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Zusammenfassung

Kalibration und Aufbau eines Kapazitätsdilatometers für Messungen an

CeFeAsO und LiMn0.95Ni0.05PO4: Die vorliegende Arbeit befasst sich mit Aufbau

und Kalibration eines hochauflösenden Kapazitätsdilatometers zur Messung der thermi-

schen Ausdehnung. Eine Temperaturstabilität von 1 mK bei 5 K und 10 mK während des

linearen Temperaturduchlaufs von 5 K bis 300 K konnte mit Hilfe eines Heliumgasfluss-

kryostaten realisiert werden. Systematische Fehler werden im Detail analysiert. Kalibrati-

onsmessungen zeigen eine Genaugikeit von 1 · 10=5 in der relativen Längenänderung und

1 · 10=7 K=1 im thermischen Ausdehnungkoeffizienten α. Ein nicht reproduzierbarer Zell-

effekt wurde festgestellt und analysiert. Die thermische Ausdehnung von einkristallinem

LiMn0.95Ni0.05PO4 wurde untersucht. Zwei positive Anomalien in der a- und c-Achse bei

TN = 32,5 K wurden in α festgestellt, die mit dem Einsetzen der antiferromagnetischen

Ordnung verbunden sind, während die uniaxiale Druckabhängigkeit dTN/db klein ist. Eine

weitere Anomalie bei Ttr = 14,7(5) K wurde beobachtet. Messungen an CeFeAsFxO1-x zei-

gen die Dotierungsabhängigkeiten des strukturellen und magnetischen Phasenübergangs

in dieser Substanzklasse. Die Übergangstemperaturen für die undotierte Muttersubstanz

betragen für den strukturellen Phasenübergang TS = 151,4+1−0,5 K und für den magneti-

schen Übergang TN = 137,0(5) K. Für x = 0,05 wurde TS = 121,7(5) K bestimmt, während

die Anomalie in der thermischen Ausdehnung bei x = 0,04 nicht beobachtbar ist.

Abstract

Calibration and Setup of a Capacitance Dilatometer for Studies on CeFeAsO

and LiMn0.95Ni0.05PO4: This thesis describes the setup and calibration of an exper-

iment to measure thermal expansion using a high-resolution capacitive dilatometer. A

temperature stability of 1 mK at 5 K and 10 mK during a linear temperature sweep from

5 K to 300 K was achieved using a helium gas-flow cryostat. Systematic errors are dis-

cussed in detail. Calibration measurements show an accuracy of 1× 10=5 in relative length

change and 1× 10=7 K=1 in the thermal expansion coefficient α. A non-reproducible cell

effect was noticed and investigated. Thermal expansion measurements of single-crystalline

LiMn0.95Ni0.05PO4 were performed. The thermal expansion coefficient exhibited two pos-

itive anomalies at TN = 32.5 K in the a- and c-axis, which are linked to antiferromagnetic

ordering. An additional feature was noticed at Ttr = 14.7(5) K. Measurements of the

thermal expansion of CeFeAsFxO1-x show the influence of doping on the structural and

magnetic phase transitions. For the undoped parent compound (x = 0), the tempera-

ture of the structural transition was determined to be TS = 151.4+1−0.5 K and for the

magnetic transition TN = 137.0(5) K. An analysis for x = 0.02 yielded TS = 121.7(5) K,

whereas no anomalies of the thermal expansion coefficient were found for x = 0.04.
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1 Introduction

The phenomenon of thermal expansion has always been a companion of scientific endeavor.

Long before the mathematical description via thermodynamics and statistical mechanics

was developed, it has been noticed that substances expand during heat input. Galileo

Galilei (1564-1642) constructed an apparatus to measure heat based on the expansion of

air. Scientific progress ultimately led to the development of thermometers based on the

thermal expansion of liquids. The first mercury-in-glass thermometer by G.B. Fahrenheit

allowed measuring temperatures with an unprecedented resolution creating an impetus

for quantitative thermal sciences. Exhibiting effects orders of magnitude less, it was not

until 1719 that the thermal expansion of a solid was discovered. W. J. Gravesande de-

scribed his observation that a heated brass sphere could not passage a ring which it could

passage easily before heating–an experiment, which survived to today’s physics introduc-

tory courses. The construction of pendulum clocks stimulated systematic, quantitative

research on thermal expansion, since the expansion of the pendulum led to imprecision

of the clock. The first mechanical dilatometers emerged to quantify the phenomenon. At

the end of the 19th and the beginning of the 20th century the transition from a purely

phenomenological description of thermodynamics to a comprehensive well-founded theory

was under way. Statistical mechanics provided now tools to link thermoelastic effects to

microscopic properties of a solid. Mie and Grüneisen [1, 2, 3] developed the theoretical

framework reasoning that thermal expansion is the result of a volume dependence of the

atomic vibrational eigenmodes or, put differently, of the anharmonicity of the interatomic

potential. Grüneisen’s work culminated in the finding that the ratio of the thermal expan-

sion coefficient to the specific heat forms a constant, the so called Grüneisen-parameter.

To measure thermal expansion an abundance of techniques has been developed. Using

interferometric methods it was now possible to detect length changes in the order of

the wavelength of light. However, the measurement of the thermal expansion coefficient

α at low temperatures still posed a problem. Since α constitutes the derivative of the

relative length change, high resolutions are needed in order to yield a good accuracy at

low temperatures where materials expand the least. As a remedy the use of a capacitor to

measure length changes was employed. The first published use of a capacitive dilatometer

was by Prytherch in 1932 [4]. However, only the combination with the three-terminal
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1 Introduction

method suggested by Thompson [5] allowed White to measure relative length changes in

metals with a resolution of 1× 10=9 [6] and thus to obtain α for the first time down to

liquid helium temperatures (4.2 K).

Statistical mechanics reveals that the thermal expansion coefficient α resembles the pres-

sure dependence of the entropy (∂S/∂p)T . Thus, α represents a thermodynamical response

function for every pressure-dependent entropy change. In a nutshell, interactions within

materials are caused by the overlap of electronic wavefunctions. Depending on its com-

pressibility, the interatomic distance in a crystal and thus the overlap can be changed

by applying pressure. Order phenomena occur at the brink to a new interaction scale

and can therefore be sensitive to pressure. Since an ordering is closely connected to the

entropy, α resembles a probe for such phenomena making capacitive dilatometry with its

high sensitivity a tool of choice to investigate phase transitions.

The aim of this work is the setup of an experiment to measure the thermal expansion

in the temperature range 5 K to 300 K via means of capacitive dilatometry. During this

process, two materials were analyzed, which are currently in the focus of research: Firstly,

single-crystalline LiMn0.95Ni0.05PO4 from the family of olivine lithium-phosphates which

emerge as the next-generation battery material and show intriguing magnetic effects such

as a strong magnetoelectrical effect and ferrotoroidal domain ordering. Secondly, fluorine-

doped CeFeAsO, an iron-based superconductor, a new class of superconductors found in

2008.

The work is structured as follows:

In chapter 2, the theoretical background based on thermodynamics and statistical mechan-

ics is laid out. An introduction to magnetoelastic coupling is given and the knowledge of

phase transitions and their implication on α is refreshed.

The experimental method and devices used within the setup are presented in detail in

chapter 3. An emphasis is given on the propagation of uncertainties arising from each

device to the resulting measurand, the relative length change.

Chapter 4 discusses the influence of systematic errors and effects noticed during measuring

which limit the accuracy of the device. An evaluation of the magnitude of each error is

presented and underlying processes are displayed.

The results of calibration measurements are summarized in chapter 5. A comparison with

well-known reference materials is presented in order to prove the accuracy and the high

resolution of the device.

The following chapters 6 and 7 present thermal expansion studies of LiMn0.95,Ni0.05PO4

and CeFeAsO1−xFx in terms of thermal expansion. Armed with the tools given in chap-

ter 2, the phase transitions occurring in both materials are analyzed.

Chapter 8 concludes by summarizing the findings of this work and presents an outlook.
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2 Theory

2.1 Thermodynamic Potentials

The most important insight of thermodynamics consists in the fact that the behavior

of a system can be described by a few macroscopic variables such as energy, entropy

etc. Together with statistical mechanics, it makes an elegant tool to investigate material

properties. To underline its power, it is often compared with the ab-initio approach,

i.e. solving 1019 to 1023 coupled Schrödinger equations, which would be a gigantic task

requiring enormous computational power. The finding of thermodynamics related to this

work are summarized in this chapter. The definition of the internal energy E and entropy

S form the first and second law of thermodynamics

dE = δQ+ δW = TdS − PdV (2.1)

dS =
δQ

T
≥ 0. (2.2)

This means a change in E can be divided in a change in heat in- or output δQ and work

δW done by or on the system. Eq. 2.2 defines δQ as the energy that is used to increase

the entropy. They are so called state functions, i.e. functions which are fully determined

by the current state of the system and do not depend on the path leading to its state.

The notation δ denotes that there is no integral of Q and W which is is a state function.

This is also called inexact derivative.

For practical reasons, it is often useful to use different combinations of these quantities1:

Free Energy F = E − TS dF = −SdT − PdV + µdN

Enthalpy H = E + PV dH = TdS + V dP + µdN

Gibbs Potential G = E − TS + PV dG = −SdT + V dP + µdN

(2.3)

The quantities above are called thermodynamic potentials since they have a similar func-

tion like other potentials in physics, e.g. gravitational potential or electromagnetic poten-

tial. State variables like V , P etc. can be conveniently obtained by simply deriving these

1It is, for example, easier to measure an isobaric enthalpy change, since (dH)p = δQ.
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2 Theory

quantities. In this work, equations are regularly simplified by assuming that there is no

particle exchange, i.e. dN = 0. If one of these variables is of interest, they are explicitly

introduced.

2.2 Response Functions

Response functions are thermodynamic variables which describe how the system responses

to an external pertubation. They correspond to the second derivates of potentials which

makes them suitable to analyze phase transitions (see section 2.5). The heat capacity for

constant pressure is the most encountered one:

cp =

(
δQ

dT

)
P

= T

(
∂S

∂T

)
P

− T
(
∂2G

∂T 2

)
P

(2.4)

It describes the change in temperature during a heat input. The specific heat can also

be defined for a constant volume as cV , but it is literally impossible to measure and the

difference to cp is often negligible [7]. The term expressing the response of the volume to

a pressure stimulus is called the compressibility:

κT = − 1

V

(
∂V

∂P

)
T

= − 1

V

(
∂2G

∂P 2

)
T

(2.5)

Essential for this work is the volumetric thermal expansion coefficient

β(T ) =
1

V

(
∂V

∂T

)
P

= − 1

V

(
∂S

∂P

)
T

=
1

V

∂

∂P

((
∂G

∂T

)
P

)
T

. (2.6)

The corresponding quantity for changes in one direction is the linear thermal expansion

coefficient:

α(T ) =
1

L

(
∂L

∂T

)
P

, (2.7)

where L is the measured length. This is the variable measured in this experiment to probe

the thermodynamic behavior of the system. If the expansion is isotropic, β can be written

as

β = 3α (2.8)

2.3 Thermal Expansion

Commonly, an introduction into lattice vibrations starts with a harmonic model such as

the 1D-chains of atoms sitting in a potential well which is quadratically proportional to the

distance of the ions. However a simple gedankenexperiment shows that thermal expansion

cannot occur in such a system: An ion within a harmonic potential does not change its

4



2.3 Thermal Expansion

Φ(r)

r

A B

E1

E2

〈r〉1

〈r〉2 A B

Figure 2.1: From [8]. Left: Ions in an anharmonic potential. The mean distance
increases with increasing amplitude of B thus leading to a positive thermal expansion.
Right: Tension mechanism leading to negative thermal expansion. A larger amplitude
of B’s transverse vibration results in a mean attraction.

mean position when increasing or decreasing the energy, since the potential is symmetric.

An anharmonic potentials however can intuitively explain a higher mean distance with

increased thermal energy of the ions. Negative thermal expansion (=contraction) is also

observed in some materials such as silicon [9]. This can be explained by transverse vibra-

tions. Fig. 2.1 shows a basic picture of the two main processes leading to positive and

negative thermal expansion.

In the next section, a mathematical criterion for when thermal expansion occurs will be

derived . The derivations follows mainly [10] which is highly recommended for further

details. One starts by basically expanding the linear chain model to a 3D Bravais crystal

(one single atom per unit cell). Its total free energy F can be written as [11]:

F = Feq(V ) +
∑
k

[
~ωk

2
+ kT log

(
1− e−~ωk/kT

)]
, (2.9)

where k = (k, λ) is a variable denoting the wave number vector k and phonon branch

λ, so the sum goes over all possible phonon states. Feq represents the free energy of the

equilibrium configuration of the ions. The following terms are the ground-state energy

~ωk/2 and the excited energy levels following a Bose-Einstein distribution, since phonons

can be treated as bosons. The pressure can be obtained via deriving with respect to the

volume V (eq. 2.3):

P = −
(
∂F

∂V

)
T

= −∂Feq
∂V

−
∑
k

~ωk
(

1

2
+

1

e~ωk/kT − 1

)
∂ logωk
∂V

(2.10)

The term ∂ logωk/V can be written as

∂ logωk
∂V

=
1

V

∂ logωk
∂ log V

= −γk
1

V
, (2.11)
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where γk is called Grüneisen parameter. It quantifies the normal mode frequency behavior

of phonons under volume change. Using the relation(
∂V

∂T

)
P

= −
(
∂P

∂T

)
V

(
∂V

∂P

)
T

(2.12)

one can write

α(T ) =
1

3

1

V

(
∂V

∂T

)
P

= −1

3
κT

(
∂P

∂T

)
V

= −1

3
κT
∑
k

γk
∂

∂T

~ωk
V

(
1

e
~ωk
kT − 1

)
. (2.13)

The term within the sum can be identified as the phononic specific heat

cV =
∑
k

γk
∂

∂T

~ωk
V

(
1

e
~ωk
kT − 1

)
, (2.14)

the total change in phononic energy with temperature. With the definition of an overall

weighted Grüneisen coefficient,

γ =

∑
k γkcV (ωk, T )∑
k cV (ωk, T )

(2.15)

one arrives at a concise expression for the linear thermal expansion coefficient:

α =
1

3
cV γκT (2.16)

In general, γ is temperature-dependent. If one defines a Debye-Temperature ΘD as the

energy scale of phonons, it follows from eq. 2.15, however, that γ becomes constant for

T → 0 and T � ΘD, since cV (ωk) → const for both cases. Experiments show that κT

is only weakly dependent on temperature [10]. Thus one can infer that α converges to a

constant at T � ΘD. Based on Nernst’s theorem, α is zero for T = 0 [11].

If one assumes a Debye-model, all ωk ∝ ωD, every γk is equal and thus γ temperature

independent. So within this approximation α follows cV in temperature, thus alltogether:

α = 0 T = 0

α ∝ T 3 T → 0

α ∝ const T � ΘD.

(2.17)

This gives a correct description for simple insulators [12].

Eq. 2.11 shows that thermal expansion only occurs if the phononic normal mode frequencies

change during a change of the equilibrium volume. The Grüneisen coefficient is thus

a quantity measuring the anharmonicity of a crystal lattice. The statement from the

beginning that harmonic crystal do not show thermal expansion can now be understood

6



2.4 Magnetostriction and Magnetoelastic Coupling

from a mathematical point of view. For example, the dispersion relation for a harmonic

1D-linear chain model with a lattice constant a is

ω(k) = 2

√
K

M

∣∣∣∣sin 1

2
ka

∣∣∣∣ , (2.18)

where K is the spring constant quantifying the coupling between atoms and k = 2π
a
n
N is

defined via the periodic boundary condition. ω(k) is independent of L = Na and thus no

thermal expansion occurs.

Since it was started with a harmonic approximation, but the results are applied to anhar-

monic crystals as well, this approximation is also called quasiharmonic approximation.

The free electron gas in metals has an additional pressure contribution in (eq. 2.10) re-

sulting in an additional specific heat term. Taking it into account leads to [10]

α =
1

3
κT

(
γcV +

2

3
cel

)
(2.19)

For simple metals this adds a linear term in α for low temperature, since cel ∝ T . This

theoretical prediction is also proven by experiments [13].

The Grüneisen coefficient can be used to investigate the pressure dependence of the dom-

inant energy scale. First, one starts by assuming that the entropy has the form

S(T ) = f

(
T

T ?

)
, (2.20)

where T ? is the dominating energy scale in a given temperature regime, e.g. the Debye

temperature in a purely phononic system. Using the definitions of β and cp one can deduce

the following ratio [14, 15]2:

γ =
V β

κT cV
=

V β

κScp
=

1

κT

∂ lnT ?

