of the Branching Fraction for D+
s → τ+ντ and Extraction of the

Decay Constant fDs (2010), arxiv: 1003.3063 [hep-ex].

[125] W. Verkerke et al., The RooFit Toolkit for Data Modelling, url: http://roofit.sourceforge.
net.

[126] F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Para-
meter Errors and Correlations, Comput.Phys.Commun. 10 (1975) 343–367, doi: 10 . 1016 /
0010-4655(75)90039-9.

[127] M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHA-
GLUE (2005), arxiv: hep- ph/0508110 [hep-ph], url: http://hepforge.cedar.ac.uk/
lhapdf/.

[128] P. Bell et al., Measurement of Wγγ production in proton-proton collisions at
√

s = 8 TeV with
the ATLAS detector, ATL-COM-PHYS-2013-910, ATLAS internal documentation, July 2013,
url: https://cds.cern.ch/record/1560073.

[129] ATLAS Collaboration, Determination of the muon reconstruction efficiency in ATLAS at the Z
resonance in proton-proton collisons at

√
s = 7 TeV, ATLAS-CONF-2011-008, CERN, Feb.

2011.

[130] ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the
2010 LHC proton-proton collision data, Eur. Phys. J. C72 (2012) 1909, doi: 10.1140/epjc/
s10052-012-1909-1, arxiv: 1110.3174 [hep-ex].

[131] J. Butterworth et al., Single Boson and Diboson Production Cross Sections in pp Collisions
at sqrts=7 TeV, ATL-COM-PHYS-2010-695, ATLAS internal documentation, Aug. 2010, url:
https://cds.cern.ch/record/1287902.

[132] J. Neyman, Outline of a Theory of Statistical Estimation Based on the Classical Theory of
Probability, Phil. Trans. Royal Soc. London, Series A 236 (Aug. 1937) 333–380, doi: 10.1098/
rsta.1937.0005.

[133] W. A. Rolke, A. M. López and J. Conrad, Limits and confidence intervals in the presence of
nuisance parameters, Nucl. Inst. Meth. A551 (Oct. 2005) 493–503, doi: 10.1016/j.nima.
2005.05.068, eprint: arXiv:physics/0403059.

[134] S. S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hy-
potheses, The Annals of Mathematical Statistics 9.1 (1938) pages, issn: 00034851, url: http:
//www.jstor.org/stable/2957648.

136

http://dx.doi.org/10.1016/j.physletb.2012.10.013
http://arxiv.org/abs/1209.4595
http://dx.doi.org/10.1103/PhysRevD.85.012003
http://dx.doi.org/10.1103/PhysRevD.85.012003
http://arxiv.org/abs/1107.0581
http://dx.doi.org/10.1007/JHEP01(2013)086
http://arxiv.org/abs/1211.1913
http://arxiv.org/abs/1003.3063
http://roofit.sourceforge.net
http://roofit.sourceforge.net
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://dx.doi.org/10.1016/0010-4655(75)90039-9
http://arxiv.org/abs/hep-ph/0508110
http://hepforge.cedar.ac.uk/lhapdf/
http://hepforge.cedar.ac.uk/lhapdf/
https://cds.cern.ch/record/1560073
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1
http://dx.doi.org/10.1140/epjc/s10052-012-1909-1
http://arxiv.org/abs/1110.3174
https://cds.cern.ch/record/1287902
http://dx.doi.org/10.1098/rsta.1937.0005
http://dx.doi.org/10.1098/rsta.1937.0005
http://dx.doi.org/10.1016/j.nima.2005.05.068
http://dx.doi.org/10.1016/j.nima.2005.05.068
arXiv:physics/0403059
http://www.jstor.org/stable/2957648
http://www.jstor.org/stable/2957648


Bibliography

[135] ATLAS Muon Combined Performance Working Group, ATLAS Muon Combined Performance
Guidelines for Analyses of 2012 Data, internal documentation, url: https://twiki.cern.ch/
twiki/bin/viewauth/AtlasProtected/MCPAnalysisGuidelinesData2012.

[136] ATLAS Jet and Missing Et Group, Recommendations for jet cleaning for data 2012, internal
documentation, url: https : / / twiki . cern . ch / twiki / bin / viewauth / AtlasProtected /
HowToCleanJets2012.

137

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MCPAnalysisGuidelinesData2012
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MCPAnalysisGuidelinesData2012
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HowToCleanJets2012
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HowToCleanJets2012




Acknowledgements

In almost six years as a member of the KIP ATLAS group, I had the opportunity to meet a lot of people,
without whom this work would not have been possible.

First of all, I would like to thank Prof. Dr. Hans-Christian Schultz-Coulon for the possibility to carry out
this thesis during an incredibly exciting time for physicists in our field. I am grateful for the freedom
and support in physics as well as in non-physics matters. His honest advice and constructive criticism
have been an invaluable motivation.

I want to thank Prof. Dr. André Schöning, who kindly agreed to be the second referee of this thesis.

I would like to thank Rainer and Monica for their supervision, all their advice and lively discussions
about physics and methods. Thanks to Christoph, Felix, Thorsten, Michael and Sahill who have been
great colleagues and are even closer friends. Without your support, this thesis would not have been
possible. Additionally, I am grateful to Julia. Her collaboration made the fast progress in the last year
possible. I would like to thank all colleagues of the ATLAS and ILC research groups for the enjoyable
atmosphere in the group and the activities outside of our daily work.

I want to thank the Wγγ subgroup at CERN, especially Paul Bell and Camilla Maiani, for their support,
advice and effort, to push the analysis forward.

Thanks a lot to my family and all friends, who forgave me my absent-mindedness notably when it comes
to appointments. Their support, trustfulness and faith in me have been invaluable.

Most importantly, I would like to thank my wife Saskia, for her patience, constant support and faith
in me. She kept me going, especially in the mornings. Without her, this work would not have been
possible.

139