∂P
(2.21)

If there is a dominating energy scale present, γ is then temperature-independent and

quantifying the pressure dependence of T ?.

2.4 Magnetostriction and Magnetoelastic Coupling

Ferromagnetic materials change their dimensions within a magnetic field H. This phe-

nomenon is called Magnetostriction. Similar to the thermal expansion coefficient α, this

2There seems to be no agreement on whether to include the compressibility in the ratio. How-
ever, κS ≈ const and κT ≈ const [10]
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volume change can be quantified as

λ =
1

V

(
∂V

∂H

)
T,p

. (2.22)

From a thermodynamical standpoint, the effect can be explained by adding the magnetic

energy contribution to the internal energy (eq. 2.3) yielding

dE = TdS − pdV + V ~Bd ~M, (2.23)

where B represents the external magnetic field and M the magnetization. Using Maxwell

relations one can obtain λ via

λ = −
(
∂M

∂p

)
H,T

. (2.24)

This shows, that magnetostriction reflects the pressure dependence of the magnetization.

If a solid is compressed, the lattice is distorted. Electrons are coupled to the orbital

momentum via spin-orbit-coupling, which in turn couples them to the lattice ions. The

magnetic interactions are based on the overlap of electronic orbitals, which is influenced

by pressure through these couplings, which explains one basic mechanism which leads to a

pressure dependence of the magnetization. The inverse effect is also true: Magnetization

changes prompt elastic effects within a crystal, which is called magnetoelastic coupling.

This explains why magnetic effects can also be seen in the thermal expansion coefficient.

Magnetostriction does not only occur in ferro- or antiferromagnets, but also in diamag-

nets [16] and paramagnets [17]. However, since their susceptibility is orders of magnitude

smaller, the magnetostriction ∆l/l lies usually in the range 1× 10=8 to 1× 10=6. One

interesting phenomenon is the oscillatory magnetostriction in these compounds. This can

be explained by the De Haas-van Alphen effect, which is the oscillatory behavior of the

magnetization of a free electron gas within a magnetic field. This effect became a power-

ful tool to investigate Fermi surfaces, since the periodicity in 1/B can be related to the

extremal cross-sections of the fermi surface in the direction of the B-field via [18]

∆

(
1

B

)
=

2πe

~cS
, (2.25)

where the surface of the cross-section of the fermi surface in momentum space is denoted

by S. Rotating a single crystal within a magnetic field, it is then possible to construct a

fermi surface based an the values of S.

2.5 Phase Transitions

A thermodynamic phase is defined as a homogeneous domain of a macroscopic system,

which is in equilibrium [19, 20]. Different Phases are characterized by different macroscopic

8



2.5 Phase Transitions

quantities as for example magnetization (e.g. para-, ferro- or antiferromagnet), crystal

structure (e.g. bcc or fcc) or electrial conductivity (e.g. insulator, metal, superconductor).

By altering variables such as temperature, pressure and magnetic field H a transition from

one phase to another can be triggered. Common everyday observations are, for example,

the transitions between gas, fluid and solid for water. Research within the last century

found additional “super” states of matter namely superconductivity and superfluidity.

Even in cosmology phase transitions play a crucial part as there might have been a different

vacuum phase in the early universe. All these transitions have in common that they can

be described as a discontinuous or continuous transition. This classification was first

postulated by Ehrenfest in 1933 [21]. According to his scheme, a phase transition is

named a “phase transition of n-th order” if the first (n− 1) partial derivates of G(
∂nG

∂xn

)
y

(2.26)

in its natural variables x are continuous, whereas at least one of the n-th order derivates

shows a discontinuity at the phase boundary. Based on the behavior of S, first-order

transitions are also called discontinuous and second-order transitions continuous. Higher-

order transitions (third etc.) are usually bunched together with second-order transitions.

However, the Ehrenfest classification scheme received criticism since it cannot describe

some second-order transitions correctly (see section 2.5.2). Since at least its nomencla-

ture is still widely used, the terms “discontinuous” and “first-order phase transition” and

“continuous” and “second-order phase transitions” are used interchangeably in this work.

Phase transitions are often associated with the phenomenon of symmetry breaking. A

ferromagnet is a typical example: Once ordered, it loses its rotational symmetry. Different

symmetries always belong to different phases. However, the contrary, is not true. The

gas-to-liquid transition of water, for example, involves no reduction in symmetry [22].

2.5.1 Discontinuous Phase Transitions

Discontinuous phase transitions show a continuous G having a kink at the phase boundary

and thus having a sudden change in its first derivates, e.g. V or S. The jump in S yields

a so called latent heat ∆Q = TC∆S, an energy which is either required or released when

driving a phase transformation (see fig. 2.2).

A characteristic phenomenon of first-order phase transitions is metastability: E.g. a phase

can be prevented from undergoing a thermal transition, although it is below the critical

temperature TC . This can be explained by an energy penalty for the system by creating a

surface between the two phases, thus making it unfavorable for the material to transform

to another phase until a certain extent in temperature or pressure.
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2 Theory

T

cp, β

S

T

T

G

∆S

Figure 2.2: Gibbs potential G, entropy S = −(∂G/∂T )P and cp = T (∂S/∂T )P
or thermal expansion β = 1/V (∂S/∂p)T during a first-order phase transition. The
dashed lines within the plot showing G represent the supercooled or superheated
metastable phases.

However, such a supercooling or superheating only works usually in very clean materials,

since impurities create nucleation sites and new boundaries which reduce the necessary

surface tension. Sethna [23] gives a more detailed view on this process. Examples for

first-order phase transitions are phase changes of water or the magnetically induced su-

perconducting phase transition. Remarkably, metastable phase are also observed in the

latter [20].

Clausius-Clapeyron-Equation

At the phase boundary, both phases are in equilibrium, which means that there is no heat,

no volume and no particle exchange on average, i.e.

Tα = Tβ Pβ = Pα µα = µβ (2.27)

10



2.5 Phase Transitions

Following the derivation from [11], both sides of µα = µβ are derived with respect to T

yielding (
∂µα
∂T

)
P

+

(
∂µα
∂P

)
T

dP

dT
=

(
∂µβ
∂T

)
P

+

(
∂µβ
∂P

)
T

dP

dT
(2.28)

Using the Gibbs-Duhem-relation G = µN and the differential dG (eq. 2.3) one arrives at

dPV
dT

=
∆S

∆V
or converserly

dTc
dP

=
∆V

∆S
, (2.29)

where ∆S = Sα − Sβ and ∆V = Vα − Vβ. This is the so-called Clausius-Clapeyron-

Equation. It relates the pressure dependence of the vapor pressure PV or the temperature

dependence of the critical temperature TC with the ratio of the latent heat ∆S and the

volume change ∆V .

2.5.2 Continuous Phase Transitions

In the Ehrenfest classification, a second-order phase transition consequently follows the

logic of the first-order kind: While G is smooth and continuous, one of its first derivates

(e.g. V , S or M) shows a kink and thus its derivative (e.g. cp) a jump. However, this

behavior is not realized in all transitions which involve a continuous first derivative of G

(see fig. 2.3).

While the Ehrenfest classification holds perfectly, for example, in a thermal normal-

superconducting transition, the lambda-transition of liquid He4 shows a logarithmic sin-

gularity instead of a jump thus rendering the classification not correct or at least not

complete [24]. Thus one treats all non-first-order transitions as second-order transitions

or continuous phase transitions.

Ehrenfest-Equation

It is also possible to derive an equivalent of (eq. 2.29) for second order phase transitions,

obtaining a relation for the pressure dependence of the critical temperature TC . The

following holds for second order transitions:

Sα(T, p) = Sβ(T, p) Vα(T, p) = Vβ(T, p) (2.30)

dSα = dSβ dVα = dVβ (2.31)

One can write dS and dV as a sum of the differentials of p and T

dS =

(
∂S

∂T

)
p

dT +

(
∂S

∂p

)
T

dp (2.32)

dV =

(
∂V

∂T

)
p

dT +

(
∂V

∂p

)
T

dp (2.33)
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2 Theory

T

cp,β
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T

T
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G

Figure 2.3: Gibbs potential G, entropy S = −(∂G/∂T )P and heat capacity cp =
1/T (∂S/∂T ) or thermal expansion β = 1/V (∂S/∂p)T for two different cases of a
continuous phase transition. The figures on the left correspond to a superconducting-
normal conducting transition, a classical Ehrenfest transition, whereas the figures on
the left correspond to a transition similar to the lambda-transition in He4.

and with the help of Maxwell-relations one yields [25]

dTC
dp

= TV
βα − ββ

cαp − c
β
p

, (2.34)

which is called the Ehrenfest-Equation. Together with the knowledge of the jump in

specific heat ∆cp, it is then possible to make predictions about the pressure dependence

of TC . This finding is regularly used for the superconducting transition as in [26].
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3 Experimental Methods and Devices

3.1 Thermal Expansion Measurement Techniques

The thermal expansion α is experimentally accessed by measuring the length changes [8]

∆l/l =
l(T )− l(T0)

l(TRT )
(3.1)

relative to length at the starting temperature of the experiment T0 divided by the length

at room-temperature TRT. This quantity is then numerically differentiated with respect

to T to obtain α. This leads to a thermal expansion coefficient different to the one defined

in eq. 2.7

α(T ) = αtheory

(
1 +

l(T )− lRT

lRT

)
, (3.2)

however, the length changes during the experiments conducted in this work are of the

order of 1× 10=3 and thus the error is in the permille range and negligible. The relative

length change can be approximated by

∆l

l
≈
(
∂

∂T

∆l

l

)
∆T +

1

2

(
∂2

∂T 2

∆l

l

)
∆T 2 = α∆T +

(
∂

∂T
α

)
∆T 2. (3.3)

Thus, if one defines the experimental thermal expansion coefficient as α? = 1/∆T (∆l/l),

the relative error caused by finite temperature step in α is then

α? − α
α

= (
1

2

∂α

∂T
∆T )/α (3.4)

If α is approximated by polynomials, this yields in first order

α? − α
α

≈ ∆T

T
(3.5)

If an accuracy of 1 % is desired, at least 100 mK steps are then required at low temperatures

(T ≈ 10 K). Since α is typically in the range of 1× 10=8 K=1 at these temperatures, a

resolution of 1× 10=9 in ∆l/l is then needed. At lower temperatures, this resolution is

already required just to resolve a length change (α(5 K) ≈ 1× 10=9 K=1). With a sample
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3 Experimental Methods and Devices

Technique Resolution in ∆l/l Source

Microscopic
X-Ray Diffraction 1× 10=5 Barron et al. [27]
Neutron Scattering 1× 10=6 Sokolov et al. [28]

Macroscopic
Interferometry 1× 10=8 to 1× 10=7 Barron et al. [27]
Strain Gauges 1× 10=6 Kabeya et al. [29]
Capacitance Dilatometry 1× 10=9 Barron et al. [27]

Table 3.1: Techniques used in cryophysics for measuring length changes

length of a few millimeters, this equals an absolute resolution of 1× 10=12 m to 1× 10=9 m,

i.e. a device is needed which can measure sub-Ångstrom length changes1.

Table 3.1 summarizes the mostly used techniques to measure thermal expansion. Each

method has its raison d’être. XRD(X-Ray diffraction) and Neutron scattering are mi-

croscopic, i.e. they can resolve the position change of atoms within a unit cell. Using

X-ray powder diffraction one can study anisotropic expansion without the need for having

a large single crystal [8]. Neutrons have a magnetic moment and thus it is possible to

obtain information about the magnetic structure [30], too. However, both techniques lack

in general the resolution to measure α at low temperatures. Strain gauges are sensors

whose resistance depends on the strain acting on them [31]. If the attachment of the sen-

sor on the sample is easily manageable, this method can be regarded as the least complex

and most cost-effective one. However, in contrast to other techniques, their sensitivity is

only moderate. Optical and capacitive techniques offer the highest resolutions. Optical

techniques make use of various interferometric setups to measure length changes below the

wavelength of optical light ≈ 5000 Å. Capacitive dilatometers measure the change of ca-

pacitance between capacitor plates and translate it to change in the plate distance. This is

the current established standard for highly-sensitive2 measurements [32]. Compared with

optical methods, its setup is easier and it achieves higher sensitivities due to the use of

the three-terminal method3.

When choosing a particular method, one has also consider whether it is suitable for the

use within a magnetic field in order to investigate magnetoelastic effects. The size of a

capacitive dilatometer and its setup can be, for example, more readily adapted than a

large commercial XRD setup.

The motivation for this is to build a setup operable in a magnetic field to measure the

thermal expansion in a temperature range down to 5 K. Combined with the relative ease

1One could argue that having a larger sample would make measuring easier, but this is accom-
panied with unwanted temperature gradients within the sample. Additionally, samples, e.g. single
crystals, cannot be produced in arbitrary sizes.

2A measurement is considered to be highly-sensitive, if it can resolve a length change of 1 Å or
less [32].

3It is in fact possible to achieve a resolution of 1× 10=9 with a Fabry–Pérot interferometer,
but it involves a very sensitive and elaborate setup and is therefore rarely used [27].
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3.2 Three-Terminal Method

1 2

3

1 2

3

C13 C23

C12

Figure 3.1: Left: Basic circuit of a three-terminal capacitor. Right: Delta-circuit
representation. C12 denotes the capacitance to be measured, C13 and C23 the capac-
itances to ground.

of use, this makes capacitive dilatometry the method of choice.

3.2 Three-Terminal Method

The “secret” of the high sensitivity of capacitance dilatometry is the three-terminal method.

It allows the measurement of capacitances eliminating the influence of unwanted stray ca-

pacitances. Fig. 3.1 shows a so called three-terminal-capacitor and its delta circuit repre-

sentation. Terminal 1 and 2 represent the connections to the two capacitor plates/electrodes,

Terminal 3 is connected to the shield, which prevents pickup of electrical noise at terminals

1 and 2. This is often also connected to a guard ring, which is used to have a homoge-

neous electrical field between the plates (see also section 4.3). The stray capacitances C13

and C23 shown in fig. 3.1 prevent an accurate measurement of small capacitances using a

conventional two-terminal method (measuring directly at terminal 1 and 2). One would

measure the sum of C12 and the capacitance to ground making an accurate measurement

of C12 impossible, if they are in the same order of magnitude. In order to solve this

problem, a capacitance bridge (see fig. 3.2) using the three terminals shown in fig. 3.1 was

proposed by Thompson and Campbell [5, 33].

The different terminals of the capacitor shown in (fig. 3.1) can be found at the points

(1), (2) and (3). V1 and V2 are precise 1 kHz sine wave voltages at the secondary windings

of a transformer. Admittances are denoted by Y , the inverse of the complex impedance

Z. Y1 corresponds to an unknown capacitor C1 and Ya to the capacitance to ground

of terminal (1). The lower leg of the bridge includes the same circuit for a well-defined

standard capacitance C2 and resistor Y2 and the admittance of terminal (1?) to ground4

Yb. Y0 is a sum of the admittances of a) one plate of C1 to ground b) one plate of C2 to

ground c) the detector measuring V0 . The impedances of the secondary windings are low

compared to 1/Ya and 1/Yb, whereas 1/Y1 and 1/Y2 are relatively high. Thus, finite Ya

and Yb are effectively shunt. This is the reason, why one often defines terminal (1) as high

(high admittance to ground) and terminal (2) as low (low admittance to ground). It can

4Terminal (1?) is only included in the drawing for clarification, during the experiment, only
connections to terminal (1), (2) and (3) are made.
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V0
V1

V2

(1)

(1?)

Yb

Ya

Y0

Y2

Y1

(2)
(3)

=

Yi

Ri

Ci

Figure 3.2: Left: Circuit for three-terminal capacitance bridge. V represent volt-
ages and Y admittances (inverse impedances Y = 1/Z). Right: Circuit showing the
composition of an admittance.

be shown via Kirchhoff’s laws that[5, 34]

V0 =
V1Y1 − V2Y2

Y0 + Y1 + Y2
(3.6)

V1, V2, C2 and R2 can be balanced such that V0 = 0. Eq. 3.6 becomes then

Y1

Y2
=
V2

V1
. (3.7)

Using Y = 1/R+ iωC one arrives at

C1

C2
=
V2

V1
and

R2

R1
=
V2

V1
. (3.8)

Since C2, V1, V2 and R2 is known, one can measure C1 and R1. R1 is also called loss.

So far, stray capacitances have not been addressed. Referring to fig. 3.2 two stray capac-

itances can occur: a) Terminal 1 connects to ground b) Terminal 2 connects to ground.

In the first case, this is corresponding to the connections Ya or Yb, which are usually too

low relative to the admittance through the secondary windings of the ratio transformer to

have an effect on the voltage selection process. However, the longer the cable to the high

terminal and thus their capacitance is, the larger Ya becomes. Therefore, for very high

accuracies or high capacitances, cable errors have to be corrected [35]. In the second case,

an admittance is added which shunts Y0. This does not affect the balance condition of the

detector, since they are added to Y0 [36]. However, a capacitance would reduce the noise,

which the detector sees (high-frequency band pass), and a resistor would create thermal

noise at the detector, which can influence its sensitivity [35].

In our experiment, the Anderling-Hagerling AH2550A capacitance bridge was used. It

provides a resolution of 1× 10=7 pF and an accuracy of 5 ppm. An order of magnitude

estimation for the capacitor used within this experiment (C ≈ 1 pF, A ≈ 100 mm2,d ≈
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3.3 Capacitance Dilatometer

Figure 3.3: Schematic drawings showing three basic capacitance dilatometer setups.
Normal: The sample is used as capacitor plate; Inverted: The expansion of the sample
is transferred to the capacitor plates via a mechanical connections; Absolute: The
sample is used as a capacitor plate and is isolated from the cell, hence having no cell
effect. From [37].

1× 10=1 mm) yields a length resolution of ∆l = 1 pm fulfilling the precision requirements

for a thermal expansion measurement which were estimated in section 3.1.

3.3 Capacitance Dilatometer

In general, the challenge of capacitance dilatometry is the design of the capacitor. The

following points have to be considered:

Low Thermal Mass Ideally, the sample and the cell should be completely thermalized at

the point of measuring the capacitance. Thus it should consist of material with a

high thermal conductivity and low specific heat. Higher temperature sweep rates

are then possible, which save time and coolant.

High Sensitivity For a parallel-plate capacitor, the sensitivity of the capacitance to a gap

change can be quantified as ∣∣∣∣∂C∂d
∣∣∣∣ =

εA

d2
. (3.9)

The higher the plate area and the closer the plates are, the better the resolution of

the capacitor.

Low Cell Effect Unless an absolute method is used (see below), the thermal expansion

of the dilatometer itself (plates, screws etc.) creates an unwanted background(cell

effect) which has to be taken into account when determining α of a sample. Thus

it is favorable to minimize this contribution and to make it well-defined.

Fig. 3.3 shows three fundamental configurations for three-terminal capacitance dilatome-

ters. The “normal” configuration uses one side of the sample as a second plate. The
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1 cm

CuBe Spring Washer

Figure 3.4: Photograph of the dilatometer used within this work. It sits on a stand
for easier handling. The marked spring washer is used for clamping both halves
together.

first three-terminal capacitance dilatometer was constructed in this way by White in his

pioneering work [6]. “Inverted” setups separate sample and plates via transmitting the

expansion through mechanical connections to a capacitor. It is called “inverted” since the

gap is small for lower temperatures in contrast to the other methods. This provides higher

sensitivities, where the thermal expansion is low. Both the “normal” and “inverted” type

are differential techniques meaning that they measure the expansion relative to cell. This

requires a calibration with a well-known reference sample in order to subtract the cell

effect, thus restricting the accuracy to the reference data and the reproducibility of the

cell effect. As in the “normal” design, the “absolute” type measures the capacitance be-

tween a metal plate and the sample. Additionally, the sample is thermally isolated from

the cell. The cell temperature is kept constant while the temperature of the sample is

varied. Because of the absence of the cell effect, this allows for very high accuracies (0.1 %

in α [32])5. However this requires, that a thermometer and heater is connected to the

sample, which can be a challenge, especially for small specimens. “Normal” and “abso-

lute” require precise flat surfaces, whereas the “inverted” method does not necessarily do

so. A review of the literature of the last three decades shows that the “inverted” method

became the most widely used one [38, 39, 40, 41, 42, 43, 44, 45].

The dilatometer used in this experiment (see fig. 3.5 and fig. 3.4) is an improved version of

the device described in [38]. It incorporates several design features, which have proven to

be beneficial in other devices. Its main body is made of silver, which has favorable thermal

properties. Silver has the additional advantage of having no nuclear heat capacity, thus

having no Schottky anomaly at mK temperatures6 as in [46]. Its small dimensions result

in a low thermal mass, allowing relatively fast sweep rates of 0.3 K min=1. Sapphire is

used to isolate the capacitor plates from each other. This is an advantage over organic

5Interferometeric techniques are also absolute.
6These temperatures are not reached within this experiment, 5 K at the cell is the lower limit.
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Figure 3.5: Left: Schematic drawing of the dilatometer. (a) Capacitor plates
(b) Sample (c) Silver Spacer (d) CuBe-Spring (e) Cone-Bearing (f) Brass Shielding
Cylinder (g) Housing. Right: Greatly exaggerated opening angle for clarity.

glues (e.g. StyCast), which often show relatively large creep effects leading to drifts in

the capacitance[47, 39]. A brass cylinder prevents the sample from touching the plates

and reduces the influence of dielectric materials on the capacitance. It acts as well as a

guard in order to reduce fringe effects(see section 4.3). Silver spacer are put on top of

the sample to allow various sample lengths while still being in the optimal capacitance

range and to prevent the plates from short circuiting(see section 5.1). One specialty in

its design is the tilted-plate principle, which is inspired by the work by Brändli, Griessen

and Genossar [48, 49]. The upper half rests on cone bearings, which allow a rotation.

This design enables the small size of the cell, since a similar sized cell with parallel plates

would need a mechanism to transfer the expansion from the sample to the capacitor plates.

Another advantage is the easier sample mounting, since the cell can be separated in its

two halves. The cell are clamped together via a CuBe spring washer. Rotter et al [38]

state the force acting on the sample as 50 mN to 500 mN. With a sample cross-section of

A ≈ π(3 mm)2, this corresponds to a pressure of up to 20 kPa. Since approx. 1 turn of the

nut suffices to reach the plastic regime of the spring, it is assumed that approx. 500 mN

are acting on the sample with the tension of 1 turn. Since the nut is progressing approx.

0.3 mm during 1 turn, the spring constant is estimated with 1700 N m=1.

The capacitance between the plates can be described by a tilted-plate-formula [38, 49, 34],

which has been modified by Barcza and Mehboob [50, 51]:

C(d, T ) =
2ε

d?(T )

Ao(T )
(

1−
√

1− γo(d?(T ), T )2
)

γo(d?(T ), T )2
−
Ai(T )

(
1−

√
1− γi(d?(T ), T )2

)
γi(d?(T ), T )2

 ,

(3.10)
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where

γo(d
?(T ), T ) =

ro
b

(
k(T )

d?(T )
− 1

)
γi(d

?(T ), T ) =
ri
b

(
k(T )

d?(T )
− 1

)
k(T ) = k0

(
1 +

∆lAg

l
(T )

)
d?(T ) = d(T )

(
1 +

∆lAg

l
(T )

)
Ao(T ) = πr2

o

(
1 +

∆lAg

l
(T )

)2

Ai(T ) = πr2
i

(
1 +

∆lAg

l
(T )

)2

(3.11)

The plate distance is denoted as d(T ) and the literature values for the relative length

change for silver is (∆l/l)Ag [52](see also fig. 9.1). The quantity k0 represents the gap

distance d, when the plates are parallel (d = k), b the distance from the center of the lower

plate to the pivot at the cone bearing. The effective capacitor plate area is defined as Ao−
Ai. All geometric constants refer to room temperature (293 K). The geometric parameters

have to be replaced by effective ones, since fringe effects and machining imprecision are

present(see section 5.1). d(T ) is replaced by d?(T ) to account for the expansion of silver

(see below).

The formula aims at absorbing all expected thermal expansion effects of the dilatomerter

itself to extract the largest non-predictible background signal during a measurement of

the cell effect [53]. The cell effect is determined via measuring a silver sample, since then

most of the sample’s expansion is compensated (see also section 5.2). In this case, the

following thermal expansion effects can be theoretically presumed:

Housing The sample is of the same material as the housing. Thus the housing expands

at the same rate as the halves are pushed apart by the expanding silver sample.

However, the part between the halves is not compensated leading to an increasing

d. Thus d(T ) does not enter the eq. 3.10 directly, but via d?(T ).

Cone bearings The cone bearings are made of silver. However, as in (a), only the part

within the gap has to be considered, since the rest is compensated by the expansion

of the housing. This is accounted by letting k(T) expand.

Capacitor plates The radius of the plates increases with rising temperature, the area

expands quadratically.

Sapphire Washers The sapphire washers below the plate expand less than silver. There-

fore, the plates sink in the housing, since it expands more. To reduce the effect of

the sapphire washers, a sapphire piece, which has double the length of the washers,

is put below the cone bearings. This counters the effect of the sapphire washers be-

low the plates, since then the amount, the halves are pushed away from each other

by the cone bearings matches the amount the plates depart from each other caused

by the smaller expansion of sapphire.

An ideal cell would then yield a zero length change when measuring silver within the model

based an eq. 3.10.

20



3.4 Preparation of the Dilatometer

One might ask the question, whether this formula is also applicable when using a non-

silver sample, since it may not immediately obvious that one has to take into account an

expansion of d(T ) and use d?(T ) instead. The answer lies in the differential method, i.e. a

sample expansion is always relative to the cell effect measurement. Thus every expansion

taken into account during the silver sample measurement has also to be considered during

other measurements. This ensures that eq. 3.14 yields the literature values for silver, when

a silver sample is measured.

Solving (eq. 3.10) for d cannot be done analytically, thus numerical algorithms such as

Newton’s method have to be used to relate the capacitance to a gap change (see also 3.6).

If one measures the expansion of silver sample, the following contributions to the gap

change have to be taken into account [54]:

∆dAg = ∆dcell + ∆dcell-length-silver (3.12)

The quantity ∆dcell-length-silver represents the gap change coming from an Ag-sample which

has the maximum length ≈ 4 mm of the cell. A non-Ag-sample with a silver spacer on top

of it will lead to

∆dmeasured = ∆dcell + ∆dAg-Spacer + ∆dsample (3.13)

The quantity, one wants to obtain is ∆dsample/lsample. Plugging eq. 3.12 into eq. 3.13 and

solving for ∆dsample/lsample yields

∆dsample

lsample
=

∆dS −∆dAg

lsample
+

∆dcell-length-silver −∆dAg-Spacer

lsample
. (3.14)

The last term corresponds to the relative length change of a silver sample with length

lsample, thus
∆dsample

lsample
=

∆dmeasured −∆dAg

lsample
+

∆lAg

l
(T ) (3.15)

3.4 Preparation of the Dilatometer

3.4.1 Grinding and Polishing

In general, the dilatometer has to be machined and prepared in such a way that the

mathematical model (eq. 3.10) matches the device, e.g. k = d if the plates are parallel.

Thus, one has to ensure, that the plates and the housing sides facing each other are in-

plane. This is achieved by grinding and polishing the dilatometer halves on the sides

where they face each other. For this process a rotary grinding machine was used (model

“ATM Saphir 520”). A common practice in metallography is to start with coarse grinding

paper (plane-grinding) and then continue with the next finer one (fine-grinding) etc. till

the desired roughness is achieved. The first paper used was ISO P500 (mean grain size
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Figure 3.6: Model by [56] to model the influence of surface roughness on the ca-
pacitance. The top plate is ideally flat, the roughness of both plates is accounted
for by the lower plate. h(z) shows the height distribution (picture shows a normal
distribution).

30.2 µm [55]). After several intermediate papers, the final grinding step was conducted

with ISO P2500 paper (mean grain size 8.4 µm[55]) paper. A subsequent polishing with

diamond lubricant was performed to achieve best surface quality (3 µm and 1 µm grain

size).

In the following paragraph the question is addressed, by how much the capacitance of a

non perfectly flat surface deviates from an ideally flat one. A model by [56] is adapted

for a parallel-plate capacitor. If one assumes d = k + 0.01 mm (a deviation of 0.01 mm

from the parallel configuration), one yields differences below 0.1 % to the parallel case

with d = k. Thus this model is assumed to be also valid for describing the influences of a

non-perfect surface in the case of the tilted-plate dilatometer.

It is based on the fact that a rough plate can be divided into infinitesimal small parallel

connected “terraces”. These “terraces” can be described by a distribution h(z). In order

to account for the finite range of heights, a truncated distribution is used:

h(z) =


0 z > 2p

f(z)

F (2p)− F (0)
0 ≤ z ≤ 2p

0 z < 0

, (3.16)

where f(z) denotes the probability density function and F (z) the cumulative density

function of a particular distribution, where 2p is the maximum height difference caused by

a grain. The plates are modeled with one rough and one ideally flat surface instead of two

rough surfaces (fig. 3.6). These models are equivalent, if the one rough surface combines

the roughness of both plates. The distribution is normalized in such a way that∫ 2p

0
h(z) dz = 1, (3.17)
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3.5 Temperature Control

which ensures that an ideal flat surface and the distorted surface have the same total area.

If one assumes the biggest grain size used during the process, the maximum deformation

depth can be safely estimated by ≈ 30 µm. The surface roughness7 resulting from grinding

with this grain size is approximately 5 µm [57, 58]. Summing up the two surfaces yields

then 2p = 60 µm. Using a truncated normal distribution with σ =
√

2(5 µm)2 and a mean

distance of d = 0.1 mm, which is the order of magnitude encountered at our dilatometer,

the relative error compared with a perfectly flat capacitor is

(
εA

∫ 2p

0

h(z)

d+ p− z
dz − εA

d

)
/

(
εA

d

)
= d

∫ 2p

0

h(z)

d+ p− z
dz − 1 = 0.5 %. (3.18)

It is assumed that average distance d+p corresponds to the distance d of a ideally parallel

plate. Since finer grains and polishing methods are used, one can safely neglect this

contribution. This matches the findings of Schefzyk [34, 39]. He found that deviations

< 0.01 mm from planeness cause only errors well below 1 %. However, it is noted, that

this contribution depends on the plate distance. If high sensitivity and thus low plate

distances are needed, this error has to be taken into account [59].

3.4.2 Parallel-Plate Setup

After grinding, a dilatometer geometry has to be set up, in which the two plates are

parallel. Doing this, it can be ensured that there is no tilt of the plates aside from

the desired axis and k can measured (see fig. 3.5). The following procedure was used:

A silver sample is mounted in the dilatometer. This Sample and the cone bearing are

gradually changed in length via grinding and then the gap between the plates is examined

with a microscope. If the distance between the plates is the same along the whole gap,

parallelism is achieved. If this is the case, the capacitance was measured to translate it

to k via d = k = εA/C0. To obtain an error estimate, the setup is repeated ten times

by opening and closing the dilatometer halves. The variation of the distance between the

plates along the gap (d = 0.19 mm) was < 0.02 mm. The mean capacitance for the parallel

setup was then determined to be

C0 = 5.327(14) pF (3.19)

3.5 Temperature Control

If a sample with α and a temperature difference of ∆T is assumed, one yields a relative

length change of ∆L/L ≈ α∆T . Since ∆l/l ≈ α∆T and α ≈ 1× 10=6 K=1, in principle

a temperature stability of ≈ 1 mK or less is desired to not interfere with the best resolu-

7Here defined as the standard deviation of the surface height distribution.
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Figure 3.7: Schematic drawing showing the cryostat used within this experiment.
(a) Shielding tube containing exchange gas (b) Vacuum-insulated Dewar (c) Vacuum-
insulated Variable-Temperature-Insert (VTI) (d) Dilatometer with Sample (e) Sample
Heater (f) Liquid-flow needle valve (g) Gas heater (h) Magnet (i) Liquid Helium
(j) Sample rod containing all cables. Based on [60].

tion given by the capacitance bridge of 1× 10=9 in ∆l/l. Maintaining this stability and

measuring with such a precision over a wide range of 4 K to 300 K is challenging as the

following paragraphs show. This leads to the insight that temperature control is crucial

and a resolution-limiting factor.

In order to achieve a temperature range of 4 K to 300 K and a stable temperature sweep,

a commercially available gas-flow cryostat from Oxford-Instruments was used. A sketch

of the full setup including the sample rod is shown in fig. 3.7. The temperature within the

variable temperature-insert (VTI) is stabilized via a balance of cooling power of cold helium

gas and heating power of a resistance heater, which sits at the needle valve and adjusts

the temperature of the gas flowing trough it. The VTI is pumped by a rotary vacuum

pump (35 m3 h=1) to achieve a continuous gas flow. The boiling temperature of helium at

atmosphere pressure is Tb = 4.2 K. Temperature below Tb can also be achieved, since the

pressure within the VTI is reduced below the vapor pressure of helium by the pumping.

Hence, below Tb, liquid helium will flow within the VTI and boil at lower temperatures
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3.5 Temperature Control

0 1 0 0 2 0 0 3 0 0 4 0 01
2
3
4
5
6
7
8
9

1 0
1 1

 

 

T NV
(K)

T i m e  ( s )
Figure 3.8: Temperature at the needle valve TNV vs time during a slow PID-
controlled heating below 4 K. The reason for the sudden jump is unknown. The
lambda transition of liquid helium might play a role, since the latent heats of He-I
and He-II differ.

thus cooling the sample further 8. Stabilizing below 4 K is possible (specifications of the

cryostat state 1.5 K as the lowest achievable temperature). However, a proven lowest

starting temperature for sweeps is 4 K. Lower starting temperatures tend to a sudden

temperature increase, when it was tried to gradually heat up the sample (fig. 3.8). The

exact reasons are unknown. However, the sudden increase in temperature might be related

to the drop in latent heat during the lambda transition of helium [62]9. The heater and

needle valve are automatically controlled by a temperature controller through a PID-

algorithm10. The thermometer used as a feedback for this loop is sitting at the base of

the VTI at the needle valve (see section 3.8).

While the thermometer at the vaporizer is well placed for feedback control of the needle

valve and heater, the distance and thermal path is too large to measure a reliable value for

the temperature at the dilatometer. As a remedy a second thermometer (see section 3.8)

was attached to the dilatometer. A setup only using the temperature control of the VTI

would yield a temperature stability within 50 mK to 100 mK (see [63] and fig. 3.10). In

order to increase the stability, a second resistance heater was constructed to heat the

dilatometer directly within the sample space. This allows a finer temperature tuning.

T = 200 K can be hold stable with fluctuations ≤ 2 mK (see fig. 3.7). However, this comes

at the expense of greater complexity since the sample heater is as well controlled by a

8Helium does not solidify at these pressures and temperature ranges. The lowest temperature
limit is set by the pumping power and the heat input of the surrounding parts (sample rod, non-
perfect insulation etc.) [61]

9Ekin [60] mentions that, superfluid creep increases the gas flow rate and lowers the ultimate
cooling power of the system, which could also relate to this effect.

10The differential term has not been used.

25



3 Experimental Methods and Devices

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0- 1

0

1

2

3

4

5
 

 T S a m p l e - T N V
 C

T i m e  ( s )

T Sa
mp

le-T
NV

(K)

7 . 2 8 4

7 . 2 8 6

7 . 2 8 8

7 . 2 9 0

7 . 2 9 2

7 . 2 9 4

7 . 2 9 6

C(
pF

)

Figure 3.9: Temperature Difference between the thermometer at the vapor-
izer/needle valve TNV and the thermometer at the sample TSample without using the
additional heater surrounding the sample (sweep rate 0.3 K=1). The temperature
gradients within the cell become too large and cause glitches (see section 4.4).

temperature controller using a PID-algorithm. Thus two entangled PID-mechanisms are

present, which requires more tuning effort.

Figure 3.9 shows the behavior of the capacitance without the use of the second heater: The

relaxation time (see section 4.6) does not allow a quasi-stationary cooling (see section 4.6).

The gradients become too large and cause glitches. Lower sweep temperatures or better

thermal coupling would have to be used.

The vaporizer heater is set to a temperature 1 K lower than the sample heater, so the

sample heating power is balanced by an approximately constant cooling power. With the

limit of 4 K at the vaporizer, the effective lower limit at the cell is then 5 K. The total

power released over the sample heater resistance (≈ 240 Ω) ranges from ≈ 0.1 W to 1 W

over the whole temperature range of 4 K to 300 K.

Figure 3.10 shows the difference between set and actual temperature at the vaporizer and

the cell. While the temperature stability at the needle valve is partly poor (±100 mK

at 50 K), the temperature of the cell can be held stable within ±10 mK. The fast stabi-

lization at 50 K at the vaporizer is caused by a change in PID parameters. However, the

temperature starts to fluctuate at around 200 K, which could not be related to the use of

different PID values of either temperature controller.

The dielectricity of liquid helium (see section 4.1) and cable movement caused by the

gas flow and varying pressure on the device could create unwanted noise. Therefore, the

sample rod was put into a shielding tube made of stainless steel. The part covering the

area of the dilatometer is copper, since its thermal conductivity over 10 times larger [60]

than stainless steel. Thermal contact to the VTI space is achieved by using helium as an
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Figure 3.10: Top: Typical temperature stability at the cell. Bottom: Typical tem-
perature stability of the thermometer at the vaporizer. Tnominal is the set temperature
(linear profile with a specific rate) and Tactual is the actual measured temperature.
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exchange gas in the sample space. This has also the advantage of creating thermal contact

without electrical contact, since this would create a connection between dilatometer ground

and cryostat ground, which could affect the measurement of the capacitance bridge (see

section 3.2). The used exchange gas pressure ranged from 20 mbar to 300 mbar at room

temperature between measurements (for a more detailed discussion see section 4.1).

3.6 Data Analysis

In order to translate the measured capacitance vs. temperature data into a relative length

change and thermal expansion, several numerical operations were performed:

Numerical Solution of Eq. 3.10 The solution of eq. 3.10 has to be found numerically.

The robust and reliable Newton’s method is used. Since the function has no inflec-

tion points, there is no risk being trapped in a non-converging infinite loop. The

method needs usually around 5 steps to converge. The algorithm is implemented in

Mathematica, which runs consistency checks to guarantee a certain precision.

Binning of Data In order to reduce the number of data points, the noise and to obtain

a smooth derivative (see also 4.2), the data is “binned”. The data is grouped into

windows of around 50 data points and the group is replaced by the group mean

value.

Interpolation Some calculations involve combining two different data sets (e.g. cell ef-

fect and signal). In order to perform calculations although the data sets do not

have points at the same temperature, one data set is interpolated via splines. The

curve is interpolated piecewisely with a B-spline-approximation yielding smooth,

differentiable curves.

Numerical Derivation In order to obtain the thermal expansion coefficient α, ∆l/l is

derived. This is done by interpolating of the data via the method described above

and then deriving it.

Glitches Glitches(see section 4.4) are easily visible in the derivative of ∆l/l α as outliers.

Glitches are automatically removed via grouping the data into windows and then

deleting points within these windows whose difference to the mean value of the

group is greater than mσ, where sigma is the standard deviation and m a factor

depending on the quality of the data.

Numerical Integration In order to obtain a ∆l/l without glitches, α is integrated after

removing the outliers, which represent glitches.

All steps above are done in Mathematica 8.0 which runs consistency checks to ensure

precision. Everything is based on robust and reliable algorithms, so the error introduced

by truncation is assumed to be negligible compared with errors related to the setup.
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3.7 Sample Preparation

Figure 3.11: Left: Technical Drawing of a Cernox thermometer. A thin film of
zirconium oxide is sputtered on a sapphire base and vacuum sealed within a cell
to allow easy mounting without breaking the resistance. From [65]. Right: Photo
showing the mounting of the thermometer at the dilatometer: The sensor (marked)
is fixed with a brass clamp and greased with a thin film of Apiezon N (not visible).

3.7 Sample Preparation

Samples often have to be modified to fit into the cell. The maximum height after steps 3.4.1

and 3.4.2 is slightly below 4.1 mm. Their cross-section must fit within a circle of diam-

eter 3 mm to not cause blockage within the cell. Two surfaces of the sample should be

approximately parallel. To improve stability, a cuboid or cylindrical shape is beneficial.

If necessary, the sample was cut with a diamond saw (model “Well 3032-4”). The surface

roughness resulting is comparable with grinding (≈ 1 µm to 10 µm) [64].

3.8 Thermometry

General considerations when choosing a thermometer for this application involve

Temperature Range The thermometer should be able to cope with a range of 4 K to 300 K.

Response Time Since it is measured using a temperature sweep, the thermometer should

thermalize within reasonable time, so the capacitance can be linked properly to the

corresponding temperature.

Accuracy The deviation from the measured value to the true value should be low, prefer-

ably below 1 %.

Sensitivity / Resolution In order to resolve length changes of ∆l/l ≈ 1× 10=9, a sensi-

tivity of 1 mK or better is desired (see section 3.5).

Magnetic Field Thermometer use the temperature dependence of a resistor to measure

the temperature. A magnetic field can hinder charge carriers and thus create an

additional resistance, which is called magnetoresistance yielding an error in the
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3 Experimental Methods and Devices

temperature. Thus for measurements within B-fields, a sensor with low magnetore-

sistance should be chosen.

For our purpose, Cernox “CX-1050” thermometers by Lake Shore Cryotronics were used.

The measured resistance consists of thin film of zirconium oxide Zr2ON2, which has

semiconductor-like resistance properties. Fig. 3.11 shows the model (“CX-1050-SD-1.4L”)

used to measure the temperature at the dilatometer and how it is mounted at the dilatome-

ter. The model (“CX-1050-AA-1.4L”) at the needle valve within the VTI space differs

only in the packaging of the sensor.

Range 0.3 - 325 K

Resolution 0.1 mK at 1.4 K
0.1 mK at 1.4 K
0.5 mK at 77 K
20 mK at 300 K

Accuracy 6 mK at 1.4 K
7 mK at 4.2 K
110 mK at 77 K
450 mK at 300 K

Response Time 15 ms at 4.2 K
0.25 s at 77 K
0.8 s at 273 K

Table 3.2: Typical Specifications of a Cernox thermometer [65]

Tab. 3.2 shows the specifications of a typical Cernox thermometer. All parameters suit to

the use with the capacitance cell. However, the resolution of 20 mK at 300 K is striking

and limits our resolution at the point where α is the highest being at the order of 1× 10=5,

thus no better resolution in ∆l/l than 1× 10=7 is expected.

One strength of Cernox thermometers is the insensitiveness against magnetic fields11.

Since magnetostriction effects are larger the lower the temperature is [66], one tries to

undergo measurements at the lowest temperature possible. This has also the advantage of

a better temperature stability (see also section 4.6). However, the downside is the higher

magnetoresistance of the thermometer, which introduces temperature errors.

The maximum error is determined by Brandt et al. [67] to be ∆T/T = −1.38 at 18 T. 12

The temperature calculated by the temperature controller based on a resistance vs. tem-

perature curve would be 5.0 K × ∆T/T = 0.069 K too low in this case. The temper-

ature controller will increase the power released in the heater to compensate for this

phantom cooling effect. Thereby, through thermal expansion, the sample expands by

11This is exactly the reason, why one cannot use, for example, a platinum resistor as a ther-
mometer, which has a better resolution at high temperatures.

12The maximum magnetic field the cryostat is able to deliver is 17 T.
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3.9 17 Tesla Magnet
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Figure 3.12: Top: Plot showing the magnetic field dependence of the relative temper-
ature error of the thermometer at the dilatometer at different temperatures. Bottom:
Plot showing the error for 5 K, which is the temperature used for measuring magne-
tostriction. Data from [67].

∆L/L ≈ α(5 K)∆T = 1× 10=9. Magnetostriction effects lie in the order of magnitude

of 1× 10=8 i to 1× 10=7 in ∆l/l (see also section 5.10). Thus, this overall constitutes a

relative error of about 1 % to 10 % depending on field and magnetostriction.

3.9 17 Tesla Magnet

The cryostat is fitted with a wet13 solenoid magnet capable of delivering up to 15 T at

4.2 K. It consists of a mixture of NbTi (outer sections) and Nb3Sn(inner sections) [68],

which are both superconducting at liquid helium temperatures.

The field strength can be increased up to 17 T by additional pumping at the lambda stage

13Immersed in liquid helium

31



3 Experimental Methods and Devices

with a strong pump. This sucks in helium close to the magnet and lowers its vapor pressure.

It will then cool via its latent heat and temperatures below 4.2 K are achieved (see section

3.5). Caused by buoyancy, the cool liquid helium will collect at the bottom of the lambda

stage and cools locally the helium. The magnet is then cooled by convection currents

within the helium bath. Since the thermal conductivity of gaseous helium is relatively

poor, a steep temperature gradient will form at the boundary between the liquid and

gaseous phase, thus ensuring that the helium bath above the lambda stage is not heated

by much. Thus, this method is more efficient than pumping directly at the bath.

The deviation of the magnetic field along the cell is maximal 0.2 % [63] and since ∆l/l =

∆Hλ, it is not greatly influencing the accuracy of magnetostriction measurements. The

current resolution of the magnet’s power supply is 0.1 mA. The magnetic field is calculated

simply via H = kI, where k = 0.1460 T A=1, thus ∆H ≈ 1× 10=5 T. If one assumes a

magnetostriction of λ ≈ 1× 10=6 T=1, a resolution limit of the field in ∆l/l of 1× 10=11

results, which is below the resolution of the dilatometer (see also fig. 5.10).
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4 Systematic Errors

4.1 Exchange Gas

In this section, the question is addressed too which extent the dielectricity of the ex-

change gas (helium) influences the capacitance. The dielectricity of gaseous helium εHe =

1.000 063 [69] at NTP1 can be safely neglected. The Clausius-Mosotti equation relates the

dielectricity with the polarization αp [18]:

ε− 1 =
nαp
ε0

/

(
1− nαp

3ε0

)
≈ nαp

ε0
, (4.1)

where n is the number density and ε0 the vacuum permittivity. The approximation on the

right can be made for gases, since their n is low [70]. The polarization αp is an atomic

property and is thus constant in the gaseous phase. Since Helium can be well approximated

as an ideal gas, one yields ε − 1 ∝ p/T . Assuming a maximum temperature change of

300 K to 4 K or reducing the pressure from 1000 mbar into the 1 mbar range, does not

create variations in ε greater than in the permille range2. Hence, even at low pressure and

low temperature, the influence of the dielectricity of helium gas on the capacitance is too

small to have to be taken into account.

However, in its liquid phase, ε changes to 1.0480 [72], which poses a significant error if

it would be neglected. This is the reason, why it is not advisable to put the dilatometer

directly into the helium flow, since at low temperatures 2 K to 4 K liquid helium might

reach the capacitance plates and create disturbances [54].

In the experiment performed during this work, the shielding tube is firstly evacuated,

then filled with helium and sealed at room temperature to a specific pressure. Helium

liquefies at 4.2 K at 1 atm pressure. The vapor pressure at 4 K is ≈ 800 mbar [60, 73].

Since the vapor pressure and the pressure inside the tube are decreasing monotonically 3,

1Normal Temperature and Pressure. T = 25 ◦C and p = 1 atm are assumed (authors do not
give concrete information).

2Both dependencies have been experimentally tested by van Itterbeck [71] and Clay [69] down
to 20 K and 2 atm.

3Since there is temperature gradient from the top to the bottom of the sample rod, it is not
safe to say that the pressure is ∝ T .
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Figure 4.1: Top: Capacitance vs temperature during three temperature sweeps with
a silver sample. The upper two curves correspond to different pressures of the exchange
gas at room temperature. The sample was not reinserted into the cell between the
measurements. The lower curve corresponds to the same sample, but it has been
reinserted resulting in a reproducibility error unrelated to the helium gas pressure.
Bottom: Derivatives of the curves shown in the upper plot.
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4.2 Numerical Errors

it is impossible for the helium volume within the tube to liquefy in the temperature range

4 K to 300 K, if its pressure is 800 mbar or less at room temperature. However, residual

gases (oxygen, carbon dioxide, nitrogen) or water could could cause problems and thus one

should take care to have a clean exchange gas and sample space. Köckert [74] discusses

residual gas effect and assesses an error of ca. 1× 10=7 in ∆l/l for “dirty” exchange gas (no

quantification given), which does not constitute a large influence on ∆l/l. However, phase

transitions of residual gas components might cause sudden changes in the capacitance,

which could be visible in the data.

In some cases it is preferable to use a non-arbitrary exchange gas pressure, since at low

pressures below ≈ 10 Pa the thermal conductivity of helium scales linearly with pressure

(above it is pressure-independent) [60]. Thus it is possible to control the cooling power

of the gas flow within the VTI space at low temperatures and low pressures. This is

important in bath cryostats, since this is the only way to control cooling and to compensate

the growing temperature gradient between sample space and helium bath. In our case,

however, the PID-temperature controller automatically adjusts the needle valve. During

the first half of measurements, pressures around 300 mbar at room temperature were used.

To check for influences of residual gases, the pressure was later reduced to 20 mbar. No

significant influence on the capacitance was noticed (see fig. 4.1).

4.2 Numerical Errors

During the translation from the measured capacitance to a relative length change and the

thermal expansion coefficient, several numerical operations are performed which are can

be afflicted with an error:

• Numerical Solving of Equation 3.10

• Derivation of relative length change to obtain thermal expansion coefficient

• Integration of “deglitched” thermal expansion coefficient to obtain a smooth relative

length change

Naturally, the derivation is the most hazardous one, since it involves small differences of

the experimental data. The error propagation by using differences boosts the error to a

much higher level than of the data being derived [75].

To estimate the effect of a noise in the relative length change and its consequences on

the thermal expansion coefficient, a 20th-order polynomial is fitted against the literature

data of copper [37] and the resulting polynomial is derived analytically. The effect of

limited precision is simulated via a random noise added to the polynomial in the order

of the precision of the dilatometer (1× 10=7). This noisy signal is then derived using

the methods from section 3.6 and compared with the exact derivative(see fig. 4.2). The

resulting error is in the range of 10 %. However, binning of the noisy signal reduces the
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Figure 4.2: Top: A polynomial is fitted against literature Data for Copper from
Kroeger and Swenson [37]. Bottom: Showing (a) the analytical(exact) derivative of
the polynomial, (b) the derivative of the polynomial with added noise and (c) the
derivative of the binned noisy polynomial. The thickness of (c) is bigger than the
error for clarification.

error effectively.

4.3 Inhomogeneity of the Electrical Field / Fringe Effects

Theoretically, (eq. 3.10) does only hold if a situation is considered, where the plates extent

infinitesimally and where the capacitance is calculated between two specific areas on these

plates. However in finite dimensions fringe effects have to be considered, which cause

an inhomogeneous electrical field at the boundaries of the capacitor plates(fig. 4.3). This

creates an additional contribution to the capacitance, since there is more surface connected

with electrical field lines and thus more charges can be stored.

In order to estimate fringe effects, formulas found by Kirchhoff [77], Maxwell [78] and

Scott and Curtis [79] are available for circular geometries. However, the task of finding

analytical expressions for the capacitance becomes quickly challenging when deviating

from these geometries [80].
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4.3 Inhomogeneity of the Electrical Field / Fringe Effects

Figure 4.3: Graphic showing the inhomogeneity at the boundaries of capacitance
plates. The field lines “crawl” around the fringes and cause an additional capaci-
tance contribution. The shown configuration differs from the setup used in this work.
From [76].

The basic, parallel configuration of our capacitor is shown in fig. 4.4. Neglecting edge

corrections, the effective area is π(r2
o − r2

i ). The capacitor is reduced to the annular

geometry shown in fig. 4.4 (b). This will overestimate the edge corrections for the following

reasons:

• The edge at Ro does not contribute to the capacitance, since Ro − ro > 3d [79, 81].

• There is an additional edge at ri.

• The housing is removed, and therefore no guard electrodes connected to ground are

present (the capacitance to ground does not add to the measured capacitance, see

section 3.2).

In this geometry, an estimate of the edge corrections can be made based on the method

of Johansen [82]: The area π(ro − ri)2 of the annular capacitor is mapped on n paral-

lel connected circular capacitors with radii ρ, where it is possible to apply Kirchhoff’s

formula [79]

Cn = ε
A

d
(4.2)

Ce = Cn
2d

πρ

(
log

8πρ

d
− 3 + z

)
(4.3)

z = (1 + x) log 1 + x− x log x (4.4)

x = t/d. (4.5)

The radius ρ is determined by the constraint that the total circumference and area of the
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Figure 4.4: Left: Schematic Drawing showing quantities important for the estimation
of fringe effects of the cell. Right: Simplification of cell geometry for an analytical
estimate of fringe effect errors.

n capacitors and the original capacitor are equal:

π(r2
o − r2

i ) = nπρ2 (4.6)

2π(R+ r) = n2πρ (4.7)

With ro = 6 mm, ri = 3 mm, b ≈ 0.1 mm, t ≈ 2 mm, one yields

Ce
Cn

= 9 %. (4.8)

To estimate the effect of guarding by the housing and the brass cylinder, one can use

Maxwell’s formula for a circular Kelvin guard ring capacitor with the same plate distance

d = 0.1 mm and area A = π(ro − ri)2 [78] and calculate the relative deviation to an ideal

capacitor without any edge effects with Cuncorr = εA/d via

Ccorr

Cuncorr
= 1 +

wd

r(d+ 0.22w)

(
1 +

w

2r

)
. (4.9)

The correction of edge effects is then

1− Ccorr

Cuncorr
= 6 %. (4.10)

An unguarded configuration only taking finite dimension into account would result for a

circular capacitor in [79]

Cfinite, unguarded

Cuncorr
= 1 +

4d

πro

(
log

4πro
d
− 3 + z

)
= 9 %. (4.11)
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4.4 Glitches / Friction Effects
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Figure 4.5: Left: Plot showing the sudden change in capacitance during a tempera-
ture sweep with a silver sample (3.99 mm in length). This behavior is also known as
“glitch”. Right: Plot showing a periodic occurrence of glitches during a measurement
of a copper sample (4.02 mm in length). The occurrence of glitches is more frequent
than in other measurements.

This shows that the guarding is probably not efficient, since the error stays in the same

order of magnitude. The reason is, that compared with the overall dimensions, w is

relatively large. Thus, the error caused by fringe effects is estimated to be in the range

1 % to 10 %.

The value of 4.8 changes only slightly during length changes in the micrometer range, which

are the length changes encountered during our temperature sweeps from 5 K to 300 K for

usual metals. With the overall compensation of the effect through the calibration at room

temperature(see section 5.1), this contribution is therefore neglected for materials with

∆l/l in the range of 1× 10=3. This is in accordance with the findings of [38, 54].

4.4 Glitches / Friction Effects

The length changes detected within this experiment are in the sub-Ångstrom range. The

surface roughness at the contact surfaces of sample, silver spacer and dilatometer is at

best of the order of one micrometer. Temperature sweeps are thus often accompanied by

hysteresis and friction effects caused by the relative movement of surfaces [8].

During this work, sudden changes in the capacitance during temperature changes were

noticed. The capacitance jumps, but then continues smoothly. This is a well-documented

effect and referred to as “glitch” [34, 74, 83, 84]. The origin for these effects is the relative

movement of sample and dilatometer. The form of the jump suggest a stick-slip motion

similar to the phenomenon seen in atomic force microscopy [85], which is caused by the

friction between two contact surfaces. Fig. 4.5 shows glitches during a temperature sweep

of a copper cylinder. The sample was made using a lathe instead of the procedure described

in section 3.7. The more frequent occurrence of glitches can be explained by the rougher

surface, which supports the theory of friction as the underlying process. The size of the
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Figure 4.6: Left: Plot showing reproducibility errors (A,B) in the capacitance caused
by friction effects during temperature steps. A is likely to be caused by friction
between sample and cell. B shows an extreme example of a glitch. Right: Zoomed in
area of the plot on the left for clarity

glitches is usually of the order of Å.

Glitches can cause reproducibility errors, since after the glitch, the capacitance and thus

the length is not relative to the starting capacitance anymore, but to the starting capac-

itance plus the offset introduced by the glitch. Therefore, if they are of the order of 1 Å,

they contribute an error of 1× 10=7 in ∆l/l. However, glitches can be easily identified in

αas outliers. After their removal, α is integrated over the temperature resulting in a ∆l/l

without major influences of glitches(see also 3.6).

Rapid cooling (& 3 K min=1) cycles were often accompanied by large glitches (see fig.3.9).

This can be explained by different thermal contraction speeds of the different parts re-

sulting in relative movement of the movable parts. The capacitance jumps reached up

to 0.01 pF
∧
= 0.1 µm. Thus fast temperature changes often lead to large reproducibility

errors(see fig. 4.6).

4.5 Incorrect Spring Tension

The CuBe-washer used a as spring to hold the two dilatometers halves together can be

tightened with different intensity. However, it is hard to quantify the exact tension to

stay within the elastic regime of the washer. Fig. 4.8 gives a guideline how to accomplish

an appropriate tension of the washer. An established technique is to turn the nut until it

touches the washer and then tighten it further by approximately 3/4 turns. To investigate

the implications of faulty spring tension, a test with a copper sample was made. In this

case, the spring was extremely tightened to show the maximum influence of the spring.

The capacitance curve showed more glitches than usual and spikes were visible (fig. 4.7).

The spikes are a distinct property of this measurement. A possible explanation would be,

that a higher normal force allows a new order of friction mechanisms that cause very short
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Figure 4.7: Plot showing features in the capacitance during a temperature sweep
with an extremely tightened spring. Glitches occur more frequently and had larger
jump sizes. Spikes are visible.

upper
plate

bronze disk nut M1.4

nut tightened too weakly good nut and disk tightened excessively

Figure 4.8: Schematic drawing showing a good practice for the required tension of
the spring. Graphic by H. Müller [86].

glitches.

4.6 Thermal Gradients

Ideally, the temperature distribution within the cell and sample should be homogeneous

at the point of measuring. However, since it is constantly heated, one has a constant heat

flux and thus an unavoidable temperature gradient within the cell. In this section, the

question is addressed how a non-uniform temperature distribution can influence the the

measurement of the capacitance.

The thermal conduction equation reads

∂T (~r, t)

∂t
= a2∇2T (~r, t) or in more physical terms

∂~q

∂t
= −λ∇T (~r, t), (4.12)

where ~̇q is the heat flux, λ the heat conductivity and T (~r, t) the temperature distribution

in space and time. a2 = λ/(cρ) is a variable combining heat conductivity λ, specific heat
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c and mass density ρ.

In order to estimate the influence of temperature gradients and to investigate the charac-

teristic scales, a rod of length l = 22 mm is assumed, which is the cell’s diameter. It is

heated at both sides with a constant heating rate k to model to heating by the heating

cylinder around the cell. The initial and boundary conditions can be stated as

T (x, 0) = 0 and T (0, t) = T (l, t) = kt (4.13)

If a homogeneous and temperature-independent a is assumed, the solution of (eq. 4.12) to

this problem is [87]

T (x, t) = −
∫ t

0

∫ l

0
G(x, t− τ, ξ)k dξdτ (4.14)

with the kernel

G(x, t, ξ) =
2

l

∞∑
n=1

exp

[
−
(anπ

l

)2
t

]
sin

nπ

l
x sin

nπ

l
ξ. (4.15)

The first harmonic (n = 1) dominates the solution:

T1(x, t) =
4kl2

a2π3

(
exp

[
−a

2π2t

l2

]
− 1

)
sin
(πx
l

)
. (4.16)

The largest temperature difference is between the middle and the sides:

T1(0, t)− T1(l/2, t) = − 4kl2

a2π3

(
exp

[
−a

2π2t

l2

]
− 1

)
, (4.17)

The characteristic time scale (also known as relaxation time) is

τ =
l2

a2
=
l2cρ

λ
. (4.18)

This determines roughly the time how fast a body thermalizes. At the starting temperature

of a sweep (≈ 5 K) the relaxation time τ is low, since c is low and λ high (see fig. 4.9), thus

the first term drops quickly. Now, Ṫ is not zero, but the gradient (eq. 4.17) is constant.

This situation often called quasi-stationary heating. This shows, that a temperature sweep

with constant rate is preferable, since it can be seen from eq. 4.17 that the gradient is

dependent on the sweep rate. Using literature data of silver for c [88], ρ [89] and λ [90]

and assuming a constant l and ρ, the relaxation time (eq. 4.18) is calculated within the

temperature range 5 K to 300 K (see fig. 4.9). The results show τ < 3 s. Assuming τ = 3 s

at high temperatures, t� τ and a typical sweep rate of k = 0.3 K min=1, the temperature

gradient based on eq. 4.17 is determined to be ∆T = 4kτ/π3 = 2 mK. Since τ is only

changing slightly at high temperatures, quasi-stationarity is likely to occur.

However, the relaxation time is suspected to be higher, since the system to be thermalized

42



4.7 Creep / Drift
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Figure 4.9: Relaxation time τ for a silver rod with length l = 22 mm as a model for
the dilatometer cell (see text for details)

is not completely silver (brass, sapphire,sample) and is likely to be larger than assumed

in this 1D-model. Surrounding parts as for example the brass part holding the cell have

to be included4.

A temperature sweep made with faulty PID-settings produced temperature oscillations

with a steady periodicity (see fig. 4.10). However, the resulting data allow estimates

based on the above-mentioned model. The growing hysteresis with temperature indicates

that the relaxation time is greater than the half of the periodic time of the temperature

oscillation ≈ 60 s. To account for this, the relaxation time in our 1D-model is generously

increased the by a factor of 50 to τ = 150 s. The maximum gradient based on eq. 4.17

would be ∆T = 100 mK. This introduces errors of approximately 0.1 K × α ≈ 1× 10=6

in ∆l/l during a quasi-stationary heating at high temperatures. This constitutes an error

below 1 %, if one assumes a typical ∆l/l of 1× 10=3. These findings are in agreement

with Schefzyk who found an error of ±20 Å when measuring length changes with his cell

at high temperatures [34]. However, these results are only partially comparable due to the

different sizes of the cells.

The error should be reproducible and thus only affecting the accuracy and not the preci-

sion. As for all systematic errors, the calibration against silver reduces this error, if the

calibration sample is heated at the same rate as the unknown sample.

To yield better quantitative and exact results (a 1D model can only give rough estimates),

a more detailed experimental study is recommended. However, the data shown in fig. 5.2

suggests that thermal gradients are not large source of error.
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Figure 4.10: Sample temperature vs. Capacitance during a temperature sweep with
a rate of 0.1 K min=1 with a silver sample at 30 K (top) 100 K (middle) and 270 K
(bottom). The oscillations are caused by non-ideal PID-controller-settings.
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Figure 4.11: Left: Aluminum sample (2.27 mm in length) held constant at 5 K. The
step-like features are glitches. Neglecting these yields an overall capacitance change

of ≈ 1× 10=4 pF
∧
= 4 nm. Right: Plot showing the drift in capacitance during a long-

term (> 59.5 h) temperature stability test at 200 K. The overall capacitance change
of ≈ 4× 10=4 pF corresponds to a length change of ≈ 0.01 µm.

4.7 Creep / Drift

Materials deform slowly if they are subjected to constant load. This behavior is called

creep. It is attributed to thermal movement of dislocations within the material [91, 92].

The time dependence of creep strain can be modeled by [91]

ε = a ln γt+ 1 (4.19)

where

a(T )


→ const T → 0

∝ T T & 10 K

∝ T 2 T . 10 K

. (4.20)

During a long-term stability test at 200 K with a aluminum sample (2.27 mm in length),

an approximately logarithmic time dependence of the capacitance was observed although

the temperature was held constant within ±3 mK (see fig. 4.11). Eq. 4.19 and the large

time scale suggest creep as an underlying process. If the change in capacitance change

would correspond to thermal expansion, this would yield a ∆T ≈ 0.1 K over a time of

59.5 h. The time scales for thermal relaxation are much shorter (see section 4.6), which

suggests that this behavior is not caused by thermal gradients.

Fig. 4.11 shows the same sample held constant at 5 K after cooling. Contrary to the

drift at 200 K, the drift is downward. Thermal gradients relax very quickly at these

temperatures (see fig. 4.9) and the capacitance difference ≈ 1× 10=4 pF would correspond

to a temperature change of ≈ 20 K within the sample, since the thermal expansion is

4Brass has a thermal conductivity approximately 10 times lower than copper and silver [60].
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low at these temperatures, hence this effect is as well due to creep. Such gradients are

unrealistic at these temperatures, hence this effect has to be caused by other mechanisms

than thermal expansion. The glitch in 4.11 is evidence for relative motion between the

cell and the sample. A drift of, for example, the standard capacitance within capacitance

bridge 3.2 is unlikely, thus a process within the cell must be responsible. One may speculate

that the delayed response of the capacitance to the temperature change is attributed to the

low thermal expansion at 5 K. The thermal expansion is typically low (α ≈ 1× 10=9 K=1)

and the resolution of the cell is 5× 10=8 in ∆l/l (see section 5.10).

In the cell, there are multiple parts which are under load: The plates are screwed within

the housing and pressed on sapphire and the CuBe-spring is under constant tension. Since

the cell consists of materials with different thermal expansion coefficients (silver, brass,

sapphire), tension can also build up during temperature changes. If a load is removed,

materials also creep back. Schefzyk gives an overview over this effect [34]. As indicated by

the different signs of the capacitance change seen in fig. 4.11, the creep behavior is depen-

dent on the thermal history of a material. It is hard to address this problem quantitatively.

However, one can give an error estimate based on the data shown in (fig. 4.11):

If one takes the steepest point in fig. 4.11, the maximum creep rate at 200 K can be stated as

dcreep = 3 Å min=1 Assuming the temperature dependencies of dcreep shown in (eq. 4.19),

4.5 Å min=1 at 300 K can be estimated. Interpolation of the data and calculating the

relative length change using one temperature sweep period (≈ 15 h at 0.3 K min=1) as the

longest timescale possible results in a contribution of the order 1× 10=6 to ∆l/l. Since

relative length changes are usually ≈ 1× 10=3, this corresponds to a relative error of

1× 10=3.

Annealing procedures might provide a way to reduce stress within the material. White’s

original cell was annealed [6] before use, but there is no investigation whether this had an

effect. However, degassing silver can have an effect of some percent in α [13].

4.8 Sample and Silver Spacer Length

During the preparation of measurement, two lengths are measured with a micrometer

screw: The length of the sample and the length of the silver spacer. The measuring error

is determined by the machining process during the production of the sample and the silver

spacer. The silver spacer was manufactured on a lathe yielding errors in the 1× 10=2 mm

range. The samples were cut with a diamond saw afflicting an error < 1× 10=2 mm.

These errors afflict the resulting ∆l/l in two ways (eq. 3.14): ls is in the denominator,

thus directly inflicting an relative error on the result. However, with an error below

1× 10=2 mm in lS , this does not yield an error of more than 1 % in ∆l/l.

In eq. 3.15 it is assumed that the sum of the length of sample and the sample spacer

matches the length of the silver spacer used in the cell effect measurement. The error in
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Figure 4.12: Left: Schematic drawing representing the situation if the plates are
perfectly aligned with the magnetic field B. The resulting force (red) yields to an
attraction of the plates. Right: Schematic drawing showing the situation of a tilted
plane. Tilted eddy currents result in a torque ~M . Its direction is dependent on the
direction of the magnetic field and its time dependence.

the length of the silver spacer afflicts then the accuracy of ∆l/l:

∆dcell-length-silver −∆dsilver-piece =
∆dsample-length-silver

lS
±

∆lerr(∆l/l)Ag

lS
(4.21)

With the expansion of silver being in the range 1× 10=3, the length error being of the

order 1× 10=2 mm, this introduces an error around 1 % in ∆l/l for millimeter sample

lengths.

4.9 Magnetic Field Effects

Since the external magnetic fields used during the experiments can reach high field strengths

(up to 17 T), it is worthwhile analyzing possible effects on the cell. Magnetostriction mea-

surements are conducted at low temperatures via linear magnetic field sweeps. Consisting

of silver, the cell has a high conductivity and low heat capacity making it in principle

vulnerable to the effects of eddy currents.

In order to estimate the relative orders of magnitude of effect caused by an external

magnetic field, the two dilatometer halves are modeled as two wire loops with the radius

R = 22 mm and distance z = 0.1 mm. The induced voltage is then

Uind = −Φ̇ = − ~̇B ~A. (4.22)

The specific resistance of silver is ρ ≈ 1× 10=9 Ω m [89]. Using a cross-section of a =

5 mm2, a length of l = 2πR and Ḃ = 1 T min=1, one yields

P =
U

R2
=

ḂA

ρ(l/a)
= 3× 10=6 W. (4.23)

The heat capacity of the dilatometer (m ≈ 40 g) at 5 K is C = cm = 9× 10=3 J K=1 [89].
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Thus the temperature change is

P

C
= 3× 10=4 K s=1. (4.24)

This indicates, that the temperature instability caused by eddy currents is manageable by

the temperature controller.

The magnetic field of a single loop along its axis z amounts to [93]

Bz =
µ0IπR

2

2π (z2 +R2)3/2

z�R
≈ µ0I

2R
. (4.25)

With r ≈ 0.1 mm being the distance between the loops, the Lorentz force acting on one

loop is

F =

∫
I
(
~dl × ~B

)
= 2πRBI = µI2R

r
= 60 µN (4.26)

This effect always yields an attracting force between the plates, since the eddy currents of

the two loops always have the same direction relative to each other. An attracting force

should yield smaller effects than a force, which is opening the dilatometer halves, since the

sample and silver spacer prevent a closing of the halves. The magnitude is only dependent

on the sweep rate Ḃ.

Silver is paramagnetic. Its mass susceptibility is χ/ρ = 2.3× 10=9 m3/kg. A force may act

on the bulk silver, if it is affected by an magnetic field gradient. Being a paramagnet, silver

is pulled into the direction of the higher field density. Naturally, there is an magnetic field

gradient along the magnet axis. Assuming the top field of 15 T, the maximum vertical

B-field gradient ∆B/∆x ≈ 15 T(0.0006/2 mm) = 0.005 T mm=1 [63]. The force on the

whole dilatometer would be [60]:

F =
χ

ρ

B

µ

∆B

∆x
≈ 5 mN (4.27)

The eddy currents create an additional magnetic dipole moment µ = I ~A. This dipole

moment and the magnetic field gradient yield then a force of

µ
∆B

∆x
= 0.8 mN (4.28)

Since the direction of µ depends on Ḃ and ∇B on the direction of B, this force is also

changing its direction depending on the directions of B and Ḃ.

If the plates are tilted against the field, the torque estimated via the current loop model

is

| ~M | = |~µ× ~B| = IA sin θ cos θB. (4.29)

Since the loop is tilted, the magnetic flux is reduced via cos θ, where θ is the angle between
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Figure 4.13: Field sweep with silver sample with increasing magnetic field, stabilized
at 5 K. Sampling effects caused by the resolution limit of the capacitance bridge are
visible.

the surface area vector and the magnetic field B. If one assumes a maximum field B = 15 T

and and a moderate angle of θ = 0.5◦ (the natural tilt of the upper half is around 0.1◦),

the force at one end of the loop would be

F = M/R = 5 mN. (4.30)

The dependencies of eq. 4.29 indicate that this is the most unpredictable effect. Whether

this effect is opening or closing the dilatometer depends on the field direction, the time

dependence of the field and of the orientation of the tilted surfaces relative to the magnetic

field.

In order to test for the influences described above, a measurement of a silver sample is per-

formed. The oscillatory magnetostriction observed of silver is λ ≈ 1× 10=8 to 1× 10=9 [94],

which is close to the overall resolution of our experiment and thus suitable to measure un-

wanted systematic errors.

This measurement was done with the magnetic field pointing downward in fig. 3.5 and

positive sweep rate. The capacitance rises leading to the conclusion that the resulting

force pushes the plates together. Since the effect is dependent on the field strength, it

cannot be caused by the interaction of eddy current flowing within the plates. To isolate

the exact source of error, additional experiments with varying tilt angle, magnetic field

sweep rate and negative Ḃ are recommended.
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5 Calibration Measurements

5.1 Room-Temperature Calibration

From section 4.3, it becomes clear, that fringe effects have to be corrected. Additionally,

errors from manufacturing processes can be expected, thus making a replacement of the

geometrical “blueprint” dimensions by effective dimensions necessary. From 3.4.2 one can

estimate the extent of the corrections needed:

Cuncorrected =
εA

k
⇒ Cmeasured − Cuncorrected

Cuncorrected
≈ 30 % (5.1)

The variable k = 0.19(2) mm denotes the optically measured distance between the plates.

In order to obtain the effective parameters, the model of Eq. 3.10 is cross checked against

the actual measured capacitance using the device depicted in fig. 5.1. The dilatometer

is fixed to micrometer screw which pushes a tip into the dilatometer. The halves of the

cell are then pushed apart by turning the micrometer. While stepwisely opening the

dilatometer in this fashion, the reading on the micrometer dµ and the capacitance C is

noted. The process is then reversed and the value for C and lµ are again recorded (see

fig. 5.2).

Hysteresis effects can be attributed to relative motion at the contact surfaces and thermal

expansion of the tip1. The downturn at (A) can be explained by touching surfaces of the

housing within the dilatometer (see fig 3.5). The fact, that the plates do not short-circuit

Real(mm) Effective(mm)

ri 3.0 2.7
ro 6.0 6.2
b 9.8 9.8

Table 5.1: Real dimensions of the cell as they would be measured (see fig. 3.5) and
effective parameters determined from calibration.

1The tip is several cm in length, α ≈ 1× 10=5 K=1, thus temperature changes of 0.1 K can
cause length changes of 0.1µm.
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5.1 Room-Temperature Calibration

Figure 5.1: Photograph showing the device to perform a room-temperature check to
verify the mathematical model for translating capacitance change to a plate distance
change. From [51].
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in the following measurements is depicted. Distances corresponding to the capaci-
tance differences are denoted. Bottom: Calculated distance vs. the micrometer with
effective parameters shown in tab. 5.1 and linear fit to the data.
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5 Calibration Measurements

at this point, shows good surface quality, since plate distances in the order of 10 µm can

be maintained without electrical contact between the plates.

Using C(dµ), the gap width dc according to eq. 3.10 is calculated and compared with

dµ within the range denoted in fig. 5.2, since deviations from the model of eq. 3.10 are

observed. The values corresponding to an opening of the dilatometer are then analyzed,

since thermal expansion measurements are conducted via heating the dilatometer, which

corresponds mostly to an opening of the cell. In order to find the best value for the effective

area, ro, ri and b are varied and dc(dµ) fitted with f(x) = a+mx for each parameter set.

Ideally, the function dc(dµ) should be linear with a slope of -1. A variation of b caused

slope changes less than 1 %. Thus, b is held fixed at the original value 9.8 mm.

The variation of ro and ri shows best results for ro in the range 6 mm to 6.5 mm and ri in

the range 2.5 mm to 3.5 mm.

Fig. 5.3 shows the deviations of the slope ∆m relative to −1 with varying parameters in

these ranges. Based on these findings, the parameters presented in table 5.1 are chosen.

In order to check the parameters against the calibration measurements of copper and

aluminum, the quantity

z =
N∑
i

|(∆l/l)i,measured − (∆l/l)i,literature|/
N∑
i

(∆l/l)i,literature (5.2)

is defined, where the sum goes over all literature data points. This gives a quantity

ranging in the same order of magnitude as ∆m. Using the data of aluminum and copper

(see section 5.10 and 5.3), z is calculated and added to ∆m yielding

X = ∆m+ zCu + zAl. (5.3)

Thus a low X indicates a better calibration. Fig. 5.3 shows X depending on ro and ri.

Points neighboring ro = 6.2 mm and ri = 2.7 mm yield a slightly higher X. Thus the

parameter set from table 5.1 yields also a good agreement of the measurements of copper

and aluminum with literature data and is thus used. In this case, ∆m = 0.3 %. Using the

new effective parameters and calculating C = εA/k yields an agreement with Cmeasured, if

A has an error of about 4 %. However, the error in k is suspected to be larger, since it was

only measured at the fringes of the dilatometer and an additional error of some percent

(
∧
= micrometer) could be explained by surface imperfections. Therefore, the error of the

obtained effective area is assumed to be in the order of magnitude of (1 %).

It is also noted that this error like all systematic errors is reduced by the calibration against

silver. Since the effective area appears in the cell effect measurement and the measured

data (see eq. 3.14), the error is proportional to ∆dmeasured −∆dAg.
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Figure 5.4: Expected capacitance change of a silver sample using eq. 3.10 and mea-
sured capacitance changes. The dates in brackets represent the date of the insertion of
the sample rod into the cryostat. The data have been acquired using different helium
exchange gas pressures of 21 mbar and 300 mbar. The pressure for some runs could
only be estimated (see text for details).

5.2 Cell Effect

In order to measure the cell effect(see section 3.1), the thermal expansion of the cell itself,

a measurement with a high-purity (99.995 %) silver sample (l = 3.99 mm) is performed.

Fig. 5.4 shows the expected capacitance behavior based on eq. 3.102and the real tempera-

ture dependence of the capacitance during one cell effect measurement. Figure 5.5 shows

the relative length change of several cell effect measurements. The overall reproducibility

at high temperatures is poor (up to ≈ 55 % difference). However, it can be noted that the

difference between two measurements is larger, if the cell has been dismounted between

measurements. This indicates a source of error linked to mechanical reasons and not ther-

mal behavior of the cell. The length changes obtained using faster and slower sweep rates

exhibit similar non-reproducible effects, which supports this hypothesis.

Figure 5.5 also shows the different exchange gas pressures used during the setups. Most

of the measurements were conducted by letting a defined volume of helium expand in the

evacuated tube, which yields approximately a 300 mbar pressure. To yield more precise

value, a pressure gauge was used in later runs. The measurements performed on 27.08

and 24.08. yield a relative good reproducibility, although different exchange gas pressures

and the same sweep rates were used. This indicates, that different exchange gas pressures

2For this calculation, d?(T ) = d(T ) has to be used, since the the expansion of silver is in fact
changing the capacitance. However, when translating C to d to obtain the cell effect, this behavior
is regarded as a non-cell-effect and thus corrected (see section 3.1).
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0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

0 . 1 4

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

 1 1 . 0 5 .  ( 0 3 . 0 5 . )  0 . 1  K / m i n *
 2 0 . 0 5 .  ( 2 0 . 0 5 . )  0 . 1  K / m i n *
 2 0 . 0 6 .  ( 2 0 . 0 6 . )  0 . 3  K / m i n *
 0 7 . 0 8 .  ( 0 6 . 0 8 . )  0 . 3  K / m i n *
 0 8 . 0 8 .  ( 0 6 . 0 8 . )  0 . 3  K / m i n *
 1 0 . 0 8 .  ( 0 6 . 0 8 . )  0 . 3  K / m i n *
 2 4 . 0 8 .  ( 2 4 . 0 8 . )  0 . 3  K / m i n * *
 2 7 . 0 8 .  ( 2 4 . 0 8 . )  3 . 0  K / m i n * * *
 2 7 . 0 8 .  ( 2 4 . 0 8 . )  0 . 3  K / m i n * * *

∆L
/L 

(10
-3 )

*  ≈ 3 0 0  m b a r
* * = 2 1  m b a r
* * * = 3 0 0  m b a r

L = 3 . 9 9  m m

 

 

T ( K )

 

 

 

 

Figure 5.5: Relative length changes of the same silver sample. The dates in brackets
denote the date of the insertion of the sample rod into the cryostat. The data have
been obtained using different helium exchange gas pressures of 21 mbar and 300 mbar,
whereas the pressure for some measurements can only be estimated (see text).

and residual gases effects can be assumed to play only a minor role (see also section 4.1).

However, the error arising from this non-reproducibility does not propagate entirely to the

quantity to be measurand. Since the measured value is a sum of cell effect and sample

signal, the relative size determines to what extent the error of the cell effect propagates

to the result. In addition, the size of the difference of the cell effect and the measured gap

change has to be considered. The larger it is, the smaller the influence of the reproducibility

error of the cell effect. This can be inferred from eq. 3.15

∆dsample

lsample
=

∆dmeasured −∆dAg

lsample
+

∆lAg

l

=
(∆dsample + ∆d

(1)
Cell + ∆dAg-Spacer)− (∆d

(2)
Ag + ∆dcell-length silver)

lsample
+

∆lAg

l
,

(5.4)

where ∆d
(1)
Ag and ∆d

(2)
Ag denote gap changes caused by different cell effect behavior.

This restricts our samples to materials with at least gap changes greater than the cell

effect sample in order to achieve a reasonable reproducibility in ∆l/l. A relative length

change of the order of 1× 10=3 is required to reduce the influence of the cell effect to the

order of 1 %. Many solids fulfill this requirement. However, the non-reproducibility of the

derivative of the cell effect and its overall non-smooth behavior creates undesired features

in the thermal expansion coefficient (see e.g. section 5.3). The search for the origin of
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5 Calibration Measurements

these effects posed one of the largest challenges of the experimental setup (see sections 5.3

and 5.10).

In order to obtain smooth thermal expansion coefficient curves, further investigation is

needed in order to improve the quality of the cell effect. Since the interplay of the thermal

expansion of all parts causes the cell effect and the non-reproducibility occurs on a sub-

micron level, the search for a cause for the poor reproducibility and non-smoothness of

the cell effect is complex. Many workers in the field of capacitive dilatometry faced similar

issues. Although extensively studied, the complexity of the cell effect often prohibits a

clear and systematic extraction of its sources3. However, one of the following effects may

give rise to a non-reproducibility and non-smoothness of the cell-effect:

Electrical Contacts The electrical connection of the cell to the coaxial cable leading to the

capacitance bridge is achieved by using cable shoes (see fig. 3.11), which are clamped

to the screws fixing the capacitor plates. During fixing the cable shoes (this has to

be done after every reinsertion), the screws could be accidentally turned and thus

the position of the plates could change. A replacement of the clamp contact with

cable shoes by direct soldering is recommended.

Cone Bearings The contact surface, where the cone bearings stick into the upper dilatome-

ter half was altered during the grinding process (see 3.4.1). Burrs formed during this

process could cause a non-smooth behavior similar to glitches during the expansion

of the cell.

Eccentric Screws Eccentric screws are located below the cone bearings, which were orig-

inally included into the design to allow fast adjustment of the cone bearings. A

cryotape was put on the screw heads to prevent moving. However, this tape was

removed and attached several times and it was noticed that the stability of the screw

was poor when not fixed with the tape. Therefore, a slight movement of the screws

during dismounting and mounting of the cell could happen and thus alter properties

of the cell.

Spring Tension The tension of the CuBe spring washer is not well reproducible, since it

can just be estimated based on the turns of the nut on top of the washer (see fig. 4.8).

A more quantitative approach could lead to insights whether the properties of the

spring have an effect on the reproducibility.

5.3 Copper

In order to test the performance of the dilatometer, a test with copper, a substance

with well-known properties, is conducted. The sample corresponds to the NIST standard

reference material 736 [95] with a length of l = 3.04 mm. The relative length change data

3For example, Auweiler [41] and Baier [43] struggled also with non-reproducible cell effects
above ca. 100 K, but despite ample research, no distinct source of the cell effect could be found.
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Figure 5.6: Left: Relative length change of copper in comparison with literature
data. Right: Absolute and relative error of the relative length change compared
literature data [37].
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Figure 5.7: Left: Linear thermal expansion coefficient of copper. The two features
A and B denote regions, where the measured values deviate significantly from the
smooth behavior of the literature values. Right: Absolute and relative error of the
linear thermal expansion coefficient compared with literature data [37].

matches the literature data of Kroeger and Swenson well [37]4(see fig. 5.6). The errors

range from =4 % to 4 %. The relative error at low temperatures is high since differences

boost systematic errors, which are expected to be large, since gap change caused by the

cell effect lies in the same order of magnitude as the gap change caused by the copper

sample itself.

The thermal expansion coefficient shows a good agreement with the literature data of

Kroeger and Swenson [37], too. The relative errors are below 4 % at high temperatures,

which is remarkable, since one expects an enhancement of the error by differentiating (see

section 4.2). At low temperatures, the relative errors diverge for the same reasons as in

the relative length change.

4The measurements of Kroeger and Swenson are performed with an absolute dilatometer yield-
ing high accuracy (see fig. 3.3).
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Figure 5.8: Left: The first two terms of eq. 5.5 for copper are shown. The features
A and B denote non-smooth features (see 5.7). Right: Comparison with different cell
sharing the same design.

Fig. 5.7 shows two regions A and B where the curve significantly deviates from a smooth

behavior of the literature values. According to eq. 3.14 α splits up in the following terms:

α(T ) =
d

dT

(
∆l

l

)
measured︸ ︷︷ ︸

αCu

− d

dT

(
∆l

l

)
Ag︸ ︷︷ ︸

αAg

+αAg-Lit(T ) (5.5)

Fig. 5.8 shows the first two terms separately and their difference. It can be clearly seen,

that feature A has its origin in the cell effect measurement. The feature in B appears

in both terms, but it is not canceled well, which is assumed to be related to the poor

reproducibility of the cell effect at high temperatures (see fig. 5.5).

In order to quantify the reproducibility of measurand, one measurement of the same copper

sample with a different cell is compared with the obtained data5(see fig. 5.8). The device

shares the same design with the dilatometer presented in this work. Since the cell effect

and its reproducibility differs in each dilatometer, this cannot yield a precision for a single

device. However, it allows the comparison of calibration quality and comparability of data

acquired with similar devices.

The data obtained within this work exhibits similar accuracy compared with the data

obtained with the other cell. However, the curve of the thermal expansion coefficient

acquired with the other dilatometer is smoother allowing a better determination of e.g.

phase transitions (see section 7).

5Data provided by Müller [86].
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Figure 5.9: Left: Cell effect and measured relative length changes of aluminum and
copper without subtracting the background. Right: First two terms of eq. 5.5 for
aluminum and their difference.

5.4 Aluminum

Thermal Expansion

In addition to copper, a test measurement of a high-purity aluminum sample (99.996 %)

with l = 2.27 mm was performed.

Figure 5.10 shows the relative length change versus literature data. The error relative to

literature data is overall larger than in copper. The increasing error starting at 150 K can

be explained by the decreasing difference of measured relative length change and the cell

effect (see fig. 5.9). This effect arises from the larger expansion of aluminum compared

with silver at high temperatures(see fig. 9.1).

The thermal expansion coefficient shows a deviation similar to copper (see fig. 5.11) at

high temperatures. In comparison with fig. 5.5, this is again attributed to the poor re-

producibility of the cell effect. However, feature A observed when measuring copper (see

fig. 5.7) appears less pronounced. Investigating the different terms of eq. 5.5 show that

the feature appears in the cell effect and in the actual measurement and thus cancels out

(see fig. 5.9).

Since the measurement of the thermal expansion of copper is performed using a different

cryostat and sample rod than for the cell effect, whereas the aluminum data was obtained

using the same cryostat and sample rod as for the cell effect, feature A is attributed

to the experimental setup and not the cell. The setup might also give rise to the poor

reproducibility of the cell effect (feature B). However, in order to have further evidence,

measurements of the cell effect have to be conducted in another setup.
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Figure 5.10: Left: Relative length change of aluminum. Right: Absolute and relative
error of the relative length change compared with literature data [37].
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ble in copper, but not in aluminum. Feature B denotes a deviation also seen in copper
(see section 5.3).
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Figure 5.12: Magnetostriction of aluminum at T = 5.000(2) K. The data features
magnetooscilations known from literature [17].

Magnetostriction

The phenomenon of magnetooscillations in metals is an elegant tool to investigate the

length change resolution of the dilatometer. As already mentioned in 2.4, this effect arises

from the de-Haas-van-Alphen effect, the oscillation of the magnetization with changing

external magnetic field. The measurement shows two oscillations with different frequency

and amplitude lying on top of each other, which correspond to different extremal cross-

sections of the Fermi surface 6. The first oscillation is visible, when the amplitude reaches

≈ 5× 10=8, which acts as a scale for the resolution of the dilatometer.

6A detailed analysis of aluminum was conducted by Griessen [17].
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6 LiMn0.95Ni0.05PO4

6.1 Crystal Properties

LiMn0.95Ni0.05PO4 belongs to the family of the olivine phosphates LiMPO4(M=Mn,Fe,Co,Ni),

which came into the focus of research due to their exceptional high lithium-ion conductiv-

ity [96] and large magnetoelectric effect1[97]. The first makes them in principle well-suited

for electrochemical energy storage devices as secondary batteries [96]. However, the appli-

cation is hindered by their poor electronic conductivity. Efforts to improve its value have

hitherto only been successful for M=Fe [98]. Currently, research is being focused on doing

the same with the other compounds, since the cell voltage increases by replacing Fe with

Mn, Co or Ni (in this order). Considerable progress has been made for the M=Mn materi-

als [99]. A Ni-doping is supposed to increase the cell voltage further, making it worthwhile

to investigate such materials. The second peculiarity, the large magnetoelectrical effect,

offers additionally a wide range of applications [100]. Magnetic fields, to name but one,

could be detected with high sensitivity.

In this chapter, the thermal expansion of a LiMn0.95Ni0.05PO4 single crystal is investigated

in order to analyze the interplay of magnetic ordering and the crystal lattice. The synthesis

and growth of the crystal is described elsewhere [101].

Figure 6.1 shows the crystal structure of LiFePO4, which shares the same olivine-structure

with LiMn0.95Ni0.05PO4 [101]. Layers of magnetic M-ions stacked along the a-axis are

separated by lithium layers and PO4 tetraeda. The magnetic ions are surrounded by

oxygen atoms forming octahedra. LiMn0.95Ni0.05PO4 belongs to the Pnma symmetry

group and the lattice constants for LiMn0.95Ni0.05PO4 are a=10.432(2) Å, b=6.087(3) Å

and c=4.735(3) Å [101].

An AFM(antiferromagnetic) ordering is observed in every compound of the isostructural

group LiMPO4 at low temperatures. However, it has been found that the easy axis of the

magnetization differs depending on the magnetic ion M: LiMnPO4, LiFePO4, LiCoPO4

and LiNiPO4 order antiferromagnetically with easy axis along the crystallographic a, b,

b and c axis [102]. Wang et al. [101] observes an AFM ordering along the a axis within

1Magnetoelectricity is the effect of an electrical polarization occurring under the influence of
an external magnetic field.
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6.1 Crystal Properties

Figure 6.1: Structure of LiFePO4 as an example for the LiMPO4 family. Left top
and bottom: From Li et al. [108] Right top: From Lit et al. [103]. The direc-
tions (100),(010) and (001) correspond to the a,b and c axis. Right bottom: Draw-
ing is showing the antiferromagnetic ordering along the a-axis ofLiMn0.95Ni0.05PO4

with antiferromagnetic coupling in-plane and ferromagnetic coupling between planes.
From [102].

LiMn0.95Ni0.05PO4 matching the expectation that the magnetic properties are not greatly

influenced by a 5 % Ni-doping (see fig. 6.2).

Neutron scattering studies found that the spins in LiFePO4 [103], LiCoPO4 [104] and

LiNiPO4 [105] are not strictly collinear, but rotated by a small angle with respect the to

the easy axis. This spin ordering in buckled planes within LiCoPO4 allows the formation of

so called ferrotoroidal magnetic domains, which may give rise to the strong magnetoelectric

effects [106, 107].

From susceptibility measurements the Néel temperature is determined to be 32.5 K (see

fig. 6.2).
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Figure 6.2: Top: Linear thermal expansion coefficient of LiMn0.95Ni0.05PO4 of the
a,b and c axis and volume. The black line shows an estimate of the the phononic
contribution. Bottom: Magnetic susceptibility measured with an external magnetic
field of 0.1 T. Mag. susceptibility from [101].

6.2 Thermal Expansion

The measurements of LiMn0.95Ni0.05PO4were conducted at the Technical University of

Vienna using a setup different from the one described in section 3. The cell was replaced

by a cell of similar design having a smaller cell effect (see fig. 6.5). Temperature control is

achieved via a similar setup described in 3. However, the cryostat used in this setup is a

bath cryostat, i.e. there is no direct control of the cooling power via a needle valve. The

cell is coupled to a helium reservoir via helium exchange gas. Through the control of the

helim exchange gas pressure the thermal coupling and thus the cooling power can be ad-

justed. Heating is achieved by a resistance heater attached to the shielding tube (see 3.7).

The a- and c- axis show each a pronounced positive anomaly at the Néel temperature

TN = 32.5(5) K confirming the ordering temperatures observed in the magnetization (see

fig. 6.2). On the contrary, only a slight change is observed along the b-axis. However,

the expansion along the b-axis is the largest at high temperatures. The c-axis shows the
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Figure 6.3: Top: Relative length change of LiMn0.95Ni0.05PO4 along different axes,
relative volume change and approximate phononic driven volume expansion. Bottom:
Magnetically driven relative volume change.

largest anomaly although the magnetic coupling is supposedly weaker than in the a-axis.

However, magnetoelastic effects are the result of an interplay between magnetic anisotropy,

magnetic exchange interaction2 and elastic properties of the crystal. All of these parame-

ters are currently unknown for the investigated compound. A comparison with the data of

Co2SiO4, a material exhibiting the same olivine structure indicates that the directions of

the anomalies are not an intrinsic property of the crystal symmetry [110]. By interpolating

the relative length changes of each axis, the overall volume change is calculated:

∆V

VRT
=

(
1 +

∆la
la

)(
1 +

∆lb
lb

)(
1 +

∆lc
lc

)
− 1, (6.1)

where VRT denotes the volume of the crystal at room temperature.

A rough estimate of the phonon background is assessed by fitting a polynomial to high-

2Magnetic anisotropy and exchange coupling have found to be equally important in
LiCoPO4[109].
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Figure 6.4: Top: Magnetic contribution to the thermal expansion along the a-axis
and the quantity ∂(χT )/∂T , which is proportional to the magnetic specific heat.
Middle: αa/T showing a transition at Ttr and magnetic susceptibility along a-axis

temperature values of ∆V/VRT (see fig. 6.3). In order to yield the magnetovolume effect

(relative length change caused by spontaneous magnetostriction), the estimated phonon

background is subtracted. The maximum of the resulting curve is 6× 10=5 corresponding

to an expansion of 7× 10=4 mm3.

Using the susceptibility data, one can calculate the magnetic specific heat

∂ (χT )

∂T
∝ cmag, (6.2)

which is proportional to the magnetic specific heat cmag [111]. The magnetic specific heat

mimics the thermal expansion along the a-axis αa closely (see fig. 6.4). The Grüneisen

relation (eq. 2.21) indicates that the energy scale responsible for the magnetic ordering

dominates within this temperature range.

Plotting αa/T , a kink at Ttr = 14.7(5) K becomes visible. It is known from the cali-
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Figure 6.5: Cell effect for the cell used for the measurements of Li(Mn0.95,Ni0.05)PO4.
Data provided by Müller [86].

bration measurements (see chapter 5), that the error increases at low temperatures and

deducing sample effects below 20 K can be hazardous. However, due to the anomaly,

LiMn0.95Ni0.05PO4 exhibits a relative large expansion at low temperatures. Compared

with the results presented in section 5.2 the cell effect is one order of magnitude less

mitigating effects seen in the measurand. Based on these considerations and from the

observation that the surrounding points exhibit a smooth behavior, this feature is treated

as a sample effect. Its shape does not resemble a discontinuity caused by first- or second-

order phase transitions. The origin of the feature can hence not be elucidated at this

point. Szewcyk et al. observe a similar feature in LiCoPO4 when the sample is exposed to

a magnetic field of 8 T [112]. The authors present evidence suggesting that the transition

is caused by a change in the rigidness of the spin lattice, i.e. the magnon system, either by

a change in the exchange interaction or magnetic anisotropy. In LiMn0.95Ni0.05PO4 the

magnetic susceptibility shows no anomaly at Ttr providing further evidence that the effect

does not arise from a magnetic order phenomenon.

In order to draw further conclusions on the transition at Ttr and to establish a stronger

link to the observation of Szewcyk et al., more information is needed. It is suggested to

measure the thermal expansion with an external magnetic field, since data of Szewcyk et

al. shows that the anomaly increases with magnetic field strength. An observation of the

feature in specific heat measurements and testing its magnetic field dependency would

further provide confirmation that the feature corresponds to the findings of Szewcyk et

al. The phononic background of αa is estimated via a polynomial and subtracted. The

resulting αa,mag shows the expansion caused by magnetoelastic coupling. The Onsager
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Figure 6.6: Magnetically driven thermal expansion αa,mag with fits corresponding to
the Onsager solution for a 2D-Ising-system (see text for details)

solution to the 2D-Ising model yields [113, 114]

cm ∝ log (T − TN )⇒ αa,mag ∝ log (T − TN ). (6.3)

Fitting a log (T − TN ) + c to αa,mag yields a good agreement close to the phase transition

(see fig. 6.6). Szewcyk et al. perform the same analysis for LiCoPO4 and obtain similar

results. They treat the agreement as an indication of a quasi-2D-Ising behavior of the

Co-spins and presume that the asymmetric shape of the transition arises from the weak

coupling of the magnetic moments between Co-layers.

68



7 CeFeAsO1-xFx

7.1 Background on Iron-Pnictides

Soon after the discovery of the new class of iron-based superconductors by Kamihara et

al [115] in 2008, the dawn of a new “iron age” succeeding the “copper age” of cuprates

was proclaimed [116]. Despite an extensive effort to increase the critical temperature,

the record-holder among iron-based superconductors remains GdThFeAsO with TC =

56 K [117, 118]. This is still below the boiling point of nitrogen, the crucial barrier for ap-

plicability, which has only been surpassed by cuprates yet. However, in contrast to several

iron-based superconductors, their brittleness makes them unfavorable for machining. Nev-

ertheless, using the full-fledged arsenal of solid-state physics, a comprehensive knowledge

of characteristic properties was accumulated leading the way to a deeper understanding

of the underlying processes of superconductivity in iron-based superconductors.

Figure 7.1 shows the most investigated crystal structures of Fe-based superconductors.

All members include a layer of FePn, where Pn is a pnictogen (mostly As), hence the

name iron-pnictides (from ancient Greek πνίγειν , “to choke”) or iron-arsenides. The 11-

systems (see below) constitute an exception having FeSe or FeTe planes giving them the

name iron-chalcogenides1. This is similar to cuprates, where CuO2 planes are a common

feature. However, in cuprates, the CuO2 planes are square planar, whereas the structure

of the iron-pnictogen bonds is tetrahedral. Iron-based superconductors compounds are

classified as follows:

1111 FePn-layers with RO-layers(R=rare-earth ion) in between

122 FePn-layers with R-layer in between

111 FePn-layers with A-layers(A=Alkali metal) in between

11 FeSe-layers or FeTe-layers directly stacked upon each other

A description of more complicated iron-pnictides (e.g. 32522) which have also been found

to exhibit superconductivity can be found elsewhere(e.g. [120]).

Untreated 1111 and 122 systems show either a tetragonal-orthorhombic structural transi-

tion at TS together with an antiferromagnetic ordering at TN ≤ TS or a superconducting

1In contrast to As and Te, Se is non-toxic.
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Figure 7.1: Drawing showing the structural classification of iron-based superconduc-
tors. Pn: Pnictogen, A: Alkali metal and R: Rare-earth ion. After [119].

Figure 7.2: Phase diagrams of LaFeAsO [121] and Ba1-xKxFe2As2 [120].
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7.1 Background on Iron-Pnictides

Figure 7.3: Drawing showing a typical stripe ordering in the FePn-layers FeSe-layers
in the antiferromagntic phase of iron-based superconductors. From [122]. The stripe
order for FeTe is different [125] Top: Side view of iron layer (red:iron ions, gold:
pnictogen/chalcogen anions). Botto,: Stripe order of Fe-Spins within iron-layers.

phase at TC when cooled down under atmospheric pressure. The structural and magnetic

transition can be coinciding (e.g. BaFe2As2) or occurring at separate temperatures(e.g.

LaFeAsO). The magnetic ordering has found to be a commensurate SDW (spin density

wave) forming stripes within the FeAs-planes ([122] and references therein, see fig. 7.3).

The common appearance of structural and magnetic transitions is striking. The concept

of a nematic phase was proposed to explain the interplay of magnetic and structural

degrees of freedom [123, 124]. In this picture, the structural transition would be naturally

explainable by the magnetoelastic coupling of spin correlations and thus the structural

transition would be a precursor for an impeding magnetic ordering.

If additional holes or electrons are introduced into the FeAs-layers by doping, two cases can

happen. If one starts with a non-superconducting compound, the magnetic and structural

transitions are suppressed and a superconducting phase emerges. For superconducting

parent compounds, the contrary is observed. Doping enhances TC up to a maximum, but

then suppresses the superconducting phase, whereas an antiferromagnetic phase and new

orthorhombic phase emerges (see fig. 7.2). Similar effects can be induced by applying

pressure [126] or even by an isovalent doping(e.g. replacing As by P [127]).

A mixing of superconducting and SDW-phase is also observed [128]. However, it is still

debated whether the phases occur separately [129] or microscopically mixed [130].

In the non-superconducting phase, Fe-superconductors have metallic properties. This is

in contrast with cuprates, which are insulators at room temperature, but a feature in

common with heavy-fermion superconductors [131] and BSC-type superconductors.

The largest quest for understanding the physics of Fe-SC is, of course, the clarification

of the pairing mechanism and the symmetry of the order parameter. However, current
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results favor a conventional s-wave or s±-wave (see [122] and references therein). A pair-

ing mechanism based fully on conventional electron-phonon coupling is not favored by

theoretical considerations [132] and experimental data of the isotope effect yields only an

exponent of 0.35 in SmFeAsO1−xFx (0.5 is predicted by BCS-theory) [133]2 However, its

closeness to 0.5 might indicate that phonons are not irrelevant. A promising candidate for

the Cooper pair coupling mechanism are antiferromagnetic spin fluctuations [134].

7.2 Thermal Expansion

In this section, the results of thermal expansion measurements of the 1111 compound

CeFeAsO1-xFx with x=0, x=0.02 and x=0.04 is analyzed. The electron-doping via fluor is

expected to suppress the structural and AFM transition, since this is a generic property

of 1111-systems. The doping levels are nominal, i.e. have been obtained via weighing the

precursors before the crystal synthesis.

7.2.1 Parent Compound, CeFeAsO

Figure 7.4 shows the results obtained for undoped CeFeAsO. The expansion of the cell

is larger at temperatures below ≈ 100 K, thus a non-smooth behavior in this region is

treated as an influence of the cell effect. The expansion is much less than copper, making

the interpretation of features overall more hazardous. However, the phase transitions can

be clearly identified by anomalies in α. The structural transition can be observed at

TS = 151.4+1−0.5 K and the subsequent negative anomaly with the magnetic transition

at TN = 137.0(5) K. The errors are estimated based on the distance to surrounding

data points and the error of the thermometer(see section 3.8). Both of the transition

temperatures agree well with literature [135]. The rising α at ≈ 5 K can be related to the

magnetic ordering of cerium moments, since its order temperature TCe = 4.4(3) K [135] is

known.

Assuming a second-order magnetic phase transition, the pressure dependence of TN can

be estimated via eq. 2.34. From fig. 7.4, ∆β = 3∆α ≈ 3× 10=6 K=1 is estimated. With

Vm = 4.17× 10=5 m3 mol=1 [136] and ∆cp ≈ 2.5 J K=1 mol=1 [137], one finds

dTN
dp

= VmTN
∆β

∆cp
≈ =8

K

GPa
. (7.1)

Zocco et al. finds that dTN/dp = =9 K GPa=1 by directly applying hydrostatic pressure,

which agrees with the value obtained here considering the large uncertainties involved in

determining ∆cp and ∆β [138].

2An electron-phonon coupling in the BCS sense, would yield TC ∝ M−0.5, where M is the
mass of an atom of the superconductor.
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Figure 7.4: Top: Thermal Expansion Coefficient of undoped CeFeAsO. Inset shows
the magnetic transition. TS, TN, TCe denote the temperature of the structural transi-
tion, magnetic transition and the cerium moment ordering. Bottom: Relative length
changes of CeFeAsO and cell effect. The cell effect is greater than the samples expan-
sion at low temperatures, which indicates a large error in this temperature region.

73



7 CeFeAsO1-xFx

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
0

2

4

6

8

1 0

1 2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8

 

 

α(1
0-6 K-1 )

T ( K )

T S

T N  ?

 

 

∆L
/L 

(10
-3 )

T ( K )

L = 2 . 7 4  m m

Figure 7.5: Top: Thermal expansion coefficient of CeFeAsO0.98F0.02. TS denotes the
structural transition temperature. The magnetic transition could not be differentiated
from noise. TN marks the approximate position which is expected from the phase
diagram in [135]. Bottom: Relative length changes.

7.2.2 CeFeAsO0.98F0.02

In the 2 % fluorine-doped material, the thermal expansion coefficient shows a much less

pronounced transition at TS = 121.7(5) K. The noise prohibits a clear identification of

the magnetic ordering temperature. However, it is suspected to be around 90 K based on

the phase diagram in [135]. The onset of the Ce-ordering can again be observed, but the

incomplete peak does not allow a clear determination of TCe. From literature [135] a slight

lowering of TCe relative to the undoped material is expected.

The observed decrease of the anomaly heights and the smearing out of phase transition is

similar to LaO1-xFxFeAs [54].
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Figure 7.6: Top: Thermal Expansion Coefficient of CeFeAsO0.98F0.04. Bottom:
Relative length changes.

7.2.3 CeFeAsO0.96F0.04

Figure 7.6 shows the thermal expansion and relative length change of a CeFeAsO0.98F0.04

sample with length l = 3.06 mm. No phase transition temperatures can be extracted from

the data. It is assumed that noise and cell effect superimpose the signal caused by the

sample. In comparison with literature [135], the small anomaly at low temperatures can

again be related as the cerium ordering.
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the eye.

Nominal(%) NQR(%)

5 4.2(2)
10 4.8(3)
15 6.3(2)
20 14.5(20)
25 15.0(20)

Table 7.1: Doping levels obtained via weighing precursors (nominal) and via NQR
after synthesis [139].

7.3 Phase Diagram

The results from the measurements are combined with data from Maeter et al. [135]

within a phase diagram (see fig. 7.7). The data for the undoped compound agrees with

the data from Maeter. The doping level for TS at x=0.02, however, has to be afflicted

with additional error, since its doping level is nominal, i.e. measured by weighing the

different elements before synthesis. Maeter et al. used Nuclear Quadropole Resonance to

determine more accurate x and showed that the deviation between the real and nominal

doping levels can yield up to 50 % [139]. However, only small deviations between nominal

and actual doping levels are shown for low F-concentrations (see tab. 7.1).
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8 Conclusion and Outlook

The thesis at hand describes the setup and calibration of an experiment to measure ther-

mal expansion from 5 K to 300 K by means of high-resolution capacitive dilatometry and

demonstrates its applicability via measuring reference materials and studies of CeFeAsFO.

Thermal Expansion data of LiMn0.95Ni0.05PO4 was measured with a different setup at the

Vienna University of Technology and analyzed.

Temperature control was achieved using a helium gas-flow cryostat from Oxford instru-

ments. In order to enhance the temperature stability, a second resistance heater close to

the dilatometer was used. The cryostat is equipped with a superconducting magnet being

able to deliver magnetic fields up to 17 T. The capacitance is measured via a three-terminal

method using the ultra-precision capacitance bridge 2550A from Andeen Hagerling.

Through measurements of copper and aluminum reference samples it is shown that the

experiment is able to measure relative length changes and thermal expansion coefficients

with an accuracy of the order 1× 10=5 and 1× 10=7 K=1, respectively. The cell effect

arising from the expansion of the dilatometer itself was determined to be of the order

1× 10=4 in relative length change ∆l/l. Its non-reproducibility was analyzed and various

possible sources were discussed. The search for the origin of the non-reproducibility turned

out to be challenging and is still ongoing. However, it was found in copper and aluminum

measurements that the cell effect causes only minor errors in the thermal expansion co-

efficient α. Nevertheless, unwanted features (e.g. dips) can be observed, which may not

be distinguishable from sample effects when measuring materials with unknown thermal

expansion.

The temperature stability of 1 mK at 5 K makes the setup well-suited for magnetostriction

measurements. This was confirmed by data obtained from silver and aluminum samples.

The magnetooscillation observed in aluminum demonstrates a resolution of 5× 10=8 in

∆l/l. The cell background caused by magnetic forces was determined to be of the order

1× 10=7 in ∆l/l.

Measurements of ∆l/l and α of single-crystalline LiMn0.95Ni0.05PO4 were conducted. The

experiments were performed using a similar dilatometer at the Vienna University of Tech-

nology with a cell effect of one order of magnitude less, which mitigates systematic errors.

The antiferromagnetic phase transition was analyzed and two strong positive anomalies
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in the a and c axis1 at the Néel-temperature of TN = 32.5 K were found, whereas the b

axis showed no clear changes at the transition. A logarithmic divergence was fitted to the

phase transition. Following the analysis of Szewczyk et al. this indicates a quasi-2D-Ising

behavior of the Mn/Ni spins [112]. An additional feature of unknown origin was found

at Ttr = 14.7 K similar to the one found by Szewczyk et al in LiCoPO4 analyzing specific

heat data under an magnetic field of 8 T. Here, a change in stiffness of the magnon system

is proposed to cause the anomaly in cp. Further measurements in particular under an

external magnetic field are needed in order to elucidate the origin of the new feature.

Furthermore, the thermal expansion of fluorine doped polycrystalline CeFeAsFxO1-x was

measured and analyzed. Despite the small expansivity relative to silver, it was possible

to identify phase transitions. For CeFeAsO, the results yield a structural transition tem-

perature TS = 151.4+1−0.5 K and a magnetic transition at TN = 137.0(5) K agreeing well

with literature [135]. For CeFeAsO0.98F0.02, the structural phase transition temperature

can be determined to be TS = 121.7(5) K, but no magnetic ordering temperature can

be extracted. This value fits well to the established phase diagram of CeFeAsO [135].

The 4 %-doped compound CeFeAsO0.98F0.04 shows a thermal expansion coefficient with

no clearly observable anomalies, thus no transition temperatures could be inferred.

The quest to obtain a cell effect with better reproducibility still remains. However, this

work elucidates important key aspects and can act as a starting point for further investiga-

tions. The recently acquired second dilatometer with similar design will allow cross-checks,

which can yield important information about how to effectively influence the cell effect.

Experiments with different cryostats, temperature control mechanisms and sample rods

might also yield more information on how to combat the problem.

Thermal expansion data of LiMPO4 (M=Fe,Mn,Co,Ni) single crystals over the tempera-

ture range 5 K to 300 K pose a novelty. Together with specific heat data, dominating en-

ergy scales can be determined via the Grüneisen parameter and the pressure dependence

of the Néel temperature can be derived through the Ehrenfest relation. Being materi-

als, which are currently heavily investigated due to their intriguing magnetic properties,

findings related to magnetoelastic properties could be of scientific interest in particular.

In summary, the goal to set up a capacitive dilatometry experiment with high resolu-

tion and good accuracy was successfully achieved, whereas optimization of the cell effect

behavior could further enhance data quality.

1Axes correspond to the symmetry group Pnma.
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9 Appendix

9.1 Reference Thermal Expansion Coefficients
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Figure 9.1: Literature values for all relevant thermal expansion coefficients. The fit
for Ag used in the analysis is shown. Sources: [52](Ag TPC: recommended values), [37]
(Cu and Al), [140] (Sapphire) and [141] (Brass). Thermal Expansion coefficient for
brass is derived via fitting and deriving of ∆l/l. Since there are only a few data points
given, the values have to be seen as a rough estimate.
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[48] Brändli, G. and Griessen, R. Cryogenics (May), 299–302 (1973).

[49] Genossar, J. and Steinitz, M. Review of Scientific Instruments 61(9), 2469–2471
(1990).

[50] Mehboob, N. Magnetostriction of measured GdAg2, PrFe4As12, and GdVO3 with a
Capacitance Dilatometer. Diploma thesis, Vienna University of Technology, (2009).

[51] Barcza, A. Magnetostriction in Rare Earth Elements Measured with Capacitance
Dilatometry. Diploma thesis, (2006).

[52] Touloukian, Y. Thermal expansion: metallic elements and alloys. Thermophysical
properties of matter. IFI/Plenum, (1975).

[53] Rotter, M. private communication, (2012).

[54] Wang, L. Thermal Expansion and Magnetostriction Studies on Iron Pnictides. PhD
thesis, Technische Universität Dresden, (2010).

[55] Voort, G. F. V. SumMet–Ein Leitfaden zur Präparation von Werkstoffen und deren
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H., Baines, C., Amato, A., Leps, N., Klingeler, R., Feyerherm, R., Argyriou, D.,
and Klauss, H.-H. Arxiv preprint (http: // arxiv. org/ abs/ 1210. 6959 ) October
(2012).

[136] Jesche, a., Krellner, C., de Souza, M., Lang, M., and Geibel, C. New Journal of
Physics 11(10), 103050 October (2009).

[137] Jesche, A., Krellner, C., de Souza, M., Lang, M., and Geibel, C. Phys. Rev. B 81,
134525 Apr (2010).

[138] Zocco, D. A., Baumbach, R. E., Hamlin, J. J., Janoschek, M., Lum, I. K., McGuire,
M. A., Sefat, A. S., Sales, B. C., Jin, R., Mandrus, D., Jeffries, J. R., Weir, S. T.,
Vohra, Y. K., and Maple, M. B. Phys. Rev. B 83, 094528 Mar (2011).

[139] Maeter, H., (2012). private communication.

[140] Swenson, C., Roberts, R., and White, G. Thermophysical Properties of Some Key
Solids. CODATA Bulletin 59. Oxford Pergamon Press, (1985).

[141] Corruccini, R. J. and Gniewek, J. J. Thermal Expansion of technical Solids at Low
Temperatures. US Government Printing Office, Washington, DC, (1961).

85

http://arxiv.org/abs/1210.6959


10 Danksagung

�Wissenschaft wird von Menschen gemacht. Dieser an sich selbstverständliche
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die Unterstützung per Telefon und E-Mail bedanken.
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gemeinsamen Kampf mit den Programmen Latex, Origin und Mathematica.

Für den reibungslosen Ablauf bei der Kryoflüssigkeitsversorgung, technische Unterstützung
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der Vakuumpumpe.

86



Thanks to Geoffrey Tan for helping out during helium refilling and for psychological sup-
port in the late-night battle with the diamond saw wire.

Vielen Dank an die F25ler Carsten Jähne, Christoph Neef, Romeo Racz, Thomas Kolb
und Kunpeng Wang für aufmunternde Worte, die Zusammenarbeit im Team und diverse
kulinarische Höchstleistungen.
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